An Eneström–Kakeya Theorem with Monotonicity Conditions on the Even- and Odd-Indexed Coefficients of a Polynomial
Abstract
1. Introduction
2. Previous Results
3. Results
4. Proofs of the Result
5. Discussion
5.1. Applications
5.2. Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Livio, M. The Equation That Couldn’t Be Solved: How Mathematical Genius Discovered the Language of Symmetry; Simon & Schuster: New York, NY, USA, 2006. [Google Scholar]
- Marden, M. Geometry of Polynomials, 2nd ed.; Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 1966; Volume 3. [Google Scholar]
- Rahman, Q.I.; Schmeisser, G. Analytic Theory of Polynomials; London Mathematical Society Monographs New Series; Clarendon Press: Oxford, UK, 2002; Volume 26. [Google Scholar]
- Eneström, G. Härledning af en allmän formel för antalet pensionärer, som vid en godtyeklig tidpunkt förefinnas inom en sluten pensionslcassa. Övfers. Vetensk.-Akad. Fórhh. 1893, 50, 405–415. [Google Scholar]
- Eneström, G. Remarque sur un th’eorème relatif aux racines de l’equation anxn+an−1xn−1+⋯+a1x+a0=0 où tous les coefficientes a sont réel et positifs. Tôhoku Math. J. 1920, 18, 34–36. [Google Scholar]
- Kakeya, K. On the limits of the roots of an algebraic equation with positive coefficients. Tôhoku Math. J. First Ser. 1912–1913, 2, 140–142. [Google Scholar]
- Joyal, A.; Labelle, G.; Rahman, Q.I. On the location of zeros of polynomials. Can. Math. Bull. 1967, 10, 53–63. [Google Scholar] [CrossRef]
- Aziz, A.; Mohammad, Q.G. On the zeros of a certain class of polynomials and related analytic functions. J. Math. Anal. Appl. 1980, 75, 495–502. [Google Scholar] [CrossRef]
- Gardner, R.; Govil, N.K. On the location of the zeros of a polynomial. J. Approx. Theory 1994, 78, 286–292. [Google Scholar] [CrossRef]
- Cao, J.J.; Gardner, R. Restrictions on the zeros of a polynomial as a consequence of conditions on the coefficients of even powers and odd powers of the variable. J. Comput. Appl. Math. 2003, 155, 153–163. [Google Scholar] [CrossRef]
- Abromowitz, M.; Stegun, I.I. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards, Applied Mathematics Series #55; Government Printing Office: Washington, DC, USA, 1964.
- Titchmars, E. The Theory of Functions, 2nd ed.; Oxford University Press: London, UK, 1939. [Google Scholar]
- Boyce, W.; DiPrima, R.; Meade, D. Elementary Differential Equations & Boundary Value Problems, 12th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Govil, N.K.; Rahman, Q.I. On the Eneström-Kakeya theorem. Tôhoku Math. 1968, 20, 126–136. [Google Scholar] [CrossRef]
- Chattatopadhyay, A.; Das, S.; Jaun, V.K.; Konwar, H. Certain generalizations of Enström-Kakeya Theorem. J. Indian Math. Soc. 2005, 72, 147–156. [Google Scholar]
- Frazier, W.; Gardner, R. An Eneström-Kakeya Theorem for New Classes of Polynomials. Acta Commen. Univ. Tartuensis Math. 2019, 23, 103–115. [Google Scholar] [CrossRef]
- Gentili, G.; Struppa, D. A new theory of regular functions of a quaternionic variable. Adv. Math. 2007, 216, 279–301. [Google Scholar] [CrossRef]
- Carney, N.; Gardner, R.; Keaton, R.; Powers, A. The Eneström-Kakeya Theorem for Polynomials of a Quaternionic Variable. J. Approx. Theory 2020, 250, 105325. [Google Scholar] [CrossRef]
- Luna-Elizarrarás, M.E.; Shapiro, M.; Struppa, D.C.; Vajiac, A. Bicomples Holomorphic Functions: The Algebra, Geometry, and Analysis of Bicomplex Numbers; Springer International Publishing (Birkhäuser): Cham, Switzerland, 2015. [Google Scholar]
- Molla, T. On the distribution of zeros of bicomplex polynomials. South East Asian J. Math. Math. Sci. 2023, 19, 49–62. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gardner, R.; Herrell, L. An Eneström–Kakeya Theorem with Monotonicity Conditions on the Even- and Odd-Indexed Coefficients of a Polynomial. Axioms 2025, 14, 651. https://doi.org/10.3390/axioms14090651
Gardner R, Herrell L. An Eneström–Kakeya Theorem with Monotonicity Conditions on the Even- and Odd-Indexed Coefficients of a Polynomial. Axioms. 2025; 14(9):651. https://doi.org/10.3390/axioms14090651
Chicago/Turabian StyleGardner, Robert, and Luke Herrell. 2025. "An Eneström–Kakeya Theorem with Monotonicity Conditions on the Even- and Odd-Indexed Coefficients of a Polynomial" Axioms 14, no. 9: 651. https://doi.org/10.3390/axioms14090651
APA StyleGardner, R., & Herrell, L. (2025). An Eneström–Kakeya Theorem with Monotonicity Conditions on the Even- and Odd-Indexed Coefficients of a Polynomial. Axioms, 14(9), 651. https://doi.org/10.3390/axioms14090651