On the Mutual Definability of the Notions of Entailment, Rejection, and Inconsistency
Abstract
:1. Introduction
- (*)
- A deductive system is consistent if and only if not every its sentential expression is its thesis (i.e., there are sentential expressions of this system that are not its theses).A deductive system is inconsistent if and only if its every wfe is its thesis.
- (**)
- A deductive system is consistent if and only if no two contradictory sentential expressions are at the same time its theses (i.e., no sentence such that itself and its negation are its theses).A deductive system is inconsistent if and only if a sentential expression of the system and its negation are theses of the system (i.e., some two contradictory sentences of the system belong to its theses).
2. Tarski’s Theories of Deductive Systems; Consequence Theories T and T+
- *
- the set S of all sentential expressions (sentences) of an arbitrary, but fixed language of a deductive system, and
- *
- the consequence operation Cn+ (Cn+ = Cn) defined on the family P(S) of all subsets of the set S, i.e., the operation Cn+: P(S) → P(S), which to any set X of sentences assigns the set Cn+X of all its consequences, i.e., all sentences that sentences of X entail, that are sentences deducible from sentences of X.
2.1. Axioms, Definitions, and Theorems within Theory T
- A1. 0 < card(S) ≤ 0 — denumerability of S,
- A2. X Cn+X S — reflexivity of Cn+,
- A3. Cn+Cn+X = Cn+X — the consequence Cn+ is idempotent,
- A4#. Cn+X = {Cn+Y|Y X & card(Y) < 0} — the consequence Cn+ is finitistic.
- A4. X Y Cn+X Cn+Y — the consequence Cn+ is monotonic,
- A5. Cn+X {Cn+Y|Y X & card(Y) < 0}.
- D1a. X Cons Cn+X ≠ S,
- D1. X Incons Cn+X = S,
- D2. Cn−X = {y|x X (x Cn+{y})}.
- A2−. X Cn−X S — reflexivity of Cn−,
- A3−. Cn−Cn−X = Cn−X — the operation Cn− is idempotent,
- A4−. X Y Cn−X Cn−Y — the operation Cn− is monotonic,
- A5−. Cn−X {Cn−Y|Y X & card(Y) < 0} — the operation Cn− is finitistic.
- T1. Cn+X X Cn− (S\X) S\X.
- T2−. Cn−() = — Cn− is normal,
- T3−. Cn−(X Y) = Cn−X Cn−Y — Cn− is additive.
- C−1. Cn−X = {y|x X (Cn−{y} Cn−{x})},
2.2. Axioms, Definitions, and Theorems within Theory T+
2.2.1. Deductive Systems Theories Based on Classical Sentential Calculi
2.2.2. Tarski’s Theory T+ of Classical Consequence
- A6+. cxy, nx S,
- A7+. cxy Cn+X ⇔ y Cn+(X {x}),
- A8+. Cn+{x, nx} = S,
- A9+. Cn+{x} Cn+{nx} = Cn+.
- (l1) x, cxy Cn+X ⇒ y Cn+X
- D&. &(x, y) ncxny,
- Dd. d(x, y) cnxy.
2.2.3. The Theory of Classical Consequence T++
- A6++. cxy, nx, &(x,y), d(x,y) S,
- A10+. Cn+(X {&(x, y)}) = Cn+(X {x, y}),
- A11+. Cn+(X {d(x, y)}) = Cn+(X {x}) Cn+(X {y}).
- A′11+. Cn+{d(x, y)} = Cn+{x} Cn+{y}.
3. The Theory T− of Rejection Consequence
- D&a. &(x1) = x1,
- b. &(x1, x2) = ncx1nx2.
- c. &(x1, x2, …, xn+1) = &(x1, &(x2, …, xn+1)).
- D−2. x ~ y ⇔ z (x Cn−{z} ⇔ y Cn−{z}).
- A−1. 0 < card(S) ≤ ℵ0,
- A−2. cxy, nx S,
- A−3. Cn−X = {y| ∃x X(Cn−{y} ⊆ Cn−{x})},
- A−4. y Cn−{cxy},
- A−5. x Cn−{y} ⇔ Cn−{cxy} = S,
- A−6. x1 Cn−{y1} x2 Cn−{y2} ⇒ &(x1, x2) Cn−{&(y1, y2)},
- A−7. Cn−{c&(x, y)z} = Cn−{cxcyz},
- A−8. &(x, nx) Cn−{y},
- A−9. x, nx Cn−{y} ⇒ Cn−{y} = S,
- A−10a. &(x, y) ~ &(y, x),
- b. &(&(x, y), z) ~ &(x, &(y, z)),
- c. y ~ z ⇒ &(x, y) ~ &(x, z),
- d. &(x, x) ~ x.
- A2−. X Cn−X S — reflexivity of Cn−,
- A3−. Cn−Cn−X = Cn−X — the operation Cn− is idempotent,
- A4−. X Y Cn−X Cn−Y — the operation Cn− is monotonic,
- A5−. Cn−X {Cn−Y|Y X & card(Y) < 0} — the operation Cn− is finitistic.
- T2−. Cn−() = — Cn− is normal,
- T3−. Cn−(X Y) = Cn−X Cn−Y — Cn− is additive.
- DCn+. y Cn+X ⇔ (∃x &X(x Cn−{y} X ≠ )) (Cn−{y}= S X = ).
- D1. X Incons ⇔ Cn+X = S.
4. The Theory T′ of Inconsistency
- A1′. 0 < card(S) ≤ 0,
- A2′. Incons P(S),
- A3′. X Y X Incons Y Incons,
- A4′. X Incons Y(Y X card(Y) < 0 Y Incons),
- A5′. cxy, nx S,
- A6′. X {x}, X {nx} Incons X Incons,
- A7′. {x, nx} Incons,
- A8′. X {x, ny} Incons X {ncxy} Incons.
- D′Cn+. x Cn+X X {nx} Incons.
- D′Cn−. Cn−X = {y|x X(x Cn+{y})}.
5. Equivalence of the Theories T+, T−, and T′
5.1. Equivalence of Theories T+ and T−
5.1.1. Proofs of Axioms and Definitions of T+ in T−
- (i)
- &{x} = {x},
- (ii)
- X &X,
- (iii)
- X Y &X &Y,
- (iv)
- If i1, i2, …, in is a permutation of numbers 1, 2, …, n, then &(x1, x2, …, xn) ~ &(xi1, xi2, …, xin),
- (v)
- y, z &X x &X (x ~ &(y, z)),
- (vi)
- x1, x2, …, xn &X x &X (x ~ &(xi1, xi2,…, xin).
- (vii)
- x Cn−{x},
- (viii)
- x Cn−{y} Cn−{x} Cn−{y},
- (ix)
- y Cn−X x X (y Cn−{x}).
- (x)
- x1 Cn−{y1} … xn Cn−{yn} &(x1, …, xn) Cn− &{y1, …, yn}.
- (xi)
- Cn−{x} = Cn−{y} = S Cn−{&(x, y)} = S.
- (xii)
- Cn−{c&(x, y)z} = S Cn−{cycxz} = S.
- (xiii)
- Cn−{c&(x, z)cxy} = S Cn−{c&(x, z)y} = S.
- (xiv)
- &(x, z) Cn−{y} z Cn−{cxy}.
- (xv)
- x Cn+{y} y Cn−{x}.
- A2. X Cn+X S.
- A4. X Y Cn+X Cn+Y.
- A3. Cn+Cn+X = Cn+X.
- (1)
- X = Cn+Cn+X Cn+X.
- (2)
- X ≠ Cn+Cn+X Cn+X.
- (3)
- Cn+Cn+X Cn+X.
- A7+. cxy Cn+X y Cn+(X {x})
- (a)
- when sentence x is one of the elements of the sequence (x1, …, xn) and
- (b)
- when x is different from each element of the sequence (x1, …, xn).
- (a)
- x = xi1 1 ≤ i1 ≤ n.
- (a1) &(x1, x2, …, xn) ~ &(xi1,xi2, …, xin), where i1, i2, …, in is a permutation of numbers 1, 2, …, n.
- (a2) z = &(xi2, …, xin).
- (a3) z1 = &(x, z) Cn−{cxy}.
- (a4) Cn−{c&(x, z)y} = S.
- (a5) &(x, z) Cn−{y}
- (b)
- x ≠ x1 … x ≠ xn.
- (b1) &(x, z1) &(X {x})
- (b2) Cn−{cz1cx y} = S.
- (b3) &(x, z1) Cn−{y}.
- (a)
- when x is an element of the sequence (x1, x2, …, xn) and
- (b)
- when x is different from each element of the sequence.
- (a)
- x = xi1 1 ≤ i1 ≤ n.
- (a1) z1 = &(x1, x2, …, xn) ~ &(xi1, xi2, …, xin), where i1, i2, …, in is a permutation of numbers 1, 2, …, n.
- (a2) &(xi1, xi2, …, xin) = &(xi1,&(xi2, …, xin)) = &(x, &(xi2, …, xin)).
- (a3) z1 ~ &(x, &(xi2, …, xin)).
- (a4) &(xi2, …, xin) Cn−{cxy}.
- (a5) &(xi2, …, xin) &X.
- A5. Cn+X Cn+Y|Y X & card(Y) < 0}.
- A5a. y Cn+X Y (Y X & card(Y) < 0 y Cn+Y).
- A8+. Cn+{x, nx} = S.
- A9+. Cn+{x} Cn+{nx} = Cn+ .
- D2. Cn−X = {y|x X (x Cn+{y}}.
5.1.2. Proofs of Axioms and Definitions of T− in T+
- (l1) cxy Cn+X x Cn+X y Cn+X,
- (l2) cxx Cn+ cycxy Cn+ (see MT1),
- (l3) x Cn−{y} y Cn+{x} cxy Cn+,
- (l4) Cn+{x1, x2, …, xn} = Cn+{&(x1, x2, …, xn)},
- (l5) y Cn+ Cn−{y} =S.
- (1)
- cxy Cn+X,
- (2)
- x Cn+X.
- (3)
- Cn+(X {x}) Cn+X.
- (4)
- y Cn+(X {x}). Thus, by (4) and (3) we have: y Cn+(X). □
- DCn+. y Cn+X (x &X (x Cn−{y} X ≠ )) (Cn−{y} = S X = ).
5.1.3. Mutual Definability of the Notions of Entailment and Rejection.
5.2. Equivalence of Theories T+ and T′
5.2.1. Proofs of Axioms and Definitions of T+ in T′
- L1. For every natural number n:X ∉ Incons ∧ ∀i ∈ {1, 2, …, n}(X ∪ {nxi} ∈ Incons) ⇒ X ∪ {x1, x2, …, xn}∉ Incons.
- L2. Cn+X Incons X Incons.
- (1)
- X Incons,
- (2)
- i {1, 2, …, n}(X {nxi} Incons).
- (3)
- X {x1, x2, …, xk} Incons.
- (4)
- X {x1, x2, …, xk} {nxk+1} Incons.
- (5)
- X {x1, x2, …, xk} {xk+1} = X {x1, x2, …, xk, xk+1} Incons.
- (1)
- Cn+X Incons and
- (2)
- X Incons.
- A2. X Cn+X S.
- A4. X Y Cn+X Cn+Y.
- A3. Cn+Cn+X Cn+X.
- A5. Cn+X {Cn+Y|Y X & card(Y) < 0}.
- (1)
- Y1 X {nx} and card (Y1) < 0 and
- (2)
- Y1 Incons.
- (3)
- Y1\{nx} X and card (Y1\{nx}) < 0.
- A7+. cxy Cn+X y Cn+(X {x}).
- A8+. Cn+{x, nx} = S.
- A9+. Cn+{x} Cn+{nx} = Cn+.
- (1)
- {ny} {x} Incons and
- (2)
- {ny} {nx} Incons.
- D1. X Incons Cn+X = S.
5.2.2. Proofs of Axioms and Definitions of T′ in T+
- A3′. X Y X Incons Y Incons.
- A4′. X Incons Y (Y X card(Y) < 0 Y Incons).
- D′Cn+. x Cn+X X {nx} Incons.
- A6′. X {x}, X {nx} Incons X Incons.
- A7′. {x, nx} Incons.
- A8′. X {x, ny} Incons X {ncxy} Incons.
5.2.3. Mutual Definability of the Notions of Entailment and Inconsistency
5.3. Results
- (1)
- theory T+ and theory T− are equivalent; thus,
- (2)
- theory T− and theory T+ are equivalent.
- (3)
- theory T+ and theory T′ are equivalent.
- (4)
- theory T− and theory T′ are equivalent.
- (5)
- Theories T+, T−, and T′ are mutually equivalent.
- (6)
- The notions of entailment, rejection, and inconsistency are mutually definable.
Acknowledgments
Conflicts of Interest
References
- Tarski, A. Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften, I. Monatshefte Math. Phys. 1930, 37, 361–404. [Google Scholar] [CrossRef]
- Tarski, A. Über einige fudamentale Begriffe der Metamathematik. Comptes Rendus Séances Socété Sci. Lett. Vars. 1930, 23, 22–29. [Google Scholar]
- Tarski, A. Logic, Semantics, Metamathematics: Papers from 1928 to 1938; Hackett Publishing Company: Indianapolis, IN, USA, 1983. [Google Scholar]
- Wójcicki, R. Theory of Logical Calculi; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Czelakowski, J. Protoalgebraic Logics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Pogorzelski, W.A.; Wojtylak, P. Completeness Theory for Propositional Logics; Birkhäuser: Basel, Switzerland, 2008. [Google Scholar]
- Wybraniec-Skardowska, U.; Waldmajer, J. On pairs of dual consequence operations. Log. Univ. 2011, 5, 177–203. [Google Scholar] [CrossRef]
- Łukasiewicz, J. Logika dwuwartościowa. Prz. Filoz. 1921, 23, 189–205. [Google Scholar]
- Łukasiewicz, J. O sylogistyce Arystotelesa (On Aristotle’s syllogistic). Sprawozdania z czynności i posiedzeń Polskiej Akademii Umiejętności (PAU). In Proceedings of the Activities and Meetings of Polish Skills Academy, Warszawa, Poland, 9 June 1939.
- Łukasiewicz, J. Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic, 2nd ed.; Oxford University Press: Oxford, UK, 1951. [Google Scholar]
- Łukasiewicz, J. A system of modal logic. J. Comput. Syst. 1953, 1, 111–149. [Google Scholar]
- Skura, T. Refutation Methods in Modal Propositional Logic; Semper: Warszawa, Poland, 2013. [Google Scholar]
- Carnap, R. Introduction to Semantics; Harvard University Press: Cambridge, MA, USA, 1942. [Google Scholar]
- Carnap, R. Formalization of Logic; Harvard University Press: Cambridge, MA, USA, 1943. [Google Scholar]
- Citkin, A. A meta-logic of inference rules. Syntax Log. Log. Philos. 2015, 24, 313–337. [Google Scholar]
- Słupecki, J. Funkcja Łukasiewicza (Łukasiewicz’s function), Zeszyty Naukowe Uniwersytetu Wrocławskiego; Seria B; University of Wrocław: Wrocław, Poland, 1953; Volume 3, pp. 33–40. [Google Scholar]
- Tarski, A. Grundzüge des Systemenkalküls, part I. Fundam. Math. 1935, 25, 503–526. [Google Scholar]
- Tarski, A. Grundzüge des Systemenkalküls, part II. Fundam. Math. 1936, 26, 283–301. [Google Scholar]
- Słupecki, J.; Bryll, G.; Wybraniec-Skardowska, U. Theory of rejected propositions, part I. Stud. Log. 1971, 29, 76–123. [Google Scholar] [CrossRef]
- Słupecki, J.; Bryll, G.; Wybraniec-Skardowska, U. Theory of rejected propositions, part II. Stud. Log. 1972, 30, 97–107. [Google Scholar] [CrossRef]
- Wybraniec-Skardowska, U. Teoria Zdań Odrzuconych (Theory of Rejected Sentences); Z Badań nad Teorią Zdań Odrzuconych (Studies in the Theory of Rejected Sentences); Seria B; Teacher’s Training College Press: Opole, Poland, 1969; Volume 2, pp. 5–131. [Google Scholar]
- Wybraniec-Skardowska, U. Foundations for the formalization of metamathematics and axiomatizations of consequence theories. Ann. Pure Appl. Log. 2004, 127, 243–266. [Google Scholar] [CrossRef]
- Wybraniec-Skardowska, U. Wzajemna definiowalność pojęć wynikania i sprzeczności (On mutual definability of the notions of entailment and inconsistency); Zeszyty Naukowe Wyższej Szkoły Pedagogicznej w Opolu; Mathematics Series; Teacher’s Training Opole College: Opole, Poland, 1974; Volume 15, pp. 77–86. [Google Scholar]
- Pogorzelski, W.A.; Słupecki, J. Podstawowe własności systemów dedukcyjnych opartych na nieklasycznych logikach (Basic properties of deductive systems based on non-classical logics), part I. Stud. Log. 1960, 9, 163–176. [Google Scholar] [CrossRef]
- Borkowski, L. Logika Formalna. Systemy Logiczne, Wstęp do Metalogiki, 2nd ed.; PWN: Warszawa, Poland, 1977. [Google Scholar]
- Wybraniec-Skardowska, U.; Bryll, G. Z Badań nad Teorią Zdań Odrzuconych (Studies in the Theory of Rejected Sentences); Seria B; Teacher’s Training College Press: Opole, Poland, 1969; Volume 2. [Google Scholar]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wybraniec-Skardowska, U. On the Mutual Definability of the Notions of Entailment, Rejection, and Inconsistency. Axioms 2016, 5, 15. https://doi.org/10.3390/axioms5020015
Wybraniec-Skardowska U. On the Mutual Definability of the Notions of Entailment, Rejection, and Inconsistency. Axioms. 2016; 5(2):15. https://doi.org/10.3390/axioms5020015
Chicago/Turabian StyleWybraniec-Skardowska, Urszula. 2016. "On the Mutual Definability of the Notions of Entailment, Rejection, and Inconsistency" Axioms 5, no. 2: 15. https://doi.org/10.3390/axioms5020015
APA StyleWybraniec-Skardowska, U. (2016). On the Mutual Definability of the Notions of Entailment, Rejection, and Inconsistency. Axioms, 5(2), 15. https://doi.org/10.3390/axioms5020015