A Novel Adaptable Weibull Distribution and Its Applications
Abstract
1. Introduction
- To present a novel lifetime distribution by extending the new extended Weibull distribution and discuss its advantages and potential uses.
- To calculate the formula of the quantile in closed form and study the numerical results of the rth moment of the proposed distribution.
- To show the hazard rate function of the new distribution can take not only the upside-down bathtub shape like NEWD but also the modified upside-down bathtub shape commonly observed in medical contexts.
- To investigate several techniques of estimation for the new model’s unknown parameters based on complete data.
- Using the ideas and techniques presented in this study, the significance of this new model in the medical field is demonstrated under complete data.
- When applied to the clinical data, the new distribution demonstrates a superior fit compared to its sub-models and some well-known distributions.
- The effectiveness of the various estimation strategies used to estimate the distribution parameters is investigated using a simulation study.
2. The New Modification for Weibull Distribution
3. Some Statistical Properties
3.1. Quantiles
3.2. Moments
- Under fixed values of ,
- As b increases with fixed a, the mean and variance of the GNEWD decrease.
- As a increases with fixed b, the mean and variance of the GNEWD increase.
- As b increases with fixed a, the skewness of the GNEWD decreases.
- As a increases with fixed b, the skewness of the GNEWD decreases.
- As b increases with fixed a, the kurtosis of the GNEWD increases.
- As a increases with fixed b, the kurtosis of the GNEWD decreases.
- Under fixed values of ,
- As b increases with fixed a, the mean of the GNEWD increases and variance of the GNEWD decreases.
- As a increases with fixed b, the mean and variance of the GNEWD increase.
- As b increases with fixed a, the skewness of the GNEWD decreases.
- As a increases with fixed b, the skewness of the GNEWD decreases.
- As b increases with fixed a, the kurtosis of the GNEWD increases.
- As a increases with fixed b, the kurtosis of the GNEWD increases.
4. Some Attributes of the HRF
- 1.
- for .
- 2.
- for .
- 3.
- for .
- 4.
- for .
- 5.
- for .
- 6.
- for .
- h(x;Θ) has increasing shape from zero to infinity if and .
- h(x;Θ) has increasing shape from 0 to λ if and .
- h(x;Θ) has an upside-down bathtub shape if and .
- h(x;Θ) has a modified upside-down bathtub shape if and .
- For and , it is clear that for all . Then has an increasing shape that goes from zero to ∞ as .
- For and , it is clear that for all . Then has an increasing shape that goes from zero to as .
- For and , it is clear that has two roots based on the expression which are given as follows: and . Under the two conditions and , it is evident that and because . So, has a unique root for which is . Additionally, when and when . This means that the hazard rate function has an upside-down bathtub shape that converges to 0 when x approaches 0 or ∞.
- For and , it is clear that has two roots, and . Under the two conditions and , it is clear that , , , and . So, there are two change points. Also, when and and when and (using in Wolfram Mathematica). This means that the hazard rate function has a modified upside-down bathtub shape.
5. Different Methods of Estimation
5.1. Maximum Likelihood Estimation
5.2. The Parameters , , a, and b Are Unknown
5.3. Fisher Information Matrix
5.4. Least Square and Weighted Least Square Estimations
5.5. Cramér Von-Mises Estimation
5.6. Anderson Darling Estimation
6. Application to Real Data
6.1. Liver Cancer Data
6.2. Plasma Concentrations of Indomethicin Data
7. Simulation Study
- Choose different values for the initial values of the parameters of the proposed distribution.
- Generate random samples from the inverse CDF of the GNEWD with size n = (20, 60, 100, 150, 200, 250, 300).
- Calculate the estimates for all the varying methods shown in Section 5.
- Repeat Steps 2 and 3 N = 2000 times.
- Calculate the MSEs and AABs.
- The MSEs and the AABs for all methods of estimation decrease by increasing the sample size n.
- The MLE and A-DE are superior to other estimating techniques based on MSE and AAB.
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CDF | Cumulative distribution function |
Probability density function | |
HRF | Hazard rate function |
AIC | Akaike information criterion |
BIC | Bayesian information criterion |
K-S | Kolmogorov–Smirnov |
IWD | Inverse Weibull distribution |
GIWD | Generalized inverse Weibull distribution |
GIGWD | Generalized inverse generalized Weibull distribution |
GNEWD | Generalized new extended Weibull distribution |
NEWD | New extended Weibull distribution |
RGNEWD | Reduced generalized new extended Weibull distribution |
RNEWD | Reduced new extended Weibull distribution |
WD | Weibull distribution |
GMWD | Generalized Modified Weibull distribution |
EWD | Exponentiated Weibull distribution |
M-O WD | Marshall–Olkin Weibull distribution |
Logistic NHD | Logistic Nadarajah–Haghighi distribution |
IGLED | Inverted generalized linear exponential distribution |
MLE | Maximum likelihood estimation |
LSE | Least square estimation |
WLSE | Weighted least square estimation |
CVME | Cramér Von-Mises estimation |
ADE | Anderson Darling estimation |
ACI | Approximate confidence interval |
Appendix A
References
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Mudholkar, G.; Srivastava, D. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliab. 1993, 42, 299–302. [Google Scholar] [CrossRef]
- Xie, M.; Lai, C. Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliab. Eng. Syst. Saf. 1996, 52, 87–93. [Google Scholar] [CrossRef]
- Xie, M.; Tang, Y.; Goh, T. A modified Weibull extension with bathtub-shaped failure rate function. Reliab. Eng. Syst. Saf. 2002, 76, 279–285. [Google Scholar] [CrossRef]
- Bebbington, M.; Lai, C.D.; Zitikis, R. A flexible Weibull extension. Reliab. Eng. Syst. Saf. 2007, 92, 719–726. [Google Scholar] [CrossRef]
- Dimitrakopoulou, T.; Adamidis, K.; Loukas, S. A Lifetime Distribution with an Upside-Down Bathtub-Shaped Hazard Function. IEEE Trans. Reliab. 2007, 56, 308–311. [Google Scholar] [CrossRef]
- Lai, C.D.; Xie, M.; Murthy, D.N.P. A modified Weibull distribution. IEEE Trans. Reliab. 2003, 52, 33–37. [Google Scholar] [CrossRef]
- Peng, X.; Yan, Z. Estimation and application for a new extended Weibull distribution. Reliab. Eng. Syst. Saf. 2014, 121, 34–42. [Google Scholar] [CrossRef]
- Alotaibi, R.; Okasha, H.; Nassar, M.; Elshahhat, A. A Novel Modified Alpha Power Transformed Weibull Distribution and Its Engineering Applications. CMES Comput. Model. Eng. Sci. 2022, 135, 2065–2089. [Google Scholar] [CrossRef]
- Khan, F.; Ahmad, Z.; Khosa, S.K.; Alomair, M.A.; Alomair, A.M.; Alsharidi, A.k. A new modification of the flexible Weibull distribution based on power transformation: Monte Carlo simulation and applications. Heliyon 2023, 9, e17238. [Google Scholar] [CrossRef] [PubMed]
- Bousseba, F.Z.; Zeghdoudi, H.; Sapkota, L.P.; Tashkandy, Y.A.; Bakr, M.; Kumar, A.; Gemeay, A.M. Novel two-parameter quadratic exponential distribution: Properties, simulation, and applications. Heliyon 2024, 10, e38201. [Google Scholar] [CrossRef]
- Ramaki, Z.; Alizadeh, M.; Tahmasebi, S.; Afshari, M.; Contreras-Reyes, J.E.; Yousof, H.M. The Weighted Flexible Weibull Model: Properties, Applications, and Analysis for Extreme Events. Math. Comput. Appl. 2025, 30, 42. [Google Scholar] [CrossRef]
- Bain, L.J. Analysis for the Linear Failure-Rate Life-Testing Distribution. Technometrics 1974, 16, 551–559. [Google Scholar] [CrossRef]
- Mezo, I. The Lambert W Function: Its Generalizations and Applications, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Cohen, A.C. Maximum likelihood estimation in the Weibull distribution based on complete and on censored samples. Technometrics 1965, 7, 579–588. [Google Scholar] [CrossRef]
- Swain, J.J.; Venkatraman, S.; Wilson, J.R. Least-squares estimation of distribution functions in johnson’s translation system. J. Stat. Comput. Simul. 1988, 29, 271–297. [Google Scholar] [CrossRef]
- MacDonald, P.D.M. Comment on “An estimation procedure for mixtures of distributions” by Choi and Bulgren. J. R. Stat. Society. Ser. B (Methodol.) 1971, 33, 326–329. [Google Scholar] [CrossRef]
- Boos, D.D. Minimum distance estimators for location and goodness of fit. J. Am. Stat. Assoc. 1981, 76, 663–670. [Google Scholar] [CrossRef]
- Carrasco, J.M.F.; Ortega, E.M.M.; Cordeiro, G.M. A generalized modified Weibull distribution for lifetime modeling. Comput. Stat. Data Anal. 2008, 53, 450–462. [Google Scholar] [CrossRef]
- Jain, K.; Singla, N.; Sharma, S.K. The Generalized Inverse Generalized Weibull Distribution and Its Properties. J. Probab. 2014, 2014, 736101. [Google Scholar] [CrossRef]
- Gusmão, F.; Ortega, E.; Cordeiro, G. The generalized inverse Weibull distribution. Stat. Pap. 2011, 52, 591–619. [Google Scholar] [CrossRef]
- Ghitany, M.E.; Al-Hussaini, E.K.; Al-Jarallah, R.A. Marshall–Olkin extended weibull distribution and its application to censored data. J. Appl. Stat. 2005, 32, 1025–1034. [Google Scholar] [CrossRef]
- Peña-Ramírez, F.A.; Guerra, R.R.; Canterle, D.R.; Cordeiro, G.M. The logistic Nadarajah–Haghighi distribution and its associated regression model for reliability applications. Reliab. Eng. Syst. Saf. 2020, 204, 107196. [Google Scholar] [CrossRef]
- Mahmoud, M.A.W.; Ghazal, M.G.M.; Radwan, H.M.M. Inverted generalized linear exponential distribution as A lifetime model. Appl. Math. Inf. Sci. 2017, 11, 1747–1765. [Google Scholar] [CrossRef]
- Alternative Reliability Models for Mechanical Systems. In Proceedings of the Third International Conference on Reliability and Maintainability, Toulouse, France, 18–22 October 1982; Alternative Reliability Models for Mechanical Systems: Toulouse, France, 1982; Volume 5805.
- Mahmoud, M.A.W.; Attia, F.A.; Taib, I.B. Test for exponential better than used in average based on the total time on test transform. In Proceedings of the 17th Annual Conference on Statistics, Modelling in Human and Social Science, Oxford, UK, 27–30 June 2005; pp. 29–30. [Google Scholar]
- Mansour, M.M.M. Non-parametric statistical test for testing exponentiality with applications in medical research. Stat. Methods Med. Res. 2020, 29, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Almarashi, A.M. A new modified inverse Lomax distribution: Properties, estimation and applications to engineering and medical data. Comput. Model. Eng. Sci. 2021, 127, 621–643. [Google Scholar] [CrossRef]
- El-Morshedy, M.; Al-Bossly, A.; EL-Sagheer, R.M.; Almohaimeed, B.; Etman, W.B.H.; Eliwa, M.S. A Moment Inequality for the NBRULC Class: Statistical Properties with Applications to Model Asymmetric Data. Symmetry 2022, 14, 2353. [Google Scholar] [CrossRef]
- Kwan, K.; Breault, G.; Umbenhauer, E.; McMahon, F.G.; Duggan, D.E. Kinetics of indomethacin absorption, elimination, and enterohepatic circulation in man. J. Pharmacokinet. Biopharm. 1976, 4, 255–280. [Google Scholar] [CrossRef]
- Warahena-Liyanage, G.; Pararai, M. The Lindley Power Series Class of Distributions: Model, Properties and Applications. J. Comput. Model. 2015, 5, 35–80. [Google Scholar]
Distribution | a | b | CDF | Reference | ||
---|---|---|---|---|---|---|
NEWD | - | - | - | 1 | [8] | |
WD | - | - | 0 | 0 | [1] | |
ED | - | 1 | 0 | 0 | [13] | |
RD | 2 | 0 | 0 | [13] | ||
RGNEWD | - | - | - | New | ||
RNEWD | - | - | 1 | New |
(, ) | a | b | |||||||
---|---|---|---|---|---|---|---|---|---|
(1, 1) | 0.5 | 0.5 | 1.4473 | 3.5886 | 12.6798 | 58.1681 | 1.4939 | 0.0713 | 7.4830 |
0.5 | 1 | 1.3832 | 3.023 | 9.3733 | 38.0833 | 1.1099 | −0.4485 | 8.0729 | |
0.5 | 5 | 1.3376 | 2.4506 | 6.5653 | 24.7723 | 0.6614 | −1.6275 | 14.5145 | |
0.5 | 10 | 1.3468 | 2.4392 | 6.4857 | 24.5254 | 0.6253 | −1.8741 | 16.0129 | |
0.5 | 20 | 1.3556 | 2.4494 | 6.4888 | 24.5103 | 0.6118 | −2.0510 | 16.5705 | |
2 | 0.5 | 2.8849 | 11.9064 | 63.9485 | 422.034 | 3.5836 | −2.2241 | 5.5169 | |
6 | 0.5 | 7.4456 | 69.6021 | 777.718 | 10052.8 | 14.1651 | −6.8316 | 4.096 | |
12 | 0.5 | 15.9514 | 301.24 | 6515.96 | 157785. | 46.7928 | −11.9994 | 3.5161 | |
(3, 3) | 0.5 | 0.5 | 0.7481 | 0.622 | 0.5605 | 0.5387 | 0.0624 | −26.7671 | 2.7259 |
0.5 | 1 | 0.7673 | 0.6421 | 0.5761 | 0.5475 | 0.0533 | −36.5933 | 2.7415 | |
0.5 | 5 | 0.8789 | 0.7881 | 0.7212 | 0.6741 | 0.0156 | −348.682 | 3.5212 | |
0.5 | 10 | 0.9291 | 0.8697 | 0.8207 | 0.7814 | 0.0065 | −1521.18 | 5.5792 | |
0.5 | 20 | 0.963 | 0.9301 | 0.9013 | 0.8767 | 0.0027 | −6198.52 | 12.7795 | |
2 | 0.5 | 1.1428 | 1.4105 | 1.8511 | 2.556 | 0.1045 | −44.1751 | 2.7403 | |
6 | 0.5 | 2.2807 | 5.4702 | 13.6825 | 35.4733 | 0.2686 | −85.3607 | 2.8100 | |
12 | 0.5 | 4.2216 | 18.4909 | 83.5819 | 388.294 | 0.6690 | −137.725 | 2.8969 |
Distribution | CDF | Reference |
---|---|---|
GMWD | [19] | |
GIGWD | [20] | |
GIWD | [21] | |
EWD | [2] | |
M-O WD | [22] | |
Logistic NHD | [23] | |
IGLED | [24] | |
IWD | [25] |
Distribution | K-S Distance | p-Value | AIC | BIC | ||||
---|---|---|---|---|---|---|---|---|
GNEWD | 0.0163 | 1.0701 | 42749.2 | 4.0287 | 0.0891 | 0.9160 | 368.81 | 375.46 |
NEWD | 0.1098 | 0.7196 | 26.3715 | - | 0.1350 | 0.4756 | 374.52 | 379.51 |
WD | 0.0039 | 1.3942 | - | - | 0.1657 | 0.2347 | 378.56 | 381.89 |
RGNEWD | 0.2497 | - | 91.8778 | 1.4109 | 0.1081 | 0.7521 | 374.73 | 379.72 |
RNEWD | 0.3175 | - | 33.6649 | - | 0.1271 | 0.5542 | 373.05 | 376.37 |
GMWD | 19.7618 | 0.0490 | 0.0004 | 0.1304 | 0.5209 | 375.76 | 382.41 | |
GIGWD | 5.0609 | 10.4434 | 1.3711 | 1.2049 | 0.1179 | 0.6493 | 377.64 | 384.29 |
GIWD | 4.2936 | 14.7942 | 1.5307 | - | 0.1133 | 0.6986 | 375.65 | 380.64 |
EWD | 6.3119 | 0.1458 | 25387.1 | - | 0.1242 | 0.5846 | 375.29 | 380.29 |
M-O WD | 0.0002 | 1.8812 | 0.1801 | - | 0.1373 | 0.4546 | 378.16 | 383.15 |
Logistic NHD | 0.7379 | 0.2122 | 5.2217 | - | 0.1270 | 0.5554 | 379.49 | 384.49 |
IGLED | 23.1730 | 75.0697 | 1.4495 | - | 0.1121 | 0.7112 | 375.56 | 380.55 |
IWD | 137.63 | 1.5306 | - | - | 0.1133 | 0.6986 | 373.65 | 376.98 |
Methods | K-S Distance | p-Value | ||||
---|---|---|---|---|---|---|
MLE | 0.0163 | 1.0701 | 42749.2 | 4.0287 | 0.0891 | 0.9160 |
LSE | 0.0279 | 0.9156 | 5.4809 | 0.0887 | 0.9187 | |
WLSE | 0.0188 | 1.0191 | 6.8139 | 0.0771 | 0.9745 | |
CVME | 0.0254 | 0.9428 | 5.6172 | 0.0807 | 0.9614 | |
ADE | 0.0227 | 0.9771 | 86756.89 | 4.3104 | 0.0717 | 0.9881 |
Distribution | K-S Distance | p-Value | AIC | BIC | ||||
---|---|---|---|---|---|---|---|---|
GNEWD | 1.7033 | 0.7700 | 0.0001 | 3.6783 | 0.0815 | 0.7730 | 45.43 | 54.18 |
NEWD | 1.9787 | 0.6145 | 0.1092 | - | 0.1322 | 0.1992 | 56.33 | 62.90 |
WD | 1.6857 | 0.9546 | - | - | 0.1348 | 0.1817 | 66.51 | 70.89 |
RGNEWD | 1.6526 | - | 0.0012 | 2.7340 | 0.1064 | 0.4433 | 52.06 | 58.63 |
RNEWD | 2.0325 | - | 0.1332 | - | 0.1173 | 0.3243 | 55.19 | 59.57 |
GMWD | 24.8199 | 0.0324 | 0.0251 | 0.1327 | 0.1956 | 58.66 | 67.42 | |
GIGWD | 1.1312 | 0.8082 | 0.5515 | 3.3338 | 0.1348 | 0.1817 | 64.32 | 73.08 |
GIWD | 0.5715 | 0.3212 | 1.0196 | - | 0.1148 | 0.3494 | 62.92 | 69.49 |
EWD | 8.2427 | 0.1495 | 660.96 | - | 0.1299 | 0.2147 | 61.73 | 68.29 |
M-O WD | 0.7083 | 1.2691 | 0.1985 | - | 0.1327 | 0.1956 | 65.05 | 71.62 |
Logistic NHD | 0.3594 | 5.5097 | 1.0471 | - | 0.13604 | 0.1737 | 68.28 | 74.85 |
IGLED | 0.1696 | 0.0047 | 0.9568 | - | 0.1119 | 0.3793 | 62.52 | 69.08 |
IWD | 0.1816 | 1.0196 | - | - | 0.1148 | 0.3494 | 60.92 | 65.29 |
Methods | K-S Distance | p-Value | ||||
---|---|---|---|---|---|---|
MLE | 1.7033 | 0.7700 | 0.0001 | 3.6783 | 0.0815 | 0.7730 |
LSE | 1.5353 | 0.6966 | 5.2577 | 0.0529 | 0.9925 | |
WLSE | 1.6049 | 0.7416 | 5.1512 | 0.0638 | 0.9513 | |
CVME | 1.5569 | 0.7097 | 5.4223 | 0.0558 | 0.9863 | |
ADE | 1.6088 | 0.7343 | 4.2803 | 0.0675 | 0.9244 |
n | MLE | LSE | WLSE | CVME | ADE | ||
---|---|---|---|---|---|---|---|
20 | MSE | 0.0357 | 0.0805 | 0.1174 | 0.0578 | 0.036 | |
AAB | 0.1421 | 0.1703 | 0.1832 | 0.1531 | 0.1455 | ||
MSE | 0.0285 | 0.0629 | 0.1249 | 0.0506 | 0.0381 | ||
AAB | 0.1314 | 0.2059 | 0.2019 | 0.1776 | 0.1532 | ||
60 | MSE | 0.0135 | 0.0255 | 0.0216 | 0.0205 | 0.0168 | |
AAB | 0.0914 | 0.1232 | 0.1154 | 0.1107 | 0.0994 | ||
MSE | 0.012 | 0.0237 | 0.0175 | 0.0201 | 0.0145 | ||
AAB | 0.0839 | 0.1227 | 0.1031 | 0.1119 | 0.0922 | ||
100 | MSE | 0.0105 | 0.0191 | 0.0146 | 0.0154 | 0.0116 | |
AAB | 0.0792 | 0.1052 | 0.093 | 0.0955 | 0.0815 | ||
MSE | 0.0089 | 0.0143 | 0.0097 | 0.013 | 0.0088 | ||
AAB | 0.0709 | 0.093 | 0.0761 | 0.0886 | 0.0717 | ||
150 | MSE | 0.0083 | 0.0154 | 0.01 | 0.0128 | 0.0091 | |
AAB | 0.0686 | 0.0929 | 0.0764 | 0.0856 | 0.0729 | ||
MSE | 0.0074 | 0.0093 | 0.0062 | 0.0087 | 0.0059 | ||
AAB | 0.0623 | 0.0743 | 0.0607 | 0.0719 | 0.0584 | ||
200 | MSE | 0.0083 | 0.0139 | 0.0087 | 0.0119 | 0.008 | |
AAB | 0.0672 | 0.0888 | 0.0710 | 0.0831 | 0.0678 | ||
MSE | 0.0062 | 0.0067 | 0.0043 | 0.0065 | 0.0043 | ||
AAB | 0.0569 | 0.0628 | 0.0505 | 0.0618 | 0.0499 | ||
250 | MSE | 0.0072 | 0.0124 | 0.2579 | 0.0112 | 0.0063 | |
AAB | 0.0603 | 0.0821 | 0.0605 | 0.0784 | 0.0602 | ||
MSE | 0.0054 | 0.0060 | 0.0036 | 0.0053 | 0.0040 | ||
AAB | 0.0536 | 0.0584 | 0.0468 | 0.0555 | 0.0472 | ||
300 | MSE | 0.0073 | 0.0111 | 0.0057 | 0.0099 | 0.0058 | |
AAB | 0.0601 | 0.0789 | 0.0584 | 0.0755 | 0.0580 | ||
MSE | 0.0048 | 0.0045 | 0.0028 | 0.0045 | 0.0032 | ||
AAB | 0.0497 | 0.0508 | 0.0412 | 0.0505 | 0.0415 |
n | MLE | LSE | WLSE | CVME | ADE | ||
---|---|---|---|---|---|---|---|
20 | MSE | 0.0361 | 0.0481 | 0.055 | 0.0267 | 0.0324 | |
AAB | 0.1351 | 0.1355 | 0.1493 | 0.1106 | 0.1194 | ||
MSE | 0.0247 | 0.0693 | 0.0679 | 0.0464 | 0.0396 | ||
AAB | 0.1131 | 0.1809 | 0.1763 | 0.1512 | 0.1378 | ||
60 | MSE | 0.0244 | 0.0409 | 0.0372 | 0.0242 | 0.0251 | |
AAB | 0.1026 | 0.1211 | 0.1215 | 0.0987 | 0.1005 | ||
MSE | 0.0109 | 0.0273 | 0.0169 | 0.0211 | 0.0145 | ||
AAB | 0.0727 | 0.1078 | 0.0898 | 0.097 | 0.0826 | ||
100 | MSE | 0.018 | 0.0385 | 0.0267 | 0.0214 | 0.019 | |
AAB | 0.0882 | 0.1125 | 0.1018 | 0.0912 | 0.0857 | ||
MSE | 0.0081 | 0.015 | 0.0079 | 0.0122 | 0.0081 | ||
AAB | 0.0600 | 0.0782 | 0.0631 | 0.0729 | 0.0614 | ||
150 | MSE | 0.0155 | 0.0343 | 0.0176 | 0.0205 | 0.0147 | |
AAB | 0.0761 | 0.1054 | 0.0824 | 0.088 | 0.0756 | ||
MSE | 0.0063 | 0.0094 | 0.0051 | 0.0081 | 0.55 | ||
AAB | 0.0537 | 0.0625 | 0.0507 | 0.0597 | 0.0492 | ||
200 | MSE | 0.016 | 0.0337 | 0.0146 | 0.0218 | 0.0136 | |
AAB | 0.0747 | 0.1019 | 0.0747 | 0.0871 | 0.0714 | ||
MSE | 0.0048 | 0.006 | 0.003 | 0.0059 | 0.0035 | ||
AAB | 0.0476 | 0.0504 | 0.0412 | 0.0495 | 0.0415 | ||
250 | MSE | 0.0147 | 0.0317 | 0.0087 | 0.0237 | 0.0094 | |
AAB | 0.0669 | 0.0954 | 0.0613 | 0.0860 | 0.0622 | ||
MSE | 0.0043 | 0.0058 | 0.0024 | 0.0049 | 0.0030 | ||
AAB | 0.0444 | 0.0466 | 0.0375 | 0.0439 | 0.0386 | ||
300 | MSE | 0.0163 | 0.0259 | 0.0075 | 0.0188 | 0.0082 | |
AAB | 0.0680 | 0.0918 | 0.0585 | 0.0820 | 0.0594 | ||
MSE | 0.0039 | 0.0041 | 0.0019 | 0.0041 | 0.0030 | ||
AAB | 0.0411 | 0.0403 | 0.0334 | 0.0404 | 0.0345 |
n | MLE | LSE | WLSE | CVME | ADE | ||
---|---|---|---|---|---|---|---|
20 | MSE | 0.9414 | 0.7407 | 0.6926 | 0.8787 | 0.5949 | |
AAB | 0.8356 | 0.6813 | 0.6555 | 0.7473 | 0.5953 | ||
MSE | 1.2476 | 2.2261 | 2.1038 | 1.9285 | 1.3228 | ||
AAB | 0.8986 | 1.163 | 1.1444 | 1.0923 | 0.9141 | ||
60 | MSE | 0.5766 | 0.6468 | 0.4778 | 0.7173 | 0.3704 | |
AAB | 0.5967 | 0.6453 | 0.5452 | 0.6682 | 0.4679 | ||
MSE | 0.8035 | 1.4601 | 1.1329 | 1.3874 | 0.9445 | ||
AAB | 0.7293 | 0.975 | 0.8483 | 0.9559 | 0.7774 | ||
100 | MSE | 0.4457 | 0.5812 | 0.3948 | 0.6397 | 0.289 | |
AAB | 0.5157 | 0.6074 | 0.4958 | 0.6305 | 0.418 | ||
MSE | 0.682 | 1.1735 | 0.7642 | 1.1746 | 0.7257 | ||
AAB | 0.6617 | 0.8764 | 0.7048 | 0.8784 | 0.6773 | ||
150 | MSE | 0.3807 | 0.5273 | 0.3308 | 0.5468 | 0.2521 | |
AAB | 0.4662 | 0.576 | 0.4463 | 0.581 | 0.3926 | ||
MSE | 0.5742 | 0.9648 | 0.5999 | 0.9791 | 0.55 | ||
AAB | 0.5884 | 0.7868 | 0.6126 | 0.7879 | 0.5798 | ||
200 | MSE | 0.3187 | 0.4978 | 0.3027 | 0.5225 | 0.2321 | |
AAB | 0.4248 | 0.5545 | 0.4209 | 0.5614 | 0.3758 | ||
MSE | 0.5063 | 0.8208 | 0.4900 | 0.8965 | 0.4902 | ||
AAB | 0.5600 | 0.7350 | 0.5643 | 0.7631 | 0.5523 | ||
250 | MSE | 0.2545 | 0.4694 | 0.2579 | 0.4884 | 0.2083 | |
AAB | 0.3805 | 0.5427 | 0.3929 | 0.5493 | 0.3608 | ||
MSE | 0.4222 | 0.7409 | 0.4245 | 0.7082 | 0.4339 | ||
AAB | 0.5031 | 0.6881 | 0.5248 | 0.6766 | 0.5164 | ||
300 | MSE | 0.2419 | 0.4412 | 0.2352 | 0.4563 | 0.2006 | |
AAB | 0.3648 | 0.5323 | 0.3740 | 0.5361 | 0.3480 | ||
MSE | 0.3625 | 0.6478 | 0.3650 | 0.6650 | 0.3847 | ||
AAB | 0.4614 | 0.6343 | 0.4776 | 0.6409 | 0.4717 |
n | MLE | LSE | WLSE | CVME | ADE | ||
---|---|---|---|---|---|---|---|
20 | MSE | 0.134 | 0.0754 | 0.092 | 0.054 | 0.0711 | |
AAB | 0.2545 | 0.1824 | 0.2003 | 0.1605 | 0.1768 | ||
MSE | 0.0885 | 0.1579 | 0.1526 | 0.1321 | 0.1019 | ||
AAB | 0.1954 | 0.2749 | 0.2675 | 0.2535 | 0.2159 | ||
60 | MSE | 0.0853 | 0.0989 | 0.0906 | 0.066 | 0.0672 | |
AAB | 0.1948 | 0.2084 | 0.2019 | 0.1768 | 0.1729 | ||
MSE | 0.0423 | 0.097 | 0.0655 | 0.0839 | 0.0622 | ||
AAB | 0.1349 | 0.2065 | 0.1758 | 0.1952 | 0.1663 | ||
100 | MSE | 0.064 | 0.097 | 0.0768 | 0.0644 | 0.0625 | |
AAB | 0.1697 | 0.2032 | 0.1845 | 0.1754 | 0.1632 | ||
MSE | 0.0322 | 0.0621 | 0.0356 | 0.0551 | 0.0411 | ||
AAB | 0.1162 | 0.163 | 0.1293 | 0.1555 | 0.1319 | ||
150 | MSE | 0.055 | 0.0922 | 0.0573 | 0.0656 | 0.0522 | |
AAB | 0.1538 | 0.1982 | 0.1597 | 0.1741 | 0.1518 | ||
MSE | 0.0256 | 0.0421 | 0.0225 | 0.0398 | 0.0257 | ||
AAB | 0.1006 | 0.1309 | 0.1027 | 0.1284 | 0.1031 | ||
200 | MSE | 0.0547 | 0.0918 | 0.0505 | 0.0694 | 0.0492 | |
AAB | 0.1521 | 0.1951 | 0.1509 | 0.1764 | 0.1481 | ||
MSE | 0.0202 | 0.0301 | 0.0142 | 0.0316 | 0.0184 | ||
AAB | 0.0904 | 0.1128 | 0.0863 | 0.1158 | 0.0899 | ||
250 | MSE | 0.0462 | 0.0868 | 0.0336 | 0.0714 | 0.0404 | |
AAB | 0.1337 | 0.1845 | 0.1275 | 0.1721 | 0.1357 | ||
MSE | 0.0183 | 0.0284 | 0.0119 | 0.0247 | 0.0173 | ||
AAB | 0.0828 | 0.1057 | 0.0790 | 0.1009 | 0.0850 | ||
300 | MSE | 0.0521 | 0.0790 | 0.0310 | 0.0636 | 0.0368 | |
AAB | 0.1365 | 0.1850 | 0.1245 | 0.1708 | 0.1310 | ||
MSE | 0.0169 | 0.0203 | 0.0086 | 0.0210 | 0.0156 | ||
AAB | 0.0777 | 0.0906 | 0.0693 | 0.0907 | 0.0760 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Moisheer, A.S.; Sultan, K.S.; Radwan, H.M.M. A Novel Adaptable Weibull Distribution and Its Applications. Axioms 2025, 14, 490. https://doi.org/10.3390/axioms14070490
Al-Moisheer AS, Sultan KS, Radwan HMM. A Novel Adaptable Weibull Distribution and Its Applications. Axioms. 2025; 14(7):490. https://doi.org/10.3390/axioms14070490
Chicago/Turabian StyleAl-Moisheer, Asmaa S., Khalaf S. Sultan, and Hossam M. M. Radwan. 2025. "A Novel Adaptable Weibull Distribution and Its Applications" Axioms 14, no. 7: 490. https://doi.org/10.3390/axioms14070490
APA StyleAl-Moisheer, A. S., Sultan, K. S., & Radwan, H. M. M. (2025). A Novel Adaptable Weibull Distribution and Its Applications. Axioms, 14(7), 490. https://doi.org/10.3390/axioms14070490