Solutions to Abel’s Integral Equations in Distributions
Abstract
:1. Introduction
2. Abel’s Integral Equations in Distribution
- (a)
- either f or g has bounded support (set of all essential points), or
- (b)
- the supports of f and g are bounded on the same side.
- (i)
- If for , then
- (ii)
- If , then
- (iii)
- If , then .
- (iv)
- If , then for
3. The Applications in Viscoelastic Systems
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Ding, J.F.; Zhang, Y. Noether symmetries for the El-Nabulsi-Pfaff variational problem from extended exponentially fractional integral. Acta Sci. Nat. Univ. Sunyatseni 2014, 53, 150–154. [Google Scholar]
- El-Wakil, S.A.; Abulwafa, E.M.; El-Shewy, E.K.; Mahmoud, A.A. Time-fractional KdV equation for plasma of two different temperature electrons and stationary ion. Phys. Plasmas 2011, 18, 092116. [Google Scholar] [CrossRef]
- Neirameh, A. Soliton solutions of the time fractional generalized Hirota Satsuma coupled KdV equations. Appl. Math. Inf. Sci. 2015, 9, 1847–1853. [Google Scholar]
- Zhang, X.; Zhang, Y. Lie symmetry and conserved quantity based on El-Nabulsi models in phase space. J. Jiangxi Norm. Univ. Nat. Sci. 2016, 1, 65–70. [Google Scholar]
- Chen, J.; Zhang, Y. Perturbation to Noether symmetries and adiabatic invariants for disturbed Hamiltonian systems based on El-Nabulsi nonconservative dynamics model. Nonlinear Dyn. 2014, 77, 353–360. [Google Scholar] [CrossRef]
- Golmankhaneh, A.K.; Lambert, L. Investigations in Dynamics: With Focus on Fractional Dynamics; Academic Publishing: Cambridge, MA, USA, 2012. [Google Scholar]
- Monje, C.A.; Chen, Y.Q.; Vinagre, B.M.; Xue, D.; Feliu, V. Fractional-Order Systems and Controls; Series: Advances in Industrial Control; Springer: Berlin, Germany, 2010. [Google Scholar]
- El-Nabulsi, R.A. The fractional Boltzmann transport equation. Comp. Math. Appl. 2011, 62, 1568–1575. [Google Scholar] [CrossRef]
- Pu, Y.; Wang, W.X.; Zhou, J.L.; Wand, Y.Y.; Jia, H.D. Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation. Sci. China Ser. F Inf. Sci. 2008, 51, 1319–1339. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A. Spectrum of Schrodinger Hamiltonian operator with singular inverted complex and Kratzer’s molecular potentials in fractional dimensions. Eur. Phys. J. Plus 2018, 133, 277. [Google Scholar] [CrossRef]
- Chuanjing, S.; Zhang, Y. Conserved quantities and adiabatic invariants for El-Nabulsi’s fractional Birkhoff system. Int. J. Theor. Phys. 2015, 54, 2481–2493. [Google Scholar]
- El-Nabulsi, R.A. Glaeske-Kilbas-Saigo fractional integration and fractional Dixmier traces. Acta Math. Vietnam. 2012, 37, 149–160. [Google Scholar]
- El-Nabulsi, R.A. Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal. J. Stat. Phys. 2018. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House: Redding, CT, USA, 2006. [Google Scholar]
- West, B.J.; Bologna, M.; Grigolini, P. Physics of Fractal Operators, Institute for Nonlinear Science; Springer: New York, NY, USA, 2003. [Google Scholar]
- Cafagna, D. Fractional calculus: A mathematical toll from the past for present engineering. IEEE Ind. Electron. Mag. 2007, 1, 35–40. [Google Scholar] [CrossRef]
- El-Nabulsi, R.A.; Wu, G.C. Fractional complexified field theory from Saxena-Kumbhat fraction integral, fractional derivative of order (α,β) and dynamical fractional integral exponent. Afr. Diaspora J. Math. New Ser. 2012, 13, 45–61. [Google Scholar]
- Srivastava, T.; Singh, A.P.; Agarwal, H. Modeling the Under-Actuated Mechanical System with Fractional Order Derivative. Progr. Fract. Differ. Appl. 2015, 1, 57–64. [Google Scholar]
- Srivastava, H.M.; Buschman, R.G. Theory and Applications of Convolution Integral Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 1992. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional Calculus: Integral and Differential Equations of Fractional Order; Carpinteri, A., Mainardi, F., Eds.; Fractals and Fractional Calculus in Continuum Mechanics; Springer: New York, NY, USA, 1997; pp. 223–276. [Google Scholar]
- Hatcher, J.R. A nonlinear boundary problem. Proc. Am. Math. Soc. 1985, 95, 441–448. [Google Scholar] [CrossRef]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publishing: River Edge, NJ, USA, 2000. [Google Scholar]
- Caponetto, R.; Dongola, G.; Fortuna, L.; Petras, I. Fractional Order Systems: Modeling and Control Applications; World Scientific: Singapore, 2010. [Google Scholar]
- Yang, X.-J.; Baleanu, D.; Srivastava, H.M. Local Fractional Integral Transforms and Their Applications; Elsevier: Amsterdam, The Netherlands; Heidelberg, Germany; London, UK; New York, NY, USA, 2016. [Google Scholar]
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific Publishing Company: Singapore, 2011. [Google Scholar]
- El-Nabulsi, R.A. Fractional elliptic operator of order 2/3 from Glaeske-Kilbas-Saigo fractional integral transform. Funct. Anal. Approx. Comput. 2015, 7, 29–33. [Google Scholar]
- Wang, J.R.; Zhu, C.; Fečkan, M. Analysis of Abel-type nonlinear integral equations with weakly singular kernels. Bound. Value Probl. 2014, 2014, 20. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, K.E. An existence theorem for Abel integral equations. SIAM J. Math. Anal. 1974, 5, 729–736. [Google Scholar] [CrossRef]
- Bushell, P.J.; Okrasinski, W. Nonlinear Volterra integral equations with convolution kernel. J. Lond. Math. Soc. 1990, 41, 503–510. [Google Scholar] [CrossRef]
- Gorenflo, R.; Vessella, S. Abel Integral Equations: Analysis and Applications; Lect. Notes Math 1461; Springer: Berlin, Germany, 1991. [Google Scholar]
- Okrasinski, W. Nontrivial solutions to nonlinear Volterra integral equations. SIAM J. Math. Anal. 1991, 22, 1007–1015. [Google Scholar] [CrossRef]
- Gripenberg, G. On the uniqueness of solutions of Volterra equations. J. Integral Equ. Appl. 1990, 2, 421–430. [Google Scholar] [CrossRef]
- Mydlarczyk, W. The existence of nontrivial solutions of Volterra equations. Math. Scand. 1991, 68, 83–88. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Saigo, M. On solution of nonlinear Abel-Volterra integral equation. J. Math. Anal. Appl. 1999, 229, 41–60. [Google Scholar] [CrossRef]
- Karapetyants, N.K.; Kilbas, A.A.; Saigo, M. Upper and lower bounds for solutions of nonlinear Volterra convolution integral equations with power nonlinearity. J. Integral Equ. Appl. 2000, 12, 421–448. [Google Scholar] [CrossRef]
- Lima, P.; Diogo, T. Numerical solution of nonuniquely solvable Volterra integral equation using extrapolation methods. J. Comput. App. Math. 2002, 140, 537–557. [Google Scholar] [CrossRef]
- Rahimy, M. Applications of fractional differential equations. Appl. Math. Sci. 2010, 4, 2453–2461. [Google Scholar]
- Li, C.; Li, C.P.; Kacsmar, B.; Lacroix, R.; Tilbury, K. The Abel integral equations in distribution. Adv. Anal. 2017, 2, 88–104. [Google Scholar] [CrossRef]
- Li, C.; Clarkson, K. Babenko’s approach to Abel’s integral equations. Mathematics 2018, 6, 32. [Google Scholar] [CrossRef]
- Li, C.; Li, C.P.; Clarkson, K. Several results of fractional differential and integral equations in distribution. Mathematics 2018, 6, 97. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 1996, 7, 1461–1477. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Raina, R.K.; Saigo, M.; Srivastava, H.M. Solution of multidimensional hypergeometric integral equations of the Abel type. Dokl. Natl. Acad. Sci. Belarus 1999, 43, 23–26. (In Russian) [Google Scholar]
- Raina, R.K.; Srivastava, H.M.; Kilbas, A.A.; Saigo, M. Solvability of some Abel-type integral equations involving the Gauss hypergeometric function as kernels in the spaces of summable functions. ANZJAM J. 2001, 43, 291–320. [Google Scholar]
- Gel’fand, I.M.; Shilov, G.E. Generalized Functions; Academic Press: New York, NY, USA, 1964; Volume I. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Matignon, D. Stability results for fractional differential equations with applications to control processing. In Proceedings of the IEEE-SMC Computational Engineering in System Applications, Lille, France, 10 February 1996; Volume 2, pp. 963–968. [Google Scholar]
- Babenko, Y.I. Heat and Mass Transfer; Khimiya: Leningrad, Russian, 1986. (In Russian) [Google Scholar]
- Amirian, M.; Jamali, Y. The Concepts and Applications of Fractional Order Differential Calculus in Modelling of Viscoelastic Systems: A primer. arXiv, 2017; arXiv:1706.06446. [Google Scholar]
- Stiassnie, M. On the application of fractional calculus for the formulation of viscoelastic models. Appl. Math. Model. 1979, 3, 300–302. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Humphries, T.; Plowman, H. Solutions to Abel’s Integral Equations in Distributions. Axioms 2018, 7, 66. https://doi.org/10.3390/axioms7030066
Li C, Humphries T, Plowman H. Solutions to Abel’s Integral Equations in Distributions. Axioms. 2018; 7(3):66. https://doi.org/10.3390/axioms7030066
Chicago/Turabian StyleLi, Chenkuan, Thomas Humphries, and Hunter Plowman. 2018. "Solutions to Abel’s Integral Equations in Distributions" Axioms 7, no. 3: 66. https://doi.org/10.3390/axioms7030066
APA StyleLi, C., Humphries, T., & Plowman, H. (2018). Solutions to Abel’s Integral Equations in Distributions. Axioms, 7(3), 66. https://doi.org/10.3390/axioms7030066