1. Introduction
During the last century, the Navier–Stokes equations attracted very much attention. The first essential steps in this way were offered by C. Oseen [
1], F. K. G. Oldquist [
2], J. Leray [
3,
4,
5], and E. Hopf [
6]. Later, the Cauchy problem and the boundary value problem were actively studied by many authors (see, for example, [
7,
8], the review [
9,
10,
11,
12,
13,
14,
15,
16,
17] and etc.). The main objects and tools of these works were weak solutions or fix points of integral operators. Here, a special case is connected with the existence problem of a global and regular solution in the 3D Cauchy problem. In response to the new setting of this task by Ch. Fefferman in 2000 (see [
18]), O.A. Ladyzhenskaya wrote in her review [
9] that she would put the main question otherwise: “Do or don’t the Navier–Stokes equations give, together with initial and boundary dates, the deterministic description of fluid dynamics?”
Then, this problem is more difficult and more interesting from the physical point of view. Therefore, I introduced some invariants for studying solutions properties. At least, it is natural for applications because invariants are very important and strong tools. Moreover, these invariants didn’t apply earlier.
Let us describe them now. The first invariant connected with the Cauchy problem that provided initial data belongs to a special class of solenoidal vector fields vanishing at infinity. Here, outer forces are trivial. Then, the class is invariant (Theorem 2). This is a new result.
The second invariant is a special parameter
(see (
68)) which is connected with a velocity changing of
where
E is a kinetic energy of a fluid flow. If
or kinetic energy at a special moment is not less any mean depending on
for
( i.e., changing of
at moment
is negligible), then an ideal, global and smooth motion is determined. In other words, a global regular solution exists (Theorem 7). This is an essential and qualitative improvement of the classical result together with a new a priori estimate given by Theorems 8–10. These theorems are new results in principle.
Finally, the other parameters
, (see formula (
87)) and
, or
may also be very useful (see formula (
69), Lemma 50). The first of them is a dissipation coefficient of kinetic energy . The last parameter holds a time interval of a solution regularity. These three numerical characteristics
are invariant with respect to the scaling procedure.
By the way, the first attempts to estimate invariant norms were implicitly undertaken in [
12,
16].
An introduction of a special invariant class of vector fields and invariant parameters gives the main idea for the proof of basic results. The first step is connected with a change of the construction offered in [
19]. These changes concern solution approximations. The special kind of them gives many uniform a priori estimates. Approximations of a velocity function are built on a fundamental system with a condition for Laplacians of approximative solutions. They must be a finite part of the Fourier series. Simultaneously, approximations of a pressure function are being built. Jointly with a hydrodynamical potential, these approximations give the following facts and properties of local solutions:
- (1)
solutions are bounded with respect to a uniform norm and therefore it belongs to any class ;
- (2)
there is a universal time interval where bounded solutions exist;
- (3)
more exact necessary conditions of a hypothetical turbulence phenomenon if it is;
- (4)
a lower estimate of the kinetic energy which influences an existence of a global smooth solution.
The last two items are very important. If dissipation of kinetic energy is large (close to the unit), then blow up is probable.
To the structure of the paper. In the first part (
Section 2), there are considered solutions’ properties of the Cauchy problem in a local form if initial data is smooth enough. Here, there is given a modification of classical results with some supplements (see Theorem 1).The rest of this part contains technical lemmas which are proved by application of hydrodynamic potentials and multiplicative inequalities from Appendix (
Appendix A). In the second part (
Section 3 and
Section 4), there are existence conditions of global solutions studied in this problem, conditions for local solutions’ extensions if the kinetic energy is small and close to the minimum. A more precise hypothetic blow up time interval is found. Here, three basic parameters
,
,
are very useful.
The third part (
Section 5 and
Section 6) contains the proof of main statements (Theorems 7–9), which are based on properties of invariant parameters
,
,
.
I think, in this way, it is convenient to remove any restrictions on a smoothness in some contrast to the traditional way. The main idea is connected with an invariant form of an a priori estimate for gradient norms of a velocity. In addition, other norms are estimated in class
and, after that, it is done in class
. In particular, it is shown that there is a bad solution of a class
with some good properties. As the corollary, this solution has many uniformly bounded norms with respect to time argument. Only after that, by routine calculations, we prove the bad solution from above belongs to a class
. Precisely, this step distinguishes from classical way for the second time (see [
7]).
In the considered problem, a boundedness of solutions depends on a smoothness of initial data. At least, initial data from the Sobolev class gives the same in principle.
The offered construction doesn’t permit diminishing the index of smoothness.
In the final (
Section 7), we explain the principal difference between the Navier–Stokes equations in space and plane.
A part of local results in modification (
Section 2) and invariants as tools (
Section 4) were announced by author in [
20,
21,
22].
Notation. Now, let us consider the Cauchy problem
:
where
u is a velocity of flow,
P is a pressure function, symbols
indicate a partial differentiation or differentiation in distributions, Δ is the Laplace operator, and
is a positive constant (viscosity coefficient). A mapping
has all derivatives and satisfies conditions of averaged growth:
,
. The other derivatives belong to classes
for any
. Furthermore, this class is denoted by symbol
. A class
is the class of infinitely smooth mappings with a compact support. A norm in a space
is defined by formula:
A mixed norm is defined by equality:
A symbol
denotes a partial differentiation or distributions with respect to a multi–index
An order of the derivative is indicated by
Jacobi matrix of a mapping
v with respect to spatial variables is denoted by
. Its modulus is
Functions’ properties from the Sobolev classes
are given, for example, in [
23,
24,
25]. A norm in this functional space is defined by
Let
v be a mapping that is determined on the whole space. For the Riesz potential, we apply notation:
where
and
is the Euler gamma–function. The properties of these potentials can be found in [
24].
The agreement about summation. Everywhere in this article, the repeated indices give a summation if it is not done reservation specially. For example,
etc.
Furthermore,
A number
we define by formula:
We apply the definition of a weak solution given in [
7] everywhere.
2. Preliminaries. Boundedness and Smoothness Properties of Local Solutions in the Cauchy Problem
Here, with some compliments, a local result described by Theorem 1 is basic in this section. The rest contains only technical statements.
Theorem 1. Let be a number from formula (5) and a mapping Then, on the set , there exist weak solutions u and P of problems (1) and (2) with the following properties: - (1)
mappings u and P uniformly continuous and bounded on the set for every number ;
- (2)
the solution u belongs to Sobolev classes and for every number , moreover, all normsare uniformly bounded in spaces by a constant depending on and T only, in addition ; - (3)
gradients are bounded on the set for every number ;
- (4)
the solution P satisfies uniform estimates:for all numbers q,, and , with constants C depending on and q only; - (5)
solutions u and P are classical solutions that is for any they belong to the class .
The proof of the theorem is given to the end of this section. We note items 1, 3, 4 compliment well-known Ladyzhenskaya’s results (see [
7]). Item (2) contains new uniform estimate for norms of derivatives. Hence, it follows a boundedness of weak solutions and a finiteness of its mixed norms. Moreover, we have an existence of weak solution with required properties on the interval
with the finite length. To the studying of the smoothness property for weak solutions, the mixed norms were applied by O. Ladyzhenskaya in [
26] (see, also [
7]). They were applied by other authors (see, for example, [
8,
10,
14]). Item (5) is a particular case from [
27]. However, from this theorem, a deeper result follows (see Theorem 7).
2.1. A Priori Estimates of Gradients’ Norms
Lemma 1. Suppose that a mapping belongs to a class and If, for every Laplacian supports are subsets of some ball with a fixed radius and , then for all mappings w satisfying condition:the following estimate holds:for all , where from formula (5). Proof. We take from Corollary A4 the second inequality. Then, from (
6), we obtain:
Let
. Then, (
7) can be rewritten in the form:
The maximal mean on the right-hand side is
Therefore, integrating the inequality
over the interval
, we get:
Furthermore, we take a number from Corollary A4 and obtain the required estimate. □
Lemma 2. Let be a constant from Lemma 1. Assume a mapping belongs to a class and , . Suppose that, for every t, there are fulfilled conditions:
- (1)
Laplacian supports , are subsets of a ball with a fixed radius;
- (2)
- (3)
with constants , l the inequalities hold: - (4)
is true. Then, for every segment, where the estimate holds with a constant which depends on only.
Proof. The integral on the right-hand side in formula (
8) we rewrite with two integrals
and
. Applying Corollary A4, we make estimates for every integral. In integral
, a triple of mappings
is the triple
. In integral
, a required triple is the triple
. Therefore, condition (3) yields estimates:
Let
Then, formula (
9) can be transformed to the formula:
Let us integrate over segment
this inequality. For the next step, we apply to each term the Hölder inequality for three and two factors, respectively getting quantities
and
. Hence, from condition (3), we obtain:
where
Let
M be a maximal mean of the function
where
. Then, the last estimates give
. From the definition of function
g, we have
. □
2.2. A Priori Estimates of Laplacian Norms
Lemma 3. Let w, be a mapping and a number from Lemma 1. Then, for every number there exists a constant such thatfor all . Proof. We transform inequality (
7) applying the estimate from Lemma 1. Then,
This inequality we integrate over the segment
. Then, we estimate the right-hand side applying the Hölder inequality and underlining the integral with the term
. If
, then we get
The direct calculations of the integral on the right-hand side and the estimate
give the inequality:
Take out the first term on the left hand. Then, the required estimate for function
will be obvious. If
, then the estimate is acceptable. If
then we have:
Hence, it follows the lemma. □
Lemma 4. Let w be a mapping from Lemma 2 and a number from Lemma 1. Then, for every number T, , there exists a constant such thatfor all . Proof. For the mapping
w, inequality (
9) is fulfilled. Its right-hand side we estimate relying on Lemma 2. Then,
Let
C be a maximal coefficient of factors
Therefore, from formula (
10), we have inequality:
This inequality we integrate over segment
and its right-hand side we estimate applying the Hölder inequality and underlining terms with norms
. If
then we have the estimate:
We increase the right side using Lemma 3 and deduce the left side taking out the first positive term. Then, we obtain:
Hence, we get the lemma in the same way as Lemma 3. If
, then, from
we obtain the lemma inequality. If
then the estimate is acceptable. □
2.3. Basic Space of Solenoidal Vector Fields and Orthogonal Systems
Let us consider solenoidal vector fields
from class
with a compact support of
. A closure of this class is defined by the norm:
We denote its by . From Lemmas A1 and A2, it follows that elements are represented by the Riesz potentials; moreover, . Otherwise, each element is defined uniquely by its Laplacian. The class is a separable space as a subspace of the Sobolev classes . Therefore, there exists a countable system of infinite smooth vector fields satisfying conditions:
- (1)
;
- (2)
supports of are compact sets;
- (3)
the closure of a linear span in norm (
11) coincides with the space
.
Now, we apply the Sonin–Shmidt orthogonalization to the fundamental system
and construct a countable system of mappings
, which would be with the orthogonality property of Laplacians in the space
. That is, the scalar product
where
is Kronecker’s symbol. Then, every mapping
is a finite linear combination of mappings
. Therefore, a support of
is a compact set. Let
The system is complete for the space that is, the following proposition is true.
Lemma 5. If in the space for a some vector field the scalar product for every then .
Proof. From chosen mappings
the equality
for each element of the fundamental system
follows. The Stokes theorem gives
The integral over the sphere vanishes as
. Actually, from Corollary A2 of Lemma A2, we have:
Furthermore, we apply Lemma A4
taking into consideration a continuity of
u. The passage to the limit yields the equality
or
. We take a sequence of finite and smooth mappings
which converges to the vector field
u in the space
. Hence,
. The summability of
u in the space
proves lemma equality. □
Remark 1. To the fundamental system of mappings we can adjoin any solenoidal vector field or any vector field from the class as the first element of this system.
2.4. Successive Approximations of Solutions and Its Estimates: Velocity
Let
be an orthonormal system of mappings in the space
constructed above with the completeness property in
and conditions (
12) and (
13). Moreover,
for all
n and
where a vector field
is initial data in problems (
1) and (
2).
For successive approximations
we define changing Ladyzhenskaya’s construction in ([
7], p. 197). Set
Then, an approximative solution
is built as a hydrodynamical potential
Functions
are solutions of a system of differential equations:
with initial data:
, where
is Kronecker’s delta. Hence,
Now, we find an existence interval of a smooth solution in system (
16). For every equation from (
16), we multiply by functions
and sum them. As a result, we have:
From Corollary A3, we get:
From Lemmas A1 and A2 vector fields
,
. Equalities (
17) and (
18) are conditions of Lemma 1 for mappings
. Therefore, in system (
16), an existence of smooth solutions on some interval
is guaranteed by well-known theorems for ordinary differential equations. By Lemma 1 (see estimates), these solutions can be extended on the interval
where
is the constant in Lemma 1 (see also (
5)). Thus, we proved the following statement.
Lemma 6. Let be an interval from Lemma 1. Then, for every approximations constructed by formulas (14) and (16) satisfy conditions: - (1)
,
- (2)
where a constant A from Lemma A1.
Proof. Item (1) follows from Lemma 1. Item (2) is the corollary of the second representation in (
A1), Lemma A1 and arguments in the proof of Corollary A4. □
Lemma 7. Let be a constant of Lemma 1. Then, for every segment approximations , which are constructed by formulae (14)–(16), satisfy inequalities: - (1)
, where a number depends on only;
- (2)
with the constant A from Lemma A1.
Proof. The item (2) can be proved in the same way as the estimate (2) from Lemma 6. Let us prove item (1). We differentiate equalities (
16) with respect to
t. Then, from each, we multiply by the derivative
and add together in final. As a result, we have
A support of
is a compact set. The Stokes theorem and Corollary A3 give:
From Lemmas A1 and A2, we have
By Lemma 3, the vector field
satisfies the inequality:
Then, mappings
satisfy Lemma 2. This implies:
with some constant
.
Let us estimate the right-hand side of (
20). In (
16), we take
. Then, we multiply them by numbers
respectively and add them together. As a result, formula (
17) gives
where
We move derivatives with the factor
in (
21) using Corollary A3 and a finiteness of mapping
. Then, we obtain
Apply Cauchy–Bunyakovskii’s inequality. Hence, we get the required estimate
Thus, from (
20), a lemma follows. □
Lemma 8. Let be a constant of Lemma 1. Then, on every segment approximations from formulae (14)–(16) satisfy conditions: - (1)
;
- (2)
;
where constants C and depend on only.
Proof. Condition (1) follows from (
18). We apply the Cauchy–Bunyakovskii inequality and estimates (1) of Lemmas 6 and 7 to the scalar product
. Then,
. The right-hand side from (
18) is estimated by applying Corollary A4, where we take the triple
. From (
18), we have
Apply again estimate (1) of Lemma 6. Then,
This implies condition (1). Vector fields satisfy Lemma 2 (see the proof of Lemma 6). Then, Lemma 4 gives estimate (2). □
Lemma 9. Let be a constant of Lemma 1. Then, approximations from (14)–(16) are bounded by a constant C on the set for every where a constant C depends on only. Proof. For approximation
, we use integral representation (
A2). One should replace integration over whole space by integrations over ball
and its complement. Then,
. Every term is estimated by application of Hölder’s inequality. We have
Hence,
where
are universal constants. The norm
is estimated in two steps. In the first step, we apply inequality 2) from Lemma 6. After that, we use inequality (1) from lemma 8. To estimate another norm
, we can apply inequality (1) from Lemma 6. Hence, we get a boundedness of all vector fields
by a general constant. □
Lemma 10. Let be a constant of Lemma 1. Then, for every exponent and every segment approximations from formulae (14)–(16) satisfy the inequality with a constant C depending on only. Proof. If , then the statement follows from Lemma 9 and estimates by item (2) of Lemma 6 and item (1) of Lemma 8. If , then we apply Hölder’s inequality. Hence, we have . Estimates of Lemma 6 and Lemma 8 prove the lemma for this exponent. An intermediate exponents is verified by Lemma A5. □
Lemma 11. Let be a constant of Lemma 1. Then, for all approximations from formulae (18)–(20) satisfy inequalities , with a universal constant M.
Proof. The statement of lemma is the corollary well-known results about integral differentiation with a weak singularity (see [
28]). From the second representation of Lemma A2, we obtain two equalities:
,
where
are some constants,
are singular integral operators. Its boundedness in the space
gives the required estimates. □
Lemma 12. Let be a constant of Lemma 1. Then, for every segment for all exponents and each triple approximations from (14)–(16) satisfy inequalities: - (1)
;
- (2)
;
- (3)
;
- (4)
;
where constants C depend on only.
Proof. Apply Hölder’s inequality. Then,
Denote
. An exponent
. Then, the first factor in (
23) is estimated by Lemma 1 with an assumption
. Uniform estimate (1) follows from Lemma 6 and Lemma 8. In the same way taking a pair
we get estimate (2). Now, denote
. To the first factor from the right-hand side of (
23) we apply Lemma A5 relying on
. The norm
has a uniform estimate with respect to
t and
n by Lemma 7. Apply the both estimates of this lemma and obtain estimate (3). The other estimates (4) and (1) we prove in the same way. □
2.5. Successive Approximations of Solutions and Its Estimates: Pressure
Let
be an approximation from formulae (
14)–(
16). Fix
where
is the constant from Lemma 1. Consider a hydrodynamical potential
A product
. This follows from estimates of Lemma 6, Lemma 8 and Hölder’s inequality. By Lemma A4 on every segment
we have:
Lemma A1 implies a uniform estimate with respect to
t and
n:
for any exponent
, where
.
Let us decompose integral in (
24) by two integrals
and
: over ball
and over its exterior. Every integral we estimate by Hölder’s inequality or a simple estimation. Then,
Thus, with some constant
on the set
for all
n, we obtain:
Function
has derivatives in distributions:
The differentiation of the integral from (
24), the summation and a simple estimation give:
By Lemma A1 for exponents
and
where
, we have:
The right-hand side of (
29) is bounded upper by a constant
. Here, we apply inequalities from Lemma 6, Lemma 8 and Lemma A5. Therefore,
Thus,
for any exponent
. By Lemma A1, we obtain:
Consider two cases: and .
Let
. Then, the right-hand side of (
31) is bounded by a constant
. This follows from estimate 4 of Lemma 12.
Let
. Then, the exponent
. Applying Hölder’s inequality, we get
The first factor is estimated uniformly by a some constant
. This is proved by application Lemma A5, Lemmas 6 and 8. The second factor is estimated by inequality (2) from Lemma 7. Hence, for an exponent
q,
, we get:
Applying the integral representation for derivative in the same way we prove another uniform estimate for every exponent .
As the final result from (
26), (
27), (
30), (
31), we obtain the following statement.
Lemma 13. Let be a constant from Lemma 1. Let be a function defined by (24). Then, on every segment , with some constants there are fulfilled uniform estimates with respect to and n: - (1)
for all ;
- (2)
for every ;
- (3)
for every ;
- (4)
, , for every .
Lemma 14. Suppose that is the constant from Lemma 1. Let be a function defined by (24). Then, on every segment , with some constants there are fulfilled uniform estimates with respect to and n: - (1)
;
- (2)
;
for every and every pair of numbers .
Proof. These estimates follow from Lemma A1, Lemma 12 and integral representations for derivatives extracting from (
24). Apply Lemma A1 and item (1) of Lemma 12. Then, we obtain the first inequality. In the same way, we get the second inequality with an application of estimates (2) and (3) from Lemma 12. □
Lemma 15. Let be a constant of Lemma 1. Let be a function defined by (24). Then, on every segment , with some constant there are fulfilled uniform estimates with respect to and n: for every , . Proof. It is sufficient to repeat the proof of Lemma 11 with the application of formula (
24). □
Lemma 16. Let be a constant from Lemma 1. Supposing that is the function defined by (24), then Proof. This follows from proposition A3. □
2.6. Estimates of Uniform Continuity of Approximations in Spaces and
Now, we estimate the integral continuity modulus of gradients and Laplacians for approximations following [
7]. Let
be a constant from Lemma 1. Let
T,
be arbitrary numbers such that
. Assume
. Equations (
16) we write by the following form:
Every equality we multiply by difference
respectively and add together them. Setting
we have
To the scalar product on the right-hand side, we apply Cauchy–Bunyakovskii’s inequality. The integral (
J is its mean) we estimate by Corollary A4 for the triple
. Then,
Every factor from the right-hand side of these inequalities is bounded by a constant
uniformly with respect to
. This follows from estimates of Lemmas 6–8, definition of
z and the choice of means
. Since
then we get inequalities:
Integrating it over segments if and if in any case we have: . Thus, the following statement is proved.
Lemma 17. Let be a constant from Lemma 1. Let be arbitrary but fixed numbers. Then, there exists a constant such that, for all approximations there is a fulfilled inequality:whenever . Lemma 18. Let be a constant from 1. Let be arbitrary but fixed numbers. Then, there exists a constant such that for all approximations there is fulfilled inequality:whenever Proof. Formulae (
16) and (
32) yield equalities:
where
. Every equality we multiply by factor
respectively and add together them. Furthermore, in the second term, we replace differentiation on variable
t by differentiation on variable
h. Hence, we obtain:
Here,
are integrals from the first and the second products sums, respectively. Hence,
The scalar products on the left-hand side of (
33) are bounded uniformly. This follows from estimates of Lemmas 6–8. Therefore, we have:
with some constant
. A uniform boundedness of integrals
follows from Corollary A4. For the verification, we take mappings triples
and
respectively. Finally, applying estimates from Lemma 6, Lemma 8 and Lemma 17, we obtain:
where constants
depend on
only.
We integrate (
34) over segments
if
and
if
. Assume
without restriction of the generality. Then, from (
35) after Hölder’s inequality application and inequality (2) of Lemma 8, we get:
where
is a new constant. From (
36) in the same way, we obtain another estimate:
Integrating (
34) and, gathering last estimates, we get lemma inequality. □
Lemma 19. Let be a number from Lemma 1. Let be arbitrary but fixed numbers. Then, there exists a constant such that for all approximations and there are fulfilled inequalities:whenever . Proof. We have . Therefore, one should find uniform estimates for every modulus on the right-hand side considering mappings .
From representation (
A2), it follows:
where
To every integral, we apply again Hölder’s inequality. Then,
The second representation in (
A2) and Lemma A1 yield estimate:
Therefore, previous inequalities and estimates from Lemma 17 and Lemma 18 give formula:
where
C is a constant depending on
only.
Let us estimate the second modulus applying Poisson’s formula (see (
A1)). Then,
From the inequality,
with some constant
we obtain:
Previous estimates and Lemma 8 (estimate (1)) yield:
where a constant
C depends on
only. Thus, the first estimate follows from (
37) and (
38).
In the same way, we prove an inequality of the kind (
38) for the function
(formula (
24)). The norm
, which appears after applying Holder’s inequality, we must estimate by Lemma A5. Then,
Furthermore, Lemma 6 (estimates (1), (2)) and lemma 8 (estimate (1)) yield the inequality
, where
is some universal constant. Then, it follows:
A difference
is represented in the following form:
To obtain this formula, we change summation index for a separate terms (use (
24)) and apply Hölder’s inequality for three factors and two factors. We make estimates separately on a ball
and its exterior. Let
. Then,
In the last case, as the first step, we make a simple estimate, thereupon, we apply Hölder’s inequality. The analogous arguments that are used above for the proof of the first estimate in lemma and formula (
39) yield the inequality:
where
is some constant depending on
only. Uniform estimates (
39) and (
40) prove the second inequality of lemma. □
2.7. Weak Limits Properties of Approximation Sequences
Lemma 20. Let be a number from Lemma 1 and be a positive number. Then, the sequence of mappings defined by (14)–(16) is bounded in the space and the sequence constructed by formula (24) is bounded in spaces . Proof. Estimate (2) from Lemma 6 and estimate (1) from Lemma 8 yield inequality
. It is fulfilled with some constant
C whenever
n and
. For all mappings
,
integral representation (
A2) is true. Then, by Lemma A1, we obtain:
From inequalities (1) of Lemmas 6 and 8, we conclude that there exist constants , , such that , . All norms are uniformly bounded with respect to t. Hence, the sequence is bounded in .
Uniform boundedness of these norms , , with respect to t and n follows from Lemma 13. Therefore, the sequence is bounded in spaces . □
Remark 2. The spaces , are reflexive. Hence, every bounded set from it is a weakly compact set (see [29]). Then, by Lemma 20, sequences , are bounded in these spaces. It is possible to extract a weakly converging subsequences from its. Letbe weak limits of these subsequences. Without restriction of generality, we assume that these subsequences converge to the own weak limits on every compact set of . This follows from Arzela’s theorem and Lemma 19. Lemma 21. Let u and P be weak limits from (41). Then, - (1)
mappings u and P are uniformly continuous on a set , moreover, ;
- (2)
mappings u and P are bounded on a set ;
- (3)
the mapping and there exists a constant such that following inequalities are true: , , whenever ;
- (4)
, whenever , where vector field from (22), a constant ; - (5)
u has distributions of the second and third orders: , in addition, for all there are fulfilled inequalities: , where constants from Lemma 8;
- (6)
the function for every , in this case, there exists a constant such that, for all estimates , are true;
- (7)
there exist constants such that for every and for every ;
- (8)
the function P has distributions of the second and third orders: , in addition, there exists a number such that, for all the following inequalities hold:
for every and for every
Proof. Property (1) follows from Remark 2. A uniform continuity follows from Lemma 19 and a uniform convergence of subsequences and on compact subsets of .
Property (2) follows from a uniform convergence on compact sets, Lemma 9 and Lemma 13 (item (1)).
Property (3) follows from norm semicontinuity of a weak limit in reflexive spaces.
Property (4) follows from Lemma 11. A uniform boundedness of norms (see Lemma 8 and Lemma 11) and norms boundedness in the space (see Lemma 8 and Lemma 11) guarantee an existence of distributions , . Estimates of its norms follow from a semicontinuity of a weak limit norm.
Properties (5)–(8) are proved in the same way. For the verification, we apply Lemmas 13–15. □
Lemma 22. Weak limits from (41) satisfy equalities: Proof. The first equality is fulfilled for mappings
and
. The sequence
is bounded in the space
. In addition, estimates of norms
,
,
are uniform with respect to
t and
n (see Lemmas 6–8 and 11). Apply Sobolev–Kondrashov’s embedding theorem (see [
23], pp. 83–94) to the sequence
. As a bounded set, it is embedded in the space
for every ball
. An exponent
q satisfies condition
In this case, a dimension of spatial domain
. Thus, we can assume that a subsequence
converges strongly to a mapping
in the space
,
, for every ball
. Denote the integral from the first equality of the lemma by
. Let
. From equality
we deduce:
Multiply this inequality by
where
an arbitrary test–function. Thereupon, integrate over the set
and change integration order. Then,
where
is the Riesz potential,
is the interior integral calculating over ball
, and
is the interior integral calculating over exterior of this ball. Estimate every integral applying Hölder’s inequality. Thus, we have
The second and the third factors on the right-hand side we estimate by constants independent of
t and
n (see Lemmas 6, 8, 21 with conditions (3)–(4) and Lemma A5). A radius
r is fixed so that the first factor is less an arbitrary positive number
. Then,
. Integral
we estimate on a subsequence. Then,
The second and the third factors are uniformly bounded by a some constant
C. Therefore, the inequality:
is fulfilled. The middle factor is not greater
if a number
k is large enough. This follows from condition of a strong convergence on a bounded set. Combining all estimates above, we obtain the inequality
This means that
weakly because a function
is an arbitrary. The first equality is proved. The second equality is proved in the same way. Consider the difference
where
is the integral of the second equality. In the integral
we replace the variable by
. Thereupon, we multiply the equality by a test–function
and integrate its over set
. Change integration order and carry over Laplace operator to function
. Then,
Replace variables in the interior integral by
and change integration order. Hence, we get:
Integration with respect to y we make separately over ball and its exterior. The furthest arguments are conducted in the same way as above. A distinction in the following. In this time, we use an uniform convergence of a subsequence on compact sets (see Remark 2). □
2.8. Weak Solutions and Gradients Boundedness
Lemma 23. Let u and P be weak limits from (41). Then, for every solenoidal vector field and almost everywhere there is fulfilled integral identity: Proof. Equalities (
16) multiply by a test–function
and integrate its over segment
. If a subsequence
converges weakly, then, for all
, we have
Fix a some number
q . Then, the passage to the limit gives the equality
This is explained by a weak convergence of a sequence
to the mapping
. It is given by support compactness of a vector field
, by uniform boundedness with respect to
t and
n of norms
and a uniform convergence of subsequence
on compact subsets of
A function
is an arbitrary. Therefore, from (
42), we obtain
It is already fulfilled for every natural number
q. The construction of vector fields
permits this integral identity to extend on elements of the fundamental system
(see (
12) and (
13)), i.e.,
We show that identity (
43) is true for every solenoidal vector field
. Let
be a sequence of a finite linear combinations of mappings
, which converges to a vector field
in the space
. Then,
and equality (
43) for mappings
is true. Mappings
belong to the space
for a.e.
t. Then,
a.e. as
. Let us show
as the same condition is. Consider the equality of scalar products
and note that the right side tends to
(see Lemma 21 item (4)). On the other side,
. Condition (
43) is true for an arbitrary
. From
, we have the lemma. □
Lemma 24. (see ([7], pp. 41–44), see also [30].) Let be an arbitrary ball. Then, a space of any vector fields has a decomposition by a direct sum of orthogonal subspaces. A subspace is the space of gradients where is locally square–integrable function with a finite norm . A space is the closure with respect to the norm of all solenoidal vector fields from the class . Lemma 25. If u and P are weak limits (41), then there are fulfilled equalities:a.e. on a set for any . Proof. Denote , , . Every vector field belongs to the space (see Lemma 21). Mappings norms are bounded by constants independent of . From the first equality of Lemma 22, we gather , where is an arbitrary. We assume the mapping H and its generators belong to the class . Otherwise, we take averages with a kernel from for them. For averages, the equality and the equality of Lemma 23 are kept. This follows from behind an arbitrary choice of a smooth function g and a field . Then, . Moreover, a smoothness H and the equality of Lemma 23 imply . From Lemma 24 on every ball , we have . A function h is infinitely smooth. This is given by smoothness . Then, . On the other hand, . Therefore, the function h is a harmonic function. Hence, and from above, there is . By Lemma A7, we have . Making an average parameter tending to zero, we obtain this equality in the general case. □
Lemma 26. Let u and P be weak limits from (41). Then, there exists a number such that, for almost everywhere, following conditions are fulfilled: - (1)
;
- (2)
,
Proof. From Lemma 25, we conclude that Laplacian is the linear combination of three vector fields , , . Coordinates are bounded on the set by Lemma 21 item (2). Then, from Lemma 21 (see estimates (3) and (6)), it follows the first part of the lemma.
Gradients boundness we obtain from the second integral representation of Lemma 22 and estimate . In the next step, we repeat the proof of Lemma 9.
Gradients boundedness we get from the first integral representation of Lemma 22 and gradients boundedness with repeating of the proof from Lemma 9. □
2.9. Weak Solutions, Integral Equations and Energetic Inequality
Let be a Weierstrass kernel. Furthermore, we consider mixed norms for mappings defined on the set .
Lemma 27. (See [13], Theorem 2.1.) A vector field with a finite mixed norm is a weak solution of problems (1) and (2) if and only if when u is a solution of integral equationwhere B is a some nonlinear integral operator, Lemma 28. (See [13], Theorem 3.4.) Let u be a solution of integral Equation (44) with a finite mixed norm where . Let k be a positive integer such that . If mixed norms of derivativeswith exponents are finite whenever , then also mixed norms ofare finite for the same means , . Remark 3. The proof of this result relies on Calderon–Zygmund’s theorem and a boundedness of singular integral operators of parabolic type (see [31]). Remark 4. Norms are bounded by a constant that depends on exponents p, q, derivative order and the mixed norm . It follows directly from the proof of the theorem in [13]. Lemma 29. If u is a weak limit from (41), then there exists a number such that whenever . Proof. Let
be a positive arbitrary number. Integrate the equality of Lemma 25 over segment
where
. Then, continuity and absolute continuity on lines of mapping
u give:
Every integrable term has finite norms
In addition, every norm is bounded by a constant depending on only. It follows from Lemma 21 (see estimates (5) and (7)) for the first and the second norms. A boundedness of the third norm follows from mapping boundedness u (see Lemma 21 item (2)) and the estimate from item (4) (see Lemma 21) . Therefore, . A boundedness of vector field u (see Lemma 21 item (2)) gives a uniform estimate whenever . Then, any mixed norm is finite whenever from lemma condition. □
Lemma 30. If u is a weak limit from (41), then a mixed norm . Proof. Let initial data
. Function
f from Lemma 27 is represented by integral
For
there is true Lemma 34. Therefore, the mapping
f and any of its derivatives have a finite mixed norm
. By Lemma 25 and Lemma 29, the vector field
u is a weak solution of problems (
1) and (
2) with a finite mixed norm
whenever
. Then, from Lemma 27, we conclude that
u is a solution of integral Equation (
44). From Lemma 28, we obtain a finiteness of mixed norms for the second derivatives
, where
,
. Let
. Then, we have the statement of the lemma. □
Lemma 31. (Energetic condition.) Let u and P be weak limits from (41). Then,for every where from Lemma 1. Proof. Note that weak solutions satisfy conditions:
From the first equality of Lemma 22, we have:
Integrals commutation is possible since the integral over
is a finite. It follows from
Tonnelli’s theorem, boundedness and summability of
with any exponent not less than two and Lemma A1. Here,
is the Riesz potential. The interior integral in (
46) is equal to zero since
for any radius
r.
Let us prove the second equality from (
45). The second equality of Lemma 22 implies:
Integrals commutation we prove in the same way. There is inequality:
The right-hand side is a finite because
(see Lemma 21 item (5), Lemma 26 item (1), Lemma A5). In addition,
by Lemma A1. To interior integral in (
47) we apply the Stokes formula. Then,
A product
belongs to the space
whenever
. Then, the integral over surface tends to zero as
(to apply Lemma A4 with exponent
and a mean
p, close to unit). Hence, and from (
47) we have:
In the iterated integral
we change integration order because the double integral is finite (see above). Hence, we get:
The interior integral in the right-hand side of (
49) is uniformly bounded with respect to
. This follows from a boundedness of the Riesz potential
. It is proved in the same way as Lemma 9 with applications Lemma 26 item (1) and Lemma 21 item (5). Furthermore, we use Lebesgue’s theorem. Then, (
48) and (
49) give the equality of iterated integrals:
The mapping
(norm defined by (
15)). Lemma A1 shows that Poisson’s formula is true for elements of the space
. Then,
. Therefore, we have
from (
50). The second equality from (
45) is proved.
Let us show that vector field
u satisfies the equality
a.e. on
. We have the equality of iterated integrals:
A finiteness of double integral follows from a boundedness
(see Lemma 26, item (2)) and properties of the Riesz potential
. Let
. The interior integral on the left-hand side of (
52) tends to
in the space
for almost every
t. (See Lemma A1 and equality (
A2), which is true for elements of the space
). The norm
is finite a.e. by Lemma 30. In (
52), we make the passage to the limit. The interior integral on the right-hand side of (
52) is replaced by application of Lemma 22. Then, we get (
51). To finish the proof, we are helped with the following steps. Every equality from Lemma 25 we multiply by function
. Thereupon, we add together them and integrate over space
. From (
45) and (
49), we have
Hence, we get the required equality. □
2.10. Proof of Theorem 1
Observe that all estimates in proved lemmas above depend on norms
,
(see (
22)),
or
only and don’t depend on a diameter of Laplacian support
.
If
, then, by Lemma A4 integrals,
tend to zero as
Therefore, equalities from Lemma A2 are true for mappings of the class
. In addition, we have summability
with any exponent
and
with any exponent
(see Lemma 32).
1. Assume that initial data and its Laplacian support is a compact set. Let be a constant from Lemma 1. Then, item (3) follows from Lemma 26, and items (1) and (4) we get from Lemma 21.
Let us prove estimates of item (2). A uniform boundedness with respect to
t of norms
we obtain from Lemma 21 (item (3)). An uniform boundedness of norms
follows from Lemma 21 (see items (4), (5), (7)). The estimate of norm
follows from Lemma 31. A uniform boundedness of norms
we get by Lemma 26. A uniform boundedness for norm
is the corollary of Lemma 25 because
is the finite linear combination of terms with uniform bounded norms in the space
. Uniform estimates of norms in spaces
,
we take from Lemma A5. The occurrence of vector field
u in spaces
and
we get from the uniform estimates proved above. By Lemma 25 and Lemma 21 (see items (5) and (7)), we obtain
Hence, it follows a finiteness of norm
since
u and
are bounded. Therefore,
.
Let us prove item (5) using mixed norms (see [
8,
26,
27]). Weak solutions
u and
P belong to class
(see item 1) of this theorem). In Lemma 28, we put
assuming it is very large. Now, we fix an order of derivatives:
. Then, by Lemma 27 and Lemma 28, derivative norms
are bounded in the space
where an exponent
is an arbitrary but fixed. A boundedness of weak solution
u and its summability in
imply the belonging
. Exponents means
we choose by large numbers so that the next conditions are fulfilled:
- (1)
for any ball lying in
, all conditions of Sobolev’s embedding theorem in a space of continuous functions are certainly valid ([
23], p. 64);
- (2)
at least, all derivatives of the order up to satisfy also all conditions Sobolev’s theorem from above.
Since an integer number m is an arbitrary, then a weak solution u belongs to the class . A smoothness of function P we obtain from Lemma 25 and the smoothness of vector field u. The continuity is proved in item 1.
2. Let initial data
. We take a test-function
such that
if
and
if
. Consider a solenoidal vector field
Then,
. A function
Q is Poisson’s integral
Hence, we have:
where
is the Riesz potential,
M is the maximal mean of
. From Lemma A1, we obtain
Direct calculations yield:
Without the second term in the first integral, the rest of the integrals of all terms in the right-hand tend to zero as
. This is guaranteed by a test-function
and a boundedness of the second derivatives
. The last follows from representation of function
Q by Poisson’s integral and definition of the class
. In this case, we have two equalities:
where
are universal constants, and
are singular integral operators. Therefore, as
, then
A vector field
A summability of the vector field and its derivatives follows from (
53) and (
54), the equality
and Lemma A1. In addition,
in the space
in the space
. Laplacians supports
are compact sets. Therefore, there exist solutions
and
with an initial data
satisfying theorem with the number
From (
55), we have
as
. Fix a number
. From the remark at the beginning of the proof, we conclude all estimates of the theorem for solutions
,
. They are uniform with respect to
r for
. Hence, sets of mappings
,
are bounded in spaces
and
. Extract subsequences
,
, which converge weakly. Let
u and
P be its weak limits, respectively. These limits satisfy the next properties:
- (1)
Lemma 21 is true for them (this is verified in the same way as the proof of Lemma 21 for subsequences);
- (2)
Lemma 25 is true for them;
- (3)
Lemma 26 is fulfilled for them. Thus,
u and
P are weak solutions of problems (
1) and (
2). Lemma 27 and Lemma 29 are true for vector field
u. Conditions of growth for a mapping
show correctness of Lemma 28 for weak solutions from above.
Furthermore, we realize the proof from the first part (see item (1) above). Therefore, the theorem is true also in this case. Theorem 1 is proved.
3. Homotopic Property of Cauchy Problem Solutions in Class
If initial data then the Cauchy problem solutions from Theorem 1 have the next homotopic property.
Theorem 2. Let u and P be solutions of problems (1) and (2) from Theorem 1. Then, for every fixed mean (see (5)) mappings . Moreover, all normsif , , , are uniformly bounded on every segment where . Proof of Theorem 2 (it is given below) is relied on for the next simple properties of mappings
. For every vector field
v and its derivatives of the first order, these are true for both (
A1) and representation (Riesz’s formula):
The second equality we obtain by application of the Stokes theorem to the integral from (
56) calculating over a spherical layer
. From Lemma A4,
as
since
. Then, the passage to limit as
,
implies the second equality (
56). The first equality is proved in the same way.
We have
where
is the Riesz potential from (
4). Hardy–Littlewood–Sobolev’s inequality (see Lemma A1) implies
where
. Consider only
. Two last estimates yield
for every
. Analogously with the above, we show for the mapping
v and a number
the belonging
whenever
. The logarithmic convex of norm
and Lemma A5 yield norm finiteness
for
. Thus, we proved the next statement.
Lemma 32. Let . Then, , whenever .
Remark 5. Write Poisson’s formula (the representation by Riesz’s integral ) for mappings v, and . Then, we have a boundedness of every vector field and its derivatives.
Let
(the repeated index gives summation).
Lemma 33. Let and . Then, the function P and all its derivatives belong to the space whenever .
Proof. The integral from (
57) we integrate by parts twice over a spherical layer
. Lemma A4 and the passage to the limit as
,
imply:
where
is a singular integral operator with a kernel
Lemma A1 and well-known Calderon–Zygmund’s theorem give a summation of function
P for any finite exponent
. Since
then, analogously with the above, we get:
Hence, we obtain a summability of
whenever finite
A summability of the other derivatives follows from equalities:
□
Lemma 34. If then Poisson’s and Riesz’s formulae are true: Lemma 35. Suppose a function P and all its derivatives are summaable in space whenever . Let . Then, Proof. Apply the second representation from Lemma 34 and make the commutation of integrals. Then,
(see the first equality of Lemma A4). Changing of integration order is possible because the integral
is a finite. Really, we have
Then, a finiteness follows from a summability of the Riesz potential
with exponent 3 (see A1) and the summability of
with exponent
. The first equality is proved. To prove the second formula, we observe a finiteness of integrals
Proof of Theorem 2. Items (1), (2) and (3) from Theorem 1, Lemma 27 and Lemma 28 yield a finiteness of mixed norms
where
, whenever
. For derivatives of the second order, in particular, we have a finiteness of norm
(see 30). Integrate (
1) over segment
where
. The solution
P is represented by (
57). Then, from (
59), we get
Estimate norms in
of every term in (
61) in the usual way. We apply Hölder’s inequality to interior and exterior integrals. Then,
The singular integral operator
is bounded. Hence, from (
61)–(
63) and item (2) of Theorem 1, we obtain a uniform estimate of norm
with respect to
.
In the same way, we prove a summability of gradient with any exponent . From Lemma 27 and Lemma 28, whenever , we get a finiteness of mixed norms for derivatives of the third order where since . In particular, we have a finiteness of norm .
Let us differentiate (
1) with respect to
. Thereupon, we integrate its over
where
. Formulae (
57) and (
60) yield
Hence, for exponent
, we obtain estimates, which are similar estimates (
62) and (
63). A boundedness
u, uniform estimates of norm
(see item (2) from Theorem 1) on segment
, a finiteness of mixed norm
give a uniform boundedness of norms
.
Let derivative order
. Then, (
62) takes the form:
Fix an exponent
. Choose numbers
. Then, we have a finiteness of the mixed norm
. It follows
Terms in derivative
without coefficients have a form:
where
. Then,
To the right-hand side, we apply Hölder’s inequality with exponents
and
. Therefore,
where
,
. All these mixed norms are bounded. This follows from Lemma 27 and Lemma 28. Hence, formulae (
65)–(
67) and a boundedness of a singular integral operator give uniform boundedness of all norms with respect to
.
The solution
P is represented by (
57) with replacing
v by
u. A summability follows from Lemma 33 whenever
. Equalities (
58) and (
59) and a uniform boundedness derivatives norms of vector field
u prove a uniform boundedness of norms
where
. From (
1) and proved uniform estimates from above, we have necessary statement for derivative
. Theorem 2 is proved. □
6. The Cauchy Problem with Less Smoothness of Initial Data
In addition, the invariant class
Sobolev space
as the closure of infinitely smooth vector fields is another important invariant class, which satisfy existence condition of global solutions. Different exceptions for solenoidal vector fields from Sobolev classes
and
were shown in [
32]. Therefore, we consider the first space from them.
Let
be a solenoidal vector field. Set
a sequence of of finite, solenoidal and infinitely smooth vector fields, which converges to the field
in the space
. We observe that
. Let
,
be sequences of solutions in the Cauchy problem for Navier–Stokes equations with the initial dates
. Then, all pairs
satisfy all uniform estimates of Lemma 21 on any compact set of the interval
where
since upper bounds in these inequalities depend on a set and
. Therefore, on every fixed segment
we can take these constants as common for all
because
in the space
. Then, without loss of generality, we assume that the sequence
converges weakly in the space
to a field
. In addition, we suppose that
and
converge weakly in
to
and
. More generally, weak limits
satisfy all conclusions of Lemma 21 and they are weak solutions of problems (
1) and (
2). From the equality (
1) for couple
and items (2), (4), (5), (8) differentiating (
1), we obtain that distributions
belong to the space
for almost everywhere
t. Thus, the class
is invariant similar to the class
. For this case, in the same way, we can define the basic parameters
. After that, one should note that the statement of Lemma 36 will be true when initial data
. Repeating the proof of Theorem 7, we obtain the following result.
Theorem 9. Let be initial data, the parameter λ from (68) and the number from (5). Let be a vector field u is a weak solution of the Cauchy problems (1) and (2). If parameter or in opposite casethen the Cauchy problems (1) and (2) have global solutions and with the following properties: - (1)
mappings u and P are uniformly continuous and bounded on a set for every number ;
- (2)
for every numbers , all normsare uniformly bounded and mixed norms are finite on segment ; - (3)
solutions u, P belong to class i.e., these solutions are classical.
If parameter , then the function is a decreasing function on the interval . If and
then the function is a decreasing function on the interval .
Theorem 10. Let be initial data in problems (1) and (2). If parameter then the solution u from Theorem 9 satisfies: - (1)
a power of norm is a convex function;
- (2)
Proof. It follows from Lemma 45 because this lemma is true for solution u from Theorem 9. □
7. Integral Identities for Solenoidal Vector Fields: Dimensions Comparison
Some review and results about integral identities for solenoidal vector fields are given by authors in [
33,
34]. Here, we reduce one from these identities, which shows the essential distinction for the Navier–Stokes equations between space and plane.
Let
be any triple of solenoidal vector fields from the class
. Denote
Lemma 51. (see [33]) For every triple of solenoidal vector fields from the class the identity holds: Hence, it follows (one should take
):
Corollary 1. (see [34].) If dimension , then every solenoidal vector satisfies the integral identity: Obviously, it implies some interesting applications to the 2D Navier–Stokes and Euler equations (see [
33]).
- (1)
We deduce a priori estimate for a solution
u, which is not independent of a viscosity:
where
f is an outer force. This improves essentially Ladyzhenskaya’s estimate (see [
35]).
- (2)
In the case
, we have formula (
83) and, therefore, the norm
is a decreasing function.
- (3)
We give the new proof of the existence of a global weak solution for the Euler equations in plane in the case when an outer force
. In addition, the estimate
is exact and it does not follows from Judovich’s results [
36]. This explains "the simplicity" of a motion of an ideal fluid on plane.
Remark 6. Let , . Then, the product is a decreasing function in any case.
Remark 7. If dimension , then integral from (91) may be not equal to null. For a simple example, there is the vector field with the following coordinates:
where
is the
i –th vector row of the skew-symmetric matrix. Since
then simple calculations show
with a constant
. A coefficient
may be not equal to zero for fixed different means
k and
i because there is the linear independence of polynomials
It gives a distinct from zero of the integral when we choose a suitable skew-symmetric matrix. Respectively, the right side (see (
83)) for dimensions
can be taken with a large value implying a positive mean of the difference
for
. It is possible because we can take a factor for initial data
or diminish viscosity coefficient
. This implies a growth of the norm
for space. Obviously, on the plane, this phenomena does not appear.