Edge Fault-Tolerant Strong Menger Edge Connectivity of Folded Crossed Cubes
Abstract
1. Introduction
2. Preliminaries
- (1)
- if n is even,
- (2)
- for i with .
3. The EFT-SME Connectivity of Folded Crossed Cubes
4. Numerical Simulation and Conclusions Remark
Algorithm 1 The values of and for each f with . |
Input: A (the adjacency matrix of G); for , (the class of 2000 randomly generated faulty edge sets with f edges, represented as matrices); for Initialization: for if has no 0 elements then and let (the class of 10,000 randomly generated edge subsets of with at most 5 edges) for j = 1:10,000 if has a 0 element satisfies break, let else if for all j, has no 0 element satisfies then else
output output |
Conclusions Remark
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Chen, Y.C.; Chen, M.H.; Tan, J.J.M. Maximally local connectivity and connected components of augmented cubes. Inf. Sci. 2014, 273, 387–392. [Google Scholar] [CrossRef]
- Oh, E.; Chen, J. On strong Menger-connectivity of star graphs. Discret. Appl. Math. 2003, 129, 499–511. [Google Scholar] [CrossRef]
- Li, P.S.; Xu, M. Edge-fault-tolerant strong Menger edge connectivity on the class of hypercube-like networks. Discret. Appl. Math. 2019, 259, 145–152. [Google Scholar] [CrossRef]
- Qiao, Y.L.; Yang, W.H. Edge disjoint paths in hypercubes and folded hypercubes with conditonal faults. Appl. Math. Comput. 2017, 294, 96–101. [Google Scholar] [CrossRef]
- Gu, M.M.; He, S.J.; Hao, R.X.; Cheng, E. Strongly Menger connectedness of data center network and (n,k)-star graph. Theoret. Comput. Sci. 2019, 799, 94–103. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, P.S.; Xu, M. Conditional (edge-)fault-tolerant strong Menger (edge) connectivity of folded hypercubes. Theoret. Comput. Sci. 2018, 728, 1–8. [Google Scholar] [CrossRef]
- Day, K.D.; Al-Ayyoub, A.E. Fault diameter of k-ary n-cube networks. IEEE Trans. Parallel Distrib. Syst. 1997, 9, 903–907. [Google Scholar] [CrossRef]
- Fan, J.X. Hamilton-connectivity and cycle-embedding of the Möbius cube. Inf. Process. Lett. 2002, 82, 113–117. [Google Scholar] [CrossRef]
- Vaidya, A.S.; Rao, P.S.N.; Shankar, S.R. A class of hypercube-like networks. In Proceedings of the 1993 5th IEEE Symposium on Parallel and Distributed Processing, Dallas, TX, USA, 1–4 December 1993; pp. 800–803. [Google Scholar]
- Shih, L.M.; Chiang, C.F.; Hsu, L.H.; Tan, J.J.M. Strong Menger connectivity with conditional faults on the class of hypercube-like networks. Inform. Process. Lett. 2008, 106, 64–69. [Google Scholar] [CrossRef]
- Adhikari, N.; Tripathy, C.R. The folded crossed cube: A new intercon-nection network for parallel systems. Int. J. Comput. Appl. 2010, 4, 43–50. [Google Scholar]
- Chen, Y.C.; Tan, J.J.; Hsu, L.H.; Kao, S.S. Super-connectivity and super-edge-connectivity for some interconnection networks. Appl. Math. Comput. 2003, 140, 245–254. [Google Scholar] [CrossRef]
- Jia, H.S.; Qian, J.G. Menger-Type connectivity of line graphs of generalized hypercubes with faulty edges. Comput. J. 2024, 67, 2118–2125. [Google Scholar] [CrossRef]
- Efe, K. A variation on the hypercube with lower diameter. IEEE Trans. Comput. 1991, 40, 1312–1316. [Google Scholar] [CrossRef]
- Efe, K. The crossed cube architecture for parallel computation. IEEE Trans. Parallel Distrib. Syst. 1992, 3, 513–524. [Google Scholar] [CrossRef]
- Kulasinghe, P.D. Connectivity of the crossed cube. Inform. Process. Lett. 1997, 61, 221–226. [Google Scholar] [CrossRef]
- Li, P.S.; Xu, M. Fault-tolerant strong Menger (edge) connectivity and 3-extra edge-connectivity of balanced hypercubes. Theoret. Comput. Sci. 2018, 707, 56–68. [Google Scholar] [CrossRef]
- Ma, M.J.; Yu, J.G. Edge-disjoint paths in faulty augmented cubes. Discret. Appl. Math. 2021, 294, 108–114. [Google Scholar] [CrossRef]
- Gu, M.M.; Chang, J.M.; Hao, R.X. Strong Menger connectedness of augmented k-ary n-cubes. Comput. J. 2021, 64, 812–825. [Google Scholar] [CrossRef]
- Zhang, Y.Q. Folded-crossed hypercube: A complete interconnection network. J. Syst. Archit. 2002, 47, 917–922. [Google Scholar] [CrossRef]
- Pai, K.J.; Chang, J.M.; Yang, J.S. Vertex-transitivity on folded crossed cubes. Inform. Process. Lett. 2016, 116, 689–693. [Google Scholar] [CrossRef]
- Cai, X.P.; Vumar, E. The super connectivity of folded crossed cubes. Inform. Process. Lett. 2019, 142, 52–56. [Google Scholar] [CrossRef]
- Guo, H.M.; Sabir, E.; Mamut, A. The g-extra connectivity of folded crossed cubes. J. Parallel Distrib. Comput. 2022, 166, 139–146. [Google Scholar] [CrossRef]
- Cai, X.P.; Yang, W. On 2-extra edge connectivity of folded crossed cube. J. Univ. Sci. Technol. China 2020, 50, 94–99. [Google Scholar]
- Niu, B.H.; Zhou, S.M.; Zhang, H.; Zhang, Q.F. Fault tolerability analysis of folded crossed cubes based on g-component and g-good neighbor fault pattern. Theoret. Comput. Sci. 2023, 959, 113858. [Google Scholar] [CrossRef]
- Guo, H.M.; Hao, R.X.; Mamut, A.; Chang, J.M.; Wu, J. Structure connectivity of folded crossed cubes based on faulty stars. J. Appl. Math. Comput. 2025, 71, 3803–3832. [Google Scholar] [CrossRef]
- Hong, W.S.; Hsieh, S.Y. Extra edge connectivity of hypercube-like networks. Int. J. Parallel Emergent Distrib. Syst. 2013, 28, 123–133. [Google Scholar] [CrossRef]
f | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 2000 | 2000 | 2000 | 1999 | 1996 | 1994 | 1991 | 1989 | 1978 | 1983 | 1979 | 1970 | |
2000 | 1998 | 1998 | 1994 | 1995 | 1993 | 1983 | 1977 | 1972 | 1960 | 1941 | 1925 | 1906 | |
1 | 1 | 1 | 1 | 0.9995 | 0.998 | 0.997 | 0.9955 | 0.9945 | 0.989 | 0.9915 | 0.9895 | 0.985 | |
1 | 0.999 | 0.999 | 0.997 | 0.9975 | 0.9965 | 0.9915 | 0.9885 | 0.986 | 0.98 | 0.9705 | 0.9625 | 0.953 | |
29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | |
1968 | 1955 | 1948 | 1934 | 1927 | 1904 | 1878 | 1860 | 1839 | 1794 | 1772 | 1709 | 1690 | |
1878 | 1823 | 1784 | 1711 | 1643 | 1597 | 1477 | 1389 | 1271 | 1156 | 1071 | 878 | 755 | |
0.984 | 0.9775 | 0.974 | 0.967 | 0.9635 | 0.952 | 0.939 | 0.93 | 0.9195 | 0.897 | 0.886 | 0.8545 | 0.845 | |
0.939 | 0.9115 | 0.892 | 0.8555 | 0.8215 | 0.7985 | 0.7385 | 0.6945 | 0.6355 | 0.578 | 0.5355 | 0.439 | 0.3775 | |
42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | |
1650 | 1583 | 1523 | 1423 | 1361 | 1272 | 1214 | 1117 | 1029 | 934 | 857 | 738 | 653 | |
620 | 481 | 381 | 250 | 159 | 103 | 75 | 32 | 23 | 8 | 4 | 0 | 0 | |
0.825 | 0.7915 | 0.7615 | 0.7115 | 0.6805 | 0.636 | 0.607 | 0.5585 | 0.5145 | 0.467 | 0.4285 | 0.369 | 0.3265 | |
0.31 | 0.2405 | 0.1905 | 0.125 | 0.0795 | 0.0515 | 0.0375 | 0.016 | 0.0115 | 0.004 | 0.002 | 0 | 0 | |
55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | - | - | |
533 | 427 | 334 | 262 | 205 | 121 | 84 | 44 | 22 | 11 | 1 | - | - | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | |
0.2665 | 0.2135 | 0.167 | 0.131 | 0.1025 | 0.0605 | 0.042 | 0.022 | 0.011 | 0.0055 | 0.0005 | |||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - |
f | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 1999 | 1998 | 1996 | 1996 | 1996 | 1994 | 1990 | 1990 | 1986 | 1983 | 1976 | 1971 | |
1999 | 1998 | 1996 | 1994 | 1993 | 1986 | 1978 | 1971 | 1972 | 1948 | 1939 | 1928 | 1899 | |
1 | 0.999 | 0.999 | 0.998 | 0.998 | 0.998 | 0.997 | 0.995 | 0.995 | 0.993 | 0.9915 | 0.988 | 0.986 | |
0.999 | 0.999 | 0.998 | 0.997 | 0.997 | 0.993 | 0.989 | 0.990 | 0.986 | 0.974 | 0.970 | 0.964 | 0.950 | |
29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | |
1971 | 1958 | 1945 | 1931 | 1923 | 1901 | 1879 | 1864 | 1838 | 1815 | 1781 | 1763 | 1663 | |
1882 | 1838 | 1794 | 1727 | 1676 | 1558 | 1478 | 1422 | 1295 | 1160 | 1036 | 914 | 775 | |
0.990 | 0.979 | 0.9725 | 0.970 | 0.962 | 0.951 | 0.940 | 0.932 | 0.919 | 0.9075 | 0.891 | 0.882 | 0.832 | |
0.941 | 0.919 | 0.897 | 0.864 | 0.838 | 0.779 | 0.739 | 0.711 | 0.648 | 0.580 | 0.518 | 0.457 | 0.388 | |
42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | |
1623 | 1580 | 1534 | 1475 | 1354 | 1306 | 1250 | 1121 | 1015 | 933 | 831 | 727 | 646 | |
619 | 465 | 342 | 283 | 176 | 98 | 73 | 35 | 14 | 8 | 2 | 0 | 0 | |
0.812 | 0.790 | 0.767 | 0.738 | 0.677 | 0.653 | 0.625 | 0.561 | 0.508 | 0.467 | 0.416 | 0.364 | 0.323 | |
0.310 | 0.233 | 0.171 | 0.142 | 0.088 | 0.049 | 0.037 | 0.018 | 0.007 | 0.004 | 0.001 | 0 | 0 | |
55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | - | - | |
538 | 461 | 319 | 264 | 180 | 134 | 101 | 47 | 20 | 12 | 2 | - | - | |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - | |
0.269 | 0.231 | 0.160 | 0.132 | 0.09 | 0.067 | 0.051 | 0.024 | 0.01 | 0.006 | 0.001 | |||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, H.; Qian, J. Edge Fault-Tolerant Strong Menger Edge Connectivity of Folded Crossed Cubes. Axioms 2025, 14, 654. https://doi.org/10.3390/axioms14090654
Jia H, Qian J. Edge Fault-Tolerant Strong Menger Edge Connectivity of Folded Crossed Cubes. Axioms. 2025; 14(9):654. https://doi.org/10.3390/axioms14090654
Chicago/Turabian StyleJia, Huanshen, and Jianguo Qian. 2025. "Edge Fault-Tolerant Strong Menger Edge Connectivity of Folded Crossed Cubes" Axioms 14, no. 9: 654. https://doi.org/10.3390/axioms14090654
APA StyleJia, H., & Qian, J. (2025). Edge Fault-Tolerant Strong Menger Edge Connectivity of Folded Crossed Cubes. Axioms, 14(9), 654. https://doi.org/10.3390/axioms14090654