Weighted Bergman Kernels and Mathematical Physics
Abstract
:1. Introduction
2. Admissible Weights and Reproducing Kernels
- (i)
- For any complete orthonormal system the series converges uniformly on any compact subset of and its sum is
- (ii)
- For any
- (iii)
- is holomorphic in z and anti-holomorphic in .
- (iv)
- is real analytic.
- (v)
- If is the orthogonal projection then
- (a)
- .
- (b)
- For every compact subset there is a constant such that
- (c)
- For every there is a compact subset such that , and for any there is an open neighborhood of w and a constant such that for any and any . (d) For every there is an open neighborhood of z and a constant such that for any and any .
3. Mathematical Analysis of the Function
3.1. Banach Manifold of Weights
- (i)
- is injective.
- (ii)
- For every
- (iii)
- There is a topology on such that the family is a base for .
- (iv)
- Let be the inverse of . Then is an analytic atlas on , organizing it as a Banach manifold.
- (v)
- If then and coincide as vector spaces and the norms and are equivalent.
- (vi)
- If then . In particular is an open subset of .
3.2. Analyticity of the Vector Valued Function
3.3. Weighted Ramadanov Theorem
4. Reproducing Kernels and Quantization of States
4.1. Hilbert Spaces of Holomorphic Sections
- (a)
- is one-to-one.
- (b)
- For all there are such that
- (c)
- The ampleness condition (18) is fulfilled.
4.2. Hermitian Geometry of Complex Line Bundles
4.3. Canonical Hermitian Connection
- (i)
- There is an -invariant Hermitian bundle metric H on E.
- (ii)
- The real differential 1-form is exact.
4.4. Liouville Measure
4.5. Transition Probability Amplitudes
4.6. Parallel Translation and Transition Probability Amplitudes
4.7. Complex Orbifolds
4.8. Regular Quantization
5. Djrbashian Kernels on Siegel Domains
5.1. Djrbashian–Karapetyan Projection
5.2. Saitoh’s Construction and Djrbashian Kernels
- (i)
- ,
- (ii)
- for any .
5.3. Djrbashian Kernels and Quantum States
- (i)
- and ,
- (ii)
- and ,
- (iii)
- and ,
6. Forelli–Rudin–Ligocka–Peloso Asymptotic Expansion Formula
7. Computability of -Bergman Kernels
8. Cartan Connections and Fefferman’s Theorem
- (i)
- For every the map is an isomorphism;
- (ii)
- for any ;
- (iii)
- for any left invariant vector field , where is the fundamental vector field associated to A.
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pasternak-Winiarski, Z. On weights which admit the reproducing kernel of Bergman type. Int. J. Math. Math. Sci. 1992, 15, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pasternak-Winiarski, Z. On the dependence of the reproducing kernel on the weight of integration. J. Funct. Anal. 1990, 94, 110–134. [Google Scholar] [CrossRef] [Green Version]
- Odzijewicz, A. On reproducing kernels and quantization of states. Commun. Math. Phys. 1988, 114, 577–597. [Google Scholar] [CrossRef]
- Horowski, M.; Odzijewicz, A. Geometry of the Kepler system in coherent states approach. Phys. ThéOrique 1993, 59, 69–89. [Google Scholar]
- Horowski, M.; Odzijewicz, A. Positive kernels and quantization. J. Geom. Phys. 2013, 63, 80–98. [Google Scholar]
- Jakimowicz, G.; Odzijewicz, A. Quantum complex Minkowski space. J. Geom. Phys. 2006, 56, 1576–1599. [Google Scholar] [CrossRef] [Green Version]
- Lisiecki, W.; Odzijewicz, A. Twistor flag spaces as phase spaces of conformal particles. Lett. Math. Phys. 1979, 3, 325–334. [Google Scholar] [CrossRef]
- Odzijewicz, A. A model of conformal kinematics. Int. J. Theor. Phys. 1976, 15, 575–593. [Google Scholar] [CrossRef]
- Odzijewicz, A. A conformal holomorphic field theory. Commun. Math. Phys. 1986, 107, 561–575. [Google Scholar] [CrossRef]
- Odzijewicz, A. Coherent states and geometric quantization. Commun. Math. Phys. 1992, 150, 385–413. [Google Scholar] [CrossRef]
- Odzijewicz, A.; Ryzko, A. Coherent states for deformed Jaynes-Cummings model. Rep. Math. Phys. 1997, 40, 277–283. [Google Scholar] [CrossRef]
- Odzijewicz, A.; Swietochowski, M. Coherent states map for MIC-Kepler system. J. Math. Phys. 1997, 38, 5010–5030. [Google Scholar] [CrossRef]
- Kerzman, N. The Bergman kernel function. Differentiability at the boundary. Math. Ann. 1971, 195, 149–159. [Google Scholar] [CrossRef]
- Hörmander, L. estimates and existence theorems for the operator. Acta Math. 1965, 113, 89–152. [Google Scholar] [CrossRef]
- Fefferman, C. Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains. Ann. Math. 1976, 103, 395–416. [Google Scholar] [CrossRef]
- Fefferman, C. The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math. 1974, 26, 1–65. [Google Scholar] [CrossRef]
- Peloso, M.M. Hankel operators on weighted Bergman spaces on strongly pseudoconvex domains. Ill. J. Math. 1994, 38, 223–249. [Google Scholar] [CrossRef]
- Peloso, M.M. Sobolev regularity of the weighted Bergman projections and estimates for minimal solutions to the -equation. Complex Variables Theory Appl. 1995, 27, 339–363. [Google Scholar] [CrossRef]
- Ligocka, E. On the Forelli-Rudin construction and weighted Bergman projections. Stud. Math. 1989, 94, 257–272. [Google Scholar] [CrossRef] [Green Version]
- Forelli, F.; Rudin, W. Projections on spaces of holomorphic functions in balls. Indiana Univ. Math. J. 1974, 24, 593–602. [Google Scholar] [CrossRef]
- Barletta, E.; Dragomir, S. On boundary behaviour of symplectomorphisms. Kodai Math. J. 1998, 21, 285–305. [Google Scholar] [CrossRef]
- Englis, M. Toeplitz operators and weighted Bergman kernels. J. Funct. Anal. 2008, 255, 1419–1457. [Google Scholar] [CrossRef] [Green Version]
- Naruki, I. On extendibility of isomorphisms of Cartan connections and biholomorphic mappings of bounded domains. To^hoku Math. J. 1976, 28, 117–122. [Google Scholar] [CrossRef]
- Schmidt, B.G. A new definition of singular points in general relativity. Gen. Relat. Gravity 1971, 1, 269–280. [Google Scholar] [CrossRef]
- Clarke, C.J.S. The Analysis of Space-Time Singularities; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Gawdezki, K. Fourier-Like Kernels in Geometric Quantization; Instytut Matematyczny Polskiej Akademi Nauk: Warsaw, Poland, 1976; pp. 5–78. [Google Scholar]
- Kostant, B. Quantization and unitary representations. Part I: Prequantization. In Lectures in Modern Analysis and Applications III; Spring: Berlin/Heidelberg, Germany, 2009; pp. 87–206. [Google Scholar]
- Barletta, E.; Dragomir, S. On the Djrbashian kernel of a Siegel domain. Stud. Math. 1998, 127, 47–63. [Google Scholar]
- Bergman, S. Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande. J. Reine Angew. Math. 1933, 169, 1–42. [Google Scholar]
- Aronszajn, N. Theory of reproducing kernels. Trans. Am. Math. Soc. 1950, 68, 337–404. [Google Scholar] [CrossRef]
- Zaremba, S. Zarys Pierwszych Zasad Teoryi Liczb Calkowitych; Akademia Umiejȩtnści: Kraków, Poland, 1907. (In Polish) [Google Scholar]
- Krantz, S.G. A new proof and a generalization of Ramadanov’s theorem. Complex Var. Elliptic Equ. 2006, 51, 1125–1128. [Google Scholar] [CrossRef]
- Cimmino, G. Nuovo tipo di condizione al contorno e nuovo metodo di trattazione per il problema generalizzato di Dirichlet. Rend. Circ. Matem. Palermo. 1937, LXI, 1–44. [Google Scholar] [CrossRef]
- Caccioppoli, R. Sui teoremi d’esistenza di Riemann. Rend. Della Acad. Delle Sci. Fis. Mat. Napoli. 1934, 4, 49–54. [Google Scholar]
- Cimmino, G. Opere Scelte; Officine Grafiche Francesco Giannini & Figli: Napoli, Italy, 2002. [Google Scholar]
- Djrbashian, M.M.; Karapetyan, A.H. Integral representations for some classes of functions holomorphic in a Siegel domain. J. Math. Anal. Appl. 1993, 179, 91–109. [Google Scholar] [CrossRef] [Green Version]
- Burghelea, D.; Hangan, T.; Moscovici, H.; Verona, A. Introducere in Topologia Diferenţială; Editura Ştiinţifică; Scientific Publishing House: Bucure, Romania, 1973. [Google Scholar]
- Kohn, J.J. The range of the tangential Cauchy-Riemann operator. Duke Math. J. 1986, 53, 525–545. [Google Scholar] [CrossRef]
- Khanh, T.-V. A general method of weights in the -Neumann problem. arXiv 2010, arXiv:1001.5093v1. [Google Scholar]
- Ramadanov, I. Sur une proprieté de la fonction de Bergman. C. R. Acad. Bulgare Sci. 1967, 20, 759–762. [Google Scholar]
- Pasternak-Winiarski, Z.; Wojcieszynski, J. Bergman spaces for holomorphic vector bundles. Demonstr. Math. 1997, 1, 199–214. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.T.; Englis, M.; Gazeau, J.P. Vector Coherent States from Plancherel’s Theorem, Clifford Algebras and Matrix Domains. J. Phys. A 2004, 37, 6067–6089. [Google Scholar] [CrossRef]
- Pasternak-Winiarski, Z.; Wójcicki, M. Weighted generalization of the Ramadanov theorem and further considerations. arXiv 2016, arXiv:1612.05619v1. [Google Scholar]
- Dragomir, S.; Tomassini, G. Differential Geometry and Analysis on CR Manifolds; Progress in Mathematics; Birkhäuser: Boston, MA, USA, 2006; Volume 246. [Google Scholar]
- Koch, L. Chains on CR manifolds and Lorentz geometry. Trans. Am. Math. Soc. 1988, 307, 827–841. [Google Scholar] [CrossRef]
- Jacobowitz, H. Chains in CR geometry. J. Differ. Geom. 1985, 21, 163–191. [Google Scholar] [CrossRef]
- Englis, M.; Zhang, G. On a generalized Forelli-Rudin construction. Complex Var. Elliptic Equ. 2006, 51, 277–294. [Google Scholar] [CrossRef]
- Roos, G. Weighted Bergman kernels and virtual Bergman kernels. Sci. China Ser. A 2005, 48, 225–237. [Google Scholar] [CrossRef] [Green Version]
- Boas, H.P.; Fu, S.; Straube, E.J. The Bergman kernel function: Explicit formulas and zeros. Proc. Am. Math. Soc. 1999, 127, 805–811. [Google Scholar] [CrossRef]
- Huo, Z. The Bergman kernel on some Hartogs domains. arXiv 2015, arXiv:1507.01868v3. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S. Geometry of bounded domains. Trans. Am. Math. Soc. 1959, 92, 267–290. [Google Scholar] [CrossRef]
- Libermann, P. Sur les structures presque complexes et autres structures infinitésimales réguliers. Bull. Soc. Math. France 1955, 83, 195–224. [Google Scholar] [CrossRef] [Green Version]
- Boothby, W.M. Some fundamental formulas for Hermitian manifolds with vanishing torsion. Am. J. Math. 1954, 76, 509–534. [Google Scholar] [CrossRef]
- Vaisman, I. On locally conformal almost Kähler manifolds. Isr. J. Math. 1976, 24, 338–351. [Google Scholar] [CrossRef]
- Aubin, T. Variétés hermitiennes localment conformement Kählériennes. C. R. Acad. Sci. Paris 1963, 261, 2427–2430. [Google Scholar]
- Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Interscience Publishers: New York, NY, USA, 1963. [Google Scholar]
- Goldberg, S.I. Curvature and homology; Dover Publications, Inc.: New York, NY, USA, 1962. [Google Scholar]
- Folland, G.B. Harmonic Analysis in Phase Space; Princeton University Press: Princeton, NJ, USA, 1989; Volume 122. [Google Scholar]
- Bargmann, V. On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Math. 1961, 14, 187–214. [Google Scholar] [CrossRef]
- Janson, S.; Peetre, J.; Rochberg, R. Hankel forms and the Fock space. Rev. Mat. Iberoam. 1987, 3, 61–138. [Google Scholar] [CrossRef] [Green Version]
- Bommier-Hato, H.; Englis, M.; Youssfi, E.-H. Bergman-type projections in generalized Fock spaces. J. Math. Anal. Appl. 2012, 389, 1086–1104. [Google Scholar] [CrossRef]
- Segal, I.E. Mathematical problems of relativistic physics. In Proceedings of the Summer Conference, Boulder, CO, USA, 30 July 1960. [Google Scholar]
- Segal, I.E. Mathematical characterization of the physical vacuum for the Bose-Einstein field. Ill. J. Math. 1962, 6, 500–523. [Google Scholar] [CrossRef]
- Segal, I.E. The complex-wave representation of the Boson field, in Topics in Functional Analysis. In Advances in Mathematics Supplementary Studies; Gohberg, I., Kac, K., Eds.; Academic Press: Cambridge, MA, USA, 1978; Volume 3. [Google Scholar]
- Bargmann, V. Remark on a Hilbert space of analytic functions. Proc. Natl. Acad. Sci. USA 1962, 48, 199–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bargmann, V. Acknowledgement. Proc. Natl. Acad. Sci. USA 1962, 48, 2204. [Google Scholar] [CrossRef]
- Hall, B.C. The Segal-Bargmann “coherent state” transform for compact Lie groups. J. Funct. Anal. 1994, 122, 103–151. [Google Scholar] [CrossRef] [Green Version]
- Nelson, E. Analytic vectors. Ann. Math. 1959, 70, 572–615. [Google Scholar] [CrossRef]
- Van Leeuwen, S. The Segal-Bargmann Transform and Its Generalizations. Ph.D. Thesis, Universiteit Utrecht, Utrecht, The Netherlands, 2009. [Google Scholar]
- Barbier, S. The Quantum Mechanical Segal-Bargmann Transform Using Jordan Algebras. Ph.D. Thesis, Universiteit Gent, Gent, Belgium, 2014. [Google Scholar]
- Yamamori, A. The Bergman kernel of the Fock-Bargmann-Hartogs domain and the polylogarithm function. Complex Var. Elliptic Equ. 2013, 58, 783–793. [Google Scholar] [CrossRef]
- Nakano, S. On complex analytic vector bundles. J. Math. Soc. Jpn. 1955, 7, 1–12. [Google Scholar] [CrossRef]
- Mladenov, I.M. MR1194023 (94c:58077) 58F06 81R30 81S10 Odzijewicz, Anatol (PL-WASWB-IP) Coherent states and geometric quantization. Commun. Math. Phys. 1992, 150, 385–413. [Google Scholar]
- Beltiţă, D.; Galé, J.E. Coherent state map quantization in a Hermitian-like setting. J. Geom. Phys. 2015, 92, 100–118. [Google Scholar] [CrossRef]
- Coquereaux, R.; Jadczyk, A. Conformal theories, curved phase spaces, relativistic wavelets and the geometry of complex domains. Rev. Math. Phys. 1990, 2, 1–44. [Google Scholar] [CrossRef]
- Englis, M. Weighted Bergman kernels and quantization. Commun. Math. Phys. 2002, 227, 211–241. [Google Scholar] [CrossRef]
- Kisil, V.V. Integral representations and coherent states. Bull. Belg. Math. Soc. Simon Stevin 1995, 2, 529–540. [Google Scholar] [CrossRef]
- Monastyrskii, M.I.; Perelomov, A.M. Coherent states and bounded homogeneous domains. Dokl. Akad. Nauk SSSR 1972, 207, 1303–1305. (In Russian) [Google Scholar] [CrossRef]
- Dragomir, S.; Masamune, M. Cauchy-Riemann orbifolds. Tsukuba J. Math. 2002, 26, 351–386. [Google Scholar] [CrossRef]
- Barletta, E.; Dragomir, S.; Duggal, K.L. Foliations in Cauchy-Riemann Geometry; Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 2007; Volume 140. [Google Scholar]
- Balasubramanian, V.; Hassan, S.F.; Keski-Vakkuri, E.; Naqvi, A. A Space-Time Orbifold: A Toy Model for a Cosmological Singularity. arXiv 2002, arXiv:hep-th/0202187v2. [Google Scholar] [CrossRef] [Green Version]
- Behrndt, K.; Lust, D. Branes, waves, and AdS orbifolds. JHEP 1999. [Google Scholar] [CrossRef] [Green Version]
- Son, J. String Theory on . arXiv 2012, arXiv:hep-th/0107131. [Google Scholar]
- Martinec, E.J.; McElgin, W. String theory on AdS orbifolds. JHEP 2002. [Google Scholar] [CrossRef]
- Satake, I. The Gauss-Bonnet theorem for V-manifolds. J. Math. Soc. Jpn. 1957, 9, 464–492. [Google Scholar] [CrossRef]
- Takeuchi, Y. Orbi-maps and 3-orbifolds. Proc. Jpn. Acad. Ser. A 1989, 65, 345–347. [Google Scholar] [CrossRef]
- Yamasaki, M. Maps between orbifolds. Proc. Am. Math. Soc. 1990, 109, 223–232. [Google Scholar] [CrossRef]
- Moerduk, I.; Pronk, D.A. Orbifolds, Sheaves and Grupoids. K-Theory 1997, 12, 3–21. [Google Scholar] [CrossRef]
- Chen, W.M. On a notion of maps between orbifolds II: Homotopy and CW complex. arXiv 2006, arXiv:math/0610085v1. [Google Scholar] [CrossRef] [Green Version]
- Hurt, N. Geometric Quantization in Action; Reidel: Dordrecht, The Netherlands, 1983. [Google Scholar]
- Simms, D.J. Geometric quantization of energy levels in the Kepler problem. J. Geom. Phys. 1985, 2, 17–24. [Google Scholar]
- Aazami, A.B.; Petters, A.O.; Rabin, J.M. Orbifolds, the A, D, E family of caustic singularities, and gravitational lensing. arXiv 2010, arXiv:1004.0516v1. [Google Scholar] [CrossRef] [Green Version]
- Aazami, A.B.; Keeton, C.R.; Petters, A.O. Lensing by Kerr black holes. II: Analytical study of quasi-equatorial lensing observables. arXiv 2011, arXiv:1102.4304v2. [Google Scholar] [CrossRef] [Green Version]
- Petters, A.O.; Werner, M.C. Mathematics of gravitational lensing: Multiple imaging and magnification. arXiv 2009, arXiv:0912.0490v1. [Google Scholar] [CrossRef] [Green Version]
- Loi, A. Quantization of bounded domains. J. Geom. Phys. 1999, 29, 1–4. [Google Scholar] [CrossRef]
- Arezzo, C.; Loi, A. Quantization of Kähler manifolds and the asymptotic expansion of Tian-Yau-Zelditch. J. Geom. Phys. 2003, 47, 87–99. [Google Scholar] [CrossRef]
- Arezzo, C.; Loi, A. Moment maps, scalar curvature and quantization of Kähler manifolds. Commun. Math. Phys. 2004, 246, 543–559. [Google Scholar] [CrossRef]
- Tian, G. On a set of polarized Kähler metrics on algebraic manifolds. J. Differ. Geom. 1990, 32, 99–130. [Google Scholar] [CrossRef]
- Cahen, M.; Gutt, S.; Rawnsley, J.H. Quantization of Kähler manifolds I: Geometric interpretation of Berezin’s quantization. J. Geom. Phys. 1990, 7, 45–62. [Google Scholar]
- Berezin, F.A. Quantization. Math. USSR Izv. 1974, 8, 1109–1165. (In Russian) [Google Scholar] [CrossRef]
- Wightman, A.S. MR0395610 (52 ♯ 16404) 81.5881.46 Berezin, F. A. [Berezin, Feliks Aleksandrovich] Quantization. Izv. Akad. Nauk SSSR Ser. Mat. 1974, 38, 1116–1175. [Google Scholar]
- Zelditch, S. Szegö Kernel and a theorem of Tian. J. Differ. Geom. 1990, 32, 99–130. [Google Scholar]
- Lu, Z. On the lower terms of the asymptotic expansion of Tian-Yau-Zelditch. Am. J. Math. 2000, 122, 235–273. [Google Scholar] [CrossRef]
- Coifman, R.R.; Rochberg, R. Representation theorems for holomorphic and harmonic functions in Lp. Astérisque 1980, 77, 11–66. [Google Scholar]
- Saitoh, S. Hilbert spaces induced by Hilbert space valued functions. Proc. Am. Math. Soc. 1983, 89, 74–78. [Google Scholar] [CrossRef]
- Saitoh, S. One approach to some general integral transforms and its applications. Integral Transform. Spec. Funct. 1995, 3, 49–84. [Google Scholar] [CrossRef]
- Barletta, E.; Dragomir, S. Uniform approximation of holomorphic forms. Complex Var. 1998, 35, 359–366. [Google Scholar] [CrossRef]
- Faber, V.; Mycielski, J. Applications of learning theorems. Fund. Inform. 1991, 15, 145–167. [Google Scholar]
- Mycielski, J.; Świerczkowski, S. Uniform approximation with linear combinations of reproducing kernels. Stud. Math. 1996, 121, 105–114. [Google Scholar]
- Englis, M. Analytic continuation of weighted Bergman kernels. J. Math. Pures Appl. 2010, 94, 622–650. [Google Scholar] [CrossRef] [Green Version]
- Rudin, W. Functional Analysis. In International Series in Pure and Applied Mathematics, 2nd ed.; McGraw-Hill Inc.: New York, NY, USA, 1991. [Google Scholar]
- Englis, M. Weighted Bergman kernels for logarithmic weights. Pure Appl. Math. Q. 2010, 6, 781–813. [Google Scholar] [CrossRef] [Green Version]
- Krantz, S.G. Function Theory of Several Complex Variables; Wiley: New York, NY, USA, 1982. [Google Scholar]
- D’Angelo, J.P. An explicit computation of the Bergman kernel function. J. Geom. Anal. 1994, 4, 23–34. [Google Scholar] [CrossRef]
- Francsics, G.; Hanges, N. The Bergman kernel of complex ovals and multivariable hypergeometric functions. J. Funct. Anal. 1996, 142, 494–510. [Google Scholar] [CrossRef] [Green Version]
- Beberok, T. An explicit computation of the Bergman kernel function. Complex Var. Elliptic Equ. 2015, 60, 1058–1067. [Google Scholar] [CrossRef]
- Helgason, S. Differential Geometry, Lie groups, and Symmetric Spaces; Academic Press: New York, NY, USA; London, UK, 1978. [Google Scholar]
- Tanaka, N. On generalized graded Lie algebras and geometric structures I. J. Math. Soc. Jpn. 1967, 19, 215–254. [Google Scholar] [CrossRef]
- Webster, S.M. Pseudohermitian structures on a real hypersurface. J. Differ. Geom. 1978, 13, 25–41. [Google Scholar] [CrossRef]
- Tanaka, N. A Differential Geometric Study on Strongly Pseudo-Convex Manifolds; Kinokuniya Book Store: Tokyo, Japan, 1975. [Google Scholar]
- Chen, S.-C. Characterization of the automorphisms on the Barrett and the Diederich-Fornaess worm domains. Trans. Am. Math. Soc. 1993, 338, 431–440. [Google Scholar]
- Barletta, E.; Dragomir, S.; Peloso, M.M. Worm domains and Fefferman space-time singularities. J. Geom. Phys. 2017, 120, 142–168. [Google Scholar] [CrossRef]
- Horowitz, G.T.; Marolf, D. Quantum probes of spacetime singularities. arXiv 1995, arXiv:gr-qc/9504028v3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klembeck, P.F. Kähler metrics of negative curvature, the Bergmann metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets. Indiana Univ. Math. J. 1978, 27, 275–282. [Google Scholar] [CrossRef]
- Barletta, E. On the boundary behaviour of the holomorphic sectional curvature of the Bergman metric. Matematiche 2006, 61, 301–316. [Google Scholar]
- Korányi, A.; Reimann, H.M. Contact transformations as limits of symplectomorphisms. Mathematics 1994, 318, 1119–1124. [Google Scholar]
- Bergman, S.; Schiffer, M. Kernel Functions and Elliptic Differential Equations in Mathematical Physics; Dover Publications, Inc.: Mineola, NY, USA, 1953. [Google Scholar]
- Fichera, G. Sui teoremi d’esistenza della teoria del potenziale e della rappresentazione conforme. II. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. 1951, 10, 452–457. (In Italian) [Google Scholar]
- Fichera, G. Sulla “Kernel function”. Boll. Un. Mat. Ital. 1952, 7, 4–15. (In Italian) [Google Scholar]
- Weill, G.G. On Bergman’s kernel function for some uniformly elliptic partial differential equations. Proc. Am. Math. Soc. 1965, 16, 1299–1304. [Google Scholar]
- Lo, C.-Y. Bergman’s kernel function on a class of elliptic partial differential equations in four variables. Ann. Mat. Pura Appl. 1968, 79, 93–105. [Google Scholar]
- Kogoj, A.E.; Lanconelli, E. Liouville theorem for X-elliptic operators. Nonlinear Anal. 2009, 70, 2974–2985. [Google Scholar] [CrossRef]
- Uguzzoni, F. Estimates for the Green function for X-elliptic operators. Math. Ann. 2015, 361, 169–190. [Google Scholar] [CrossRef]
- Beltiţă, D.; Galé, J.E. Reproducing kernels and positivity of vector bundles in infinite dimensions. arXiv 2014, arXiv:1402.0458v1. [Google Scholar]
- Beltiţă, D.; Galé, J.E. Linear connections for reproducing kernels on vector bundles. arXiv 2013, arXiv:1206.3969v3. [Google Scholar] [CrossRef] [Green Version]
- Bertram, W.; Hilgert, J. Reproducing kernels on vector bundles. arXiv 2020, arXiv:1402.0458. [Google Scholar]
- Pasternak-Winiarski, Z. Reproducing kernels for holomorphic vector bundles. Adv. Math. Sci. J. 2016, 5, 25–32. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barletta, E.; Dragomir, S.; Esposito, F. Weighted Bergman Kernels and Mathematical Physics. Axioms 2020, 9, 48. https://doi.org/10.3390/axioms9020048
Barletta E, Dragomir S, Esposito F. Weighted Bergman Kernels and Mathematical Physics. Axioms. 2020; 9(2):48. https://doi.org/10.3390/axioms9020048
Chicago/Turabian StyleBarletta, Elisabetta, Sorin Dragomir, and Francesco Esposito. 2020. "Weighted Bergman Kernels and Mathematical Physics" Axioms 9, no. 2: 48. https://doi.org/10.3390/axioms9020048
APA StyleBarletta, E., Dragomir, S., & Esposito, F. (2020). Weighted Bergman Kernels and Mathematical Physics. Axioms, 9(2), 48. https://doi.org/10.3390/axioms9020048