Optimization Models for Reaction Networks: Information Divergence, Quadratic Programming and Kirchhoff’s Laws
Abstract
:Our acceptance of an ontology is, I think, similar in principle to our acceptance of a scientific theory, say a system of physics: We adopt, at least insofar as we are reasonable, the simplest conceptual scheme into which the disordered fragments of raw experience can be fitted and arranged... To whatever extent the adoption of any system of scientific theory may be said to be a matter of language, the same -but no more- may be said of the adoption of an ontology.Willard van Orman Quine, [1]; On What There Is.
1. Introduction
2. Stoichiometry and Affinity
3. Relative Entropy Minimization
3.1. Constraint Qualification and Rank Condition
4. Quadratic Programming and Kirchhoff’s Laws
5. Further Research and Final Remarks
Acknowledgments
Conflicts of Interest
References
- Quine, W.O. On What There Is. Review of Metaphysics. In From a Logical Point of View; Harvard University Press: Cambridge, USA, 1961; Volume 2, pp. 21–38. [Google Scholar]
- Pereira, C.A.B.; Stern, J.M. Evidence and credibility: Full bayesian significance test for precise hypotheses. Entropy J. 1999, 1, 69–80. [Google Scholar]
- Diniz, M.; Pereira, C.A.B.; Stern, J.M. Unit roots: Bayesian significance test. Commun. Stat.-Theory Methods 2011, 40, 4200–4213. [Google Scholar] [CrossRef]
- Diniz, M.; Pereira, C.A.B.; Stern, J.M. Cointegration: Bayesian significance test. Commun. Stat.-Theory Methods 2012, 41, 3562–3574. [Google Scholar] [CrossRef]
- Stern, J.M. Symmetry, invariance and ontology in physics and statistics. Symmetry 2011, 3, 611–635. [Google Scholar] [CrossRef]
- Stern, J.M.; Pereira, C.A.B. Bayesian epistemic values: Focus on surprise, measure probability! Logic J. IGPL 2013. [Google Scholar] [CrossRef]
- Stern, J.M. Jacob’s ladder and scientific ontologies. Cybernet. Hum. Know. 2013, in press. [Google Scholar]
- Fleming, R.M.T.; Maes, C.M.; Saunders, M.A.; Ye, Y.; Palsson, B.O. A variational principle for computing nonequilibrium fluxes and potentials in genome-scale biochemical networks. J. Theor. Biol. 2012, 292, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Borges, W.; Stern, J.M. The rules of logic composition for the bayesian epistemic e-values. Logic J. IGPL 2007, 15, 401–420. [Google Scholar] [CrossRef]
- Madruga, M.R.; Esteves, L.; Wechsler, S. On the bayesianity of pereira-stern tests. Test 2001, 10, 291–299. [Google Scholar] [CrossRef]
- Madruga, M.R.; Pereira, C.A.B.; Stern, J.M. Bayesian evidence test for precise hypotheses. J. Stat. Plan. Inference 2003, 117, 185–198. [Google Scholar] [CrossRef]
- Pereira, C.A.B.; Wechsler, S.; Stern, J.M. Can a significance test be genuinely bayesian? Bayesian Anal. 2008, 3, 79–100. [Google Scholar] [CrossRef]
- Stern, J.M. Cognitive constructivism, eigen-solutions, and sharp statistical hypotheses. Cybernet. Hum. Know. 2007, 14, 9–36. [Google Scholar]
- Stern, J.M. Language and the self-reference paradox. Cybernet. Hum. Know. 2007, 14, 71–92. [Google Scholar]
- Stern, J.M. Constructive verification, empirical induction, and falibilist deduction: A threefold contrast. Information 2011, 2, 635–650. [Google Scholar] [CrossRef]
- Callen, H.B. Thermodynamics: An Introduction to the PhysicalTheories of Equilibrium Thermostatics and Irreversible Thermodynamics; John Wiley: New York, NY, USA, 1960. [Google Scholar]
- Callaghan, C.A. Kinetics and Catalysis of the Water-Gas-Shift Reaction: A Microkinetic and Graph Theoretic Approach. Ph.D. Thesis, Worcester Polytechnic Institute, 2006. [Google Scholar]
- Gillespie, D. A rigorous derivation of the chemical master equation. Phys. A 1992, 188, 404–425. [Google Scholar] [CrossRef]
- Prigogine, I. Introduction to the Thermodynamics of Irreversible Processes, 2nd ed.; Interscience: New York, NY, USA, 1961. [Google Scholar]
- Ross, J.; Berry, S.R. Thermodynamics and Fluctuations far from Equilibrium; Springer: New York, NY, USA, 2008. [Google Scholar]
- Tribus, M. Thermostatics and Thermodynamics: An Introduction to Energy, Information and States of Matter, with Engineering Applications; van Nostrand: Princeton, NJ, USA, 1961. [Google Scholar]
- Gardiner, C. Stochastic Methods: A Handbook for the Natural and Social Sciences; Springer: New York, NY, USA, 2010. [Google Scholar]
- Van Kanpen, N.G. Stochastic Processes in Physics and Chemistry; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Goupil, M. Du Flou au Clair? Histoire de l’Affinité Chimique de Cardan à Prigogine (in French); CTHS: Paris, France, 1991. [Google Scholar]
- Muir, P. A History of Chemical Theories and Laws; John Wiley: New York, NY, USA, 1907. [Google Scholar]
- Kapur, J.N.; Kesavan, H.K. Entropy Optimization Principles with Applications; Academic Press: Boston, MA, USA, 1992. [Google Scholar]
- Tribus, M.; McIrvine, E.C. Energy and information. Sci. Am. 1971, 224, 178–184. [Google Scholar] [CrossRef]
- Jaynes, E.T. The minimum entropy production principle. Ann. Rev. Phys. Chem. 1980, 31, 579–601. [Google Scholar] [CrossRef]
- Jaynes, E.T. Probability Theory: The Logic of Science; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Kapur, J.N. Maximum Entropy Models in Science and Engineering; John Wiley: New Delhi, India, 1989. [Google Scholar]
- Niven, R.K. Steady state of a dissipative flow-controlled system and the maximum entropy production principle. Phys. Rev. E 2009, 80, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Niven, R.K. Minimization of a free-energy-like potential for non-equilibrium flow systems at steady state. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1323–1331. [Google Scholar] [CrossRef] [PubMed]
- Niven, R.K. Maximum entropy analysis of steady-state flow systems (and extremum entropy production principles). AIP Conf. Proc. 2011, 1443, 270–281. [Google Scholar]
- Luenberger, D.G. Linear and Nonlinear Programming; Addison-Wesley: Reading, UK, 1984. [Google Scholar]
- Minoux, M.; Vajda, S. Mathematical Programming; John Wiley: Chichester, USA, 1986. [Google Scholar]
- Elfving, T. On some methods for entropy maximization and matrix scaling. Linear Algebra Appl. 1980, 34, 321–339. [Google Scholar] [CrossRef]
- Fang, S.C.; Rajasekera, J.R.; Tsao, H.S.J. Entropy Optimization and Mathematical Programming; Kluwer: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Censor, Y. Row-action methods for huge and sparse systems and their applications. SIAM Rev. 1981, 23, 444–466. [Google Scholar] [CrossRef]
- Censor, Y.; Zenios, S.A. Parallel Optimization: Theory, Algorithms, and Applications; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Censor, Y.; de Pierro, A.; Elfving, T.; Herman, G.; Iusem, A. On iterative methods for linearly constrained entropy maximization. Num. Anal. Math. Model. Banach Center Publ. Ser. 1990, 24, 145–163. [Google Scholar]
- Bregman, L.M. The relaxation method for finding the common point convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 1967, 7, 200–217. [Google Scholar] [CrossRef]
- Bertsekas, D.P.; Tsitsiklis, J.N. Parallel and Distributed Computation, Numerical Methods; Prentice Hall: Englewood Cliffs, NJ, USA, 1989. [Google Scholar]
- Garcia, M.V.P.; Humes, C.; Stern, J.M. Generalized line criterion for gauss seidel method. J. Comput. Appl. Math. 2002, 22, 91–97. [Google Scholar]
- Iusem, A.N. Métodos de Ponto Proximal em Otimização (in Portuguese); IMPA: Rio de Janeiro, Brazil, 1995. [Google Scholar]
- Golub, G.H.; van Loan, C.F. Matrix Computations; Johns Hopkins: Baltimore, MD, USA, 1989. [Google Scholar]
- Stern, J.M. Esparsidade, Estrutura, Estabilidade e Escalonamento em Álgebra Linear Computacional (in Portuguese); UFPE, IX Escola de Computação: Recife, Brazil, 1994. [Google Scholar]
- Steuer, R.; Junker, B.H. Computational models of metabolism: Stability and regulation in metabolic networks. Adv. Chem. Phys. 2009, 142, 105–252. [Google Scholar]
- Heinrich, R.; Schuster, S. The Regulation of Cellular Systems; Chapman and Hall: New York, NY, USA, 1996. [Google Scholar]
- Hadley, G. Nonlinear and Dynamic Programming; Addison-Wesley: New York, NY, USA, 1964. [Google Scholar]
- Stern, J.M. Cognitive Constructivism and the Epistemic Significance of Sharp Statistical Hypotheses. In Proceedings of the Tutorial Book for MaxEnt 2008, the 28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, Boracéia, São Paulo, Brazil, July 6–11, 2008.
- Penfield, P.; Spence, R.; Duinker, S. Tellegen’s Theorem and Electrical Networks; MIT Press: Cambrige, MA, USA, 1970. [Google Scholar]
- Gorban, A.N.; Shahzad, M. The michaelis-menten-stueckelberg theorem. Entropy 2011, 13, 966–1019. [Google Scholar] [CrossRef]
- Bertsekas, D.P. Thevelin decomposition and large scale optimization. JOTA 1996, 89, 1–15. [Google Scholar] [CrossRef]
- Fishtik, I.; Callaghan, C.A.; Datta, R. Reaction route graphs I: Theory and algorithm. J. Phys. Chem. B 2004, 108, 5671–5682. [Google Scholar] [CrossRef]
- Fishtik, I.; Callaghan, C.A.; Datta, R. Wiring diagrams for complex reaction networks. Ind. Eng. Chem. Res. 2006, 45, 6468–6476. [Google Scholar] [CrossRef]
- Millar, W. Some general theorems for non-linear systems possessing resistance. Philos. Mag. 1951, 7, 1150–1160. [Google Scholar] [CrossRef]
- Peusner, L. Studies in Network Thermo-Dynamics; Elsevier: Amsterdam, The Netherlands, 1986. [Google Scholar]
- Wiśniewski, S.; Staniszewski, B.; Szymanik, R. Thermodynamics of Nonequilibrium Processes; Reidel: Dirdrech, The Netherlands, 1976. [Google Scholar]
- Morveau, L.B.G.de. Affinity. In Supplement to the Encyclopaedia or Dictionary of Arts, Sciences and Miscellaneous Literature; Thomas Dobson: Philadelphia, USA, 1803; pp. 391–405. [Google Scholar]
- De Morveau, L.B.G.; Lavoisier, A.L.; Berthollet, C.L.; Fourcroy, A. Méthode de Nomenclature Chimique; Chez Cuchet: Paris, France, 1787. [Google Scholar]
- Stern, J.M. Decoupling, sparsity, randomization, and objective bayesian inference. Cybernet. Hum. Know. 2008, 15, 49–68. [Google Scholar]
- Bryant, V.; Perfect, H. Independence Theory in Combinatorics: An Introductiory Account with Applications to Graphs and Transversals; Chapman and Hall: London, UK, 1980. [Google Scholar]
- Recski, A. Matroid Theory and its Applications in Electrical Network Theory and in Statics; Akadémiai Kiadó: Budapest, Hungary, 1989. [Google Scholar]
- Swamy, M.N.S.; Thulasiraman, K. Graphs, Networks and Algorithms; Wiley: New York, NY, USA, 1981. [Google Scholar]
- Vágó, I. Graph Theory: Applications to the Calculation of Electrical Networks; Elsevier: Amsterdam, The Netherlands, 1985. [Google Scholar]
- Thoma, J.; Mocellin, G. Simulation with Entropy in Engineering Thermodynamics. Understanding Matter and Systems with Bondgraphs; Springer: New York, NY, USA, 2006. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Stern, J.M.; Nakano, F. Optimization Models for Reaction Networks: Information Divergence, Quadratic Programming and Kirchhoff’s Laws. Axioms 2014, 3, 109-118. https://doi.org/10.3390/axioms3010109
Stern JM, Nakano F. Optimization Models for Reaction Networks: Information Divergence, Quadratic Programming and Kirchhoff’s Laws. Axioms. 2014; 3(1):109-118. https://doi.org/10.3390/axioms3010109
Chicago/Turabian StyleStern, Julio Michael, and Fabio Nakano. 2014. "Optimization Models for Reaction Networks: Information Divergence, Quadratic Programming and Kirchhoff’s Laws" Axioms 3, no. 1: 109-118. https://doi.org/10.3390/axioms3010109
APA StyleStern, J. M., & Nakano, F. (2014). Optimization Models for Reaction Networks: Information Divergence, Quadratic Programming and Kirchhoff’s Laws. Axioms, 3(1), 109-118. https://doi.org/10.3390/axioms3010109