On the Product Rule for the Hyperbolic Scator Algebra
Abstract
:1. Introduction
- For and ,
- For , and ,
- For , and ,
2. Commutativity, Non-Distributivity and Generic Associativity of the Scator Product
3. Fundamental Embedding as a Natural Interpretation of the Scator Product
4. Extension of the Scator Product on All Scators with Vanishing Scalar Component
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fernández-Guasti, M.; Zaldívar, F. A Hyperbolic Non-Distributive Algebra in 1+2 dimensions. Adv. Appl. Clifford Algebras 2013, 23, 639–656. [Google Scholar] [CrossRef]
- Fernández-Guasti, M.; Zaldívar, F. An elliptic non distributive algebra. Adv. Appl. Clifford Algebras 2013, 23, 825–835. [Google Scholar] [CrossRef]
- Fernández-Guasti, M. A Non-distributive Extension of Complex Numbers to Higher Dimensions. Adv. Appl. Clifford Algebras 2015, 25, 829–849. [Google Scholar] [CrossRef]
- Fernández-Guasti, M. Time and space transformations in a scator deformed Lorentz metric. Eur. Phys. J. Plus 2014, 129, 195. [Google Scholar] [CrossRef]
- Fernández-Guasti, M.; Zaldívar, F. Hyperbolic superluminal scator algebra. Adv. Appl. Clifford Algebras 2015, 25, 321–335. [Google Scholar] [CrossRef]
- Magueijo, J.; Smolin, L. Generalized Lorentz invariance with an invariant energy scale. Phys. Rev. D 2003, 67, 044017. [Google Scholar] [CrossRef] [Green Version]
- Amelino-Camelia, G. Doubly-Special Relativity: Facts, Myths and Some Key Open Questions. Symmetry 2010, 2, 230–271. [Google Scholar] [CrossRef] [Green Version]
- Kapuścik, E. On Fatal Error in Tachyonic Physics. Int. J. Theor. Phys. 2015, 54, 4041–4045. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Guasti, M. Associativity in scator algebra and the quantum wavefunction collapse. Univ. J. Math. Appl. 2018, 1, 80–88. [Google Scholar]
- Fernández-Guasti, M.; Zaldívar, F. Multiplicative representation of a hyperbolic non distributive algebra. Adv. Appl. Clifford Algebras 2014, 24, 661–674. [Google Scholar] [CrossRef]
- Kobus, A.; Cieśliński, J.L. On the Geometry of the Hyperbolic Scator Space in 1 + 2 Dimensions. Adv. Appl. Clifford Algebras 2017, 27, 1369–1386. [Google Scholar] [CrossRef] [Green Version]
- Hestenes, D.; Sobczyk, G. Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics; D. Reidel Publ. Co.: Dordrecht, The Netherlands, 1984. [Google Scholar]
- Cieśliński, J.L. Divisors of zero in the Lipschitz semigroup. Adv. Appl. Clifford Algebras 2007, 17, 153–157. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cieśliński, J.L.; Kobus, A. On the Product Rule for the Hyperbolic Scator Algebra. Axioms 2020, 9, 55. https://doi.org/10.3390/axioms9020055
Cieśliński JL, Kobus A. On the Product Rule for the Hyperbolic Scator Algebra. Axioms. 2020; 9(2):55. https://doi.org/10.3390/axioms9020055
Chicago/Turabian StyleCieśliński, Jan L., and Artur Kobus. 2020. "On the Product Rule for the Hyperbolic Scator Algebra" Axioms 9, no. 2: 55. https://doi.org/10.3390/axioms9020055
APA StyleCieśliński, J. L., & Kobus, A. (2020). On the Product Rule for the Hyperbolic Scator Algebra. Axioms, 9(2), 55. https://doi.org/10.3390/axioms9020055