Boundary Value Problem for Weak Nonlinear Partial Differential Equations of Mixed Type with Fractional Hilfer Operator
Abstract
:1. Introduction
2. Problem Statement
3. Nonhomogeneous Ordinary Differential Equation With Hilfer Operator
4. Formal Expansion of the Solution of the Problem (1)–(5) into Fourier Series
5. Solvability of SCSNIE (30) and (31)
- (1)
- For all , the function is completely monotonous and there holds:
- (2)
- For all , and there takes place the following estimate:
- (1)
- ;
- (2)
- ;
- (3)
- ,;
- (4)
- ,;
- (5)
- .
6. Convergence of Fourier Series
7. Irregular Value of Spectral Parameter
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Handbook of Fractional Calculus with Applications; Tenreiro Machado, J.A. (Ed.) Walter de Gruyter GmbH: Berlin, Germany, 2019; Volume 8, pp. 47–85. [Google Scholar]
- Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Baleanu, D. Fractional Calculus and Its Applications in Physics. Front. Phys. 2019, 7. [Google Scholar] [CrossRef]
- Saxena Ram, K.; Garra, R.; Orsingher, E. Analytical solution of space-time fractional telegraph-type equations involving Hilfer and Hadamard derivatives. Integral Transform. Spec. Funct. 2016, 27, 30–42. [Google Scholar] [CrossRef]
- Patnaik, S.; Hollkamp, J.P.; Semperlotti, F. Applications of variable-order fractional operators: A review. Proc. R. Soc. 2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klafter, J.; Lim, S.C.; Metzler, R. Fractional Dynamics, Recent Advances; World Scientific: Singapore, 2011; Chapter 9. [Google Scholar]
- Xu, C.; Yu, Y.; Chen, Y.Q.; Lu, Z. Forecast analysis of the epidemic trend of COVID-19 in the United States by a generalized fractional-order SEIR model. arXiV 2020. [Google Scholar] [CrossRef]
- Hilfer, R. Application of Fractional Calculus in Physics; World Scientific Publishing Company: Singapore, 2000. [Google Scholar]
- Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. Chem. Phys. 2002, 284, 399–408. [Google Scholar] [CrossRef]
- Hilfer, R. On fractional relaxation. Fractals 2003, 11, 251–257. [Google Scholar] [CrossRef]
- Sandev, T.; Metzler, R.; Tomovski, Ž. Fractional diffusion equation with a generalized Riemann–Liouville time fractional derivative. J. Phys. A Math. Theor. 2011, 44, 255203. [Google Scholar] [CrossRef]
- Tomovski, Ž.; Sandev, T.; Metzler, R.; Dubbeldam, J. Generalized space-time fractional diffusion equation with composite fractional time derivative. Phys. A 2012, 391, 2527–2542. [Google Scholar] [CrossRef]
- Garra, R.; Gorenflo, R.; Polito, F.; Tomovski, Ž. Hilfer-Prabhakar derivatives and some applications. Appl. Math. Comput. 2014, 242, 576–589. [Google Scholar] [CrossRef] [Green Version]
- Hilfer, R.; Luchko, Y.; Tomovski, Ž. Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives. Fract. Calc. Appl. Anal. 2009, 12, 299–318. [Google Scholar]
- Myong-Ha, K.; Guk-Chol, R.; Hyong-Chol, O. Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives. Fract. Calc. Appl. Anal. 2014, 17, 79–95. [Google Scholar]
- Sandev, T.; Tomovski, Ž. Fractional Equations and Models: Theory and Applications; Springer Nature Switzerland AG: Cham, Switzerland, 2019. [Google Scholar]
- Al-Ghafri, K.S.; Rezazadeh, H. Solitons and other solutions of (3+1)-dimensional space-time fractional modified KdV-Zakharov-Kuznetsov equation. Appl. Math. Nonlinear Sci. 2019, 4, 289–304. [Google Scholar] [CrossRef] [Green Version]
- Delbosco, D.; Rodino, L. Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl. 1996, 204, 609–625. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Ahmad, B. Analytical solutions to fractional evolution equations with almost sectorial operators. Adv. Differ. Equ. 2016, 2016, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Furati, K.M.; Kassim, M.D.; Tatar, N.E. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 2012, 64, 1616–1626. [Google Scholar] [CrossRef] [Green Version]
- He, J.H. Some applications of nonlinear fractional differential equations and their approximations. Bull. Sci. Technol. 1999, 15, 86–90. [Google Scholar]
- Jaiswal, A.; Bahuguna, D. Hilfer Fractional Differential Equations with Almost Sectorial Operators. Differ Equ. Dynam. Syst. 2020, 13, 18. [Google Scholar] [CrossRef]
- Partohaghighi, M.; Inc, M.; Bayram, M.; Baleanu, D. On Numerical Solution Of The Time Fractional Advection-Diffusion Equation Involving Atangana-Baleanu-Caputo Derivative. Open Phys. 2019, 17, 816–822. [Google Scholar] [CrossRef]
- Tripathi, B.; Sharma, B.; Sharma, M. Modeling and analysis of MHD two-phase blood flow through a stenosed artery having temperature-dependent viscosity. Eur. Phys. J. Plus. 2019, 134, 1–17. [Google Scholar] [CrossRef]
- Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014. [Google Scholar]
- Arqub, O.A.; Al-Smadi, M. Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painlevé equations in Hilbert space. Chaos Solitons Fractals 2018, 117, 161–167. [Google Scholar] [CrossRef]
- Malik, S.A.; Aziz, S. An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary conditions. Comput. Math. Appl. 2017, 73, 12. [Google Scholar] [CrossRef]
- Aziz, S.; Malik, S.A. Identification of an unknown source term for a time fractional fourth-order parabolic equation. Electron. J. Differ. Equ. 2016, 2016, 1–20. [Google Scholar]
- Sabitov, K.B.; Safin, E.M. The inverse problem for a mixed-type parabolic-hyperbolic equation in a rectangular domain. Russ. Math. 2010, 54, 48–54. [Google Scholar] [CrossRef]
- Sabitov, K.B.; Martem’yanova, N.V. A nonlocal inverse problem for a mixed-type equation. Russ. Math. 2011, 55, 61–74. [Google Scholar] [CrossRef]
- Sabitov, K.B.; Sidorov, S.N. On a nonlocal problem for a degenerating parabolic-hyperbolic equation. Differ. Equ. 2014, 50, 352–361. [Google Scholar] [CrossRef]
- Sabitov, K.B. On the Theory of Mixed Type Equations; Fizmatlit Publ. House: Moscow, Russia, 2014; 301p. (In Russian) [Google Scholar]
- Urinov, A.K.; Nishonova, S.T. A problem with integral conditions for an elliptic-parabolic equation. Math. Notes 2017, 102, 68–80. [Google Scholar] [CrossRef]
- Yuldashev, T.K. Solvability of a boundary value problem for a differential equation of the Boussinesq type. Differ. Equ. 2018, 54, 1384–1393. [Google Scholar] [CrossRef]
- Yuldashev, T.K. Nonlocal inverse problem for a pseudohyperbolic-pseudoelliptic type integro-differential equations. Axioms 2020, 9, 45. [Google Scholar] [CrossRef]
- Zikirov, O.S. A non-local boundary value problem for third-order linear partial differential equation of composite type. Math. Model. Anal. 2009, 14, 407–421. [Google Scholar] [CrossRef] [Green Version]
- Yuldashev, T.K. Mixed value problem for a nonlinear differential equation of fourth order with small parameter on the parabolic operator. Comput. Math. Math. Phys. 2011, 51, 1596–1604. [Google Scholar] [CrossRef]
- Yuldashev, T.K. Mixed value problem for nonlinear integro-differential equation with parabolic operator of higher power. Comput. Math. Math. Phys. 2012, 52, 105–116. [Google Scholar] [CrossRef]
- Yuldashev, T.K. Inverse problem for a nonlinear Benney–Luke type integro-differential equations with degenerate kernel. Russ. Math. 2016, 60, 53–60. [Google Scholar] [CrossRef]
- Yuldashev, T.K. Nonlocal mixed-value problem for a Boussinesq-type integrodifferential equation with degenerate kernel. Ukr. Math. J. 2016, 68, 1278–1296. [Google Scholar] [CrossRef]
- Yuldashev, T.K. Mixed problem for pseudoparabolic integrodifferential equation with degenerate kernel. Differ. Equ. 2017, 53, 99–108. [Google Scholar] [CrossRef]
- Yuldashev, T.K. On a boundary-value problem for Boussinesq type nonlinear integro-differential equation with reflecting argument. Lobachevskii J. Math. 2020, 41, 111–123. [Google Scholar] [CrossRef]
- Berdyshev, A.S.; Kadirkulov, B.J. On a Nonlocal Problem for a Fourth-Order Parabolic Equation with the Fractional Dzhrbashyan-Nersesyan Operator. Differ. Equ. 2016, 52, 122–127. [Google Scholar] [CrossRef]
- Berdyshev, A.S.; Cabada, A.; Kadirkulov, B.J. The Samarskii-Ionkin type problem for fourth order parabolic equation with fractional differential operator. Comput. Math. Appl. 2011, 62, 3884–3893. [Google Scholar] [CrossRef] [Green Version]
- Kerbal, S.; Kadirkulov, B.J.; Kirane, M. Direct and inverse problems for a Samarskii-Ionkin type problem for a two dimensional fractional parabolic equation. Progr. Fract. Differ. Appl. 2018, 4, 1–14. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuldashev, T.K.; Kadirkulov, B.J. Boundary Value Problem for Weak Nonlinear Partial Differential Equations of Mixed Type with Fractional Hilfer Operator. Axioms 2020, 9, 68. https://doi.org/10.3390/axioms9020068
Yuldashev TK, Kadirkulov BJ. Boundary Value Problem for Weak Nonlinear Partial Differential Equations of Mixed Type with Fractional Hilfer Operator. Axioms. 2020; 9(2):68. https://doi.org/10.3390/axioms9020068
Chicago/Turabian StyleYuldashev, Tursun K., and Bakhtiyor J. Kadirkulov. 2020. "Boundary Value Problem for Weak Nonlinear Partial Differential Equations of Mixed Type with Fractional Hilfer Operator" Axioms 9, no. 2: 68. https://doi.org/10.3390/axioms9020068
APA StyleYuldashev, T. K., & Kadirkulov, B. J. (2020). Boundary Value Problem for Weak Nonlinear Partial Differential Equations of Mixed Type with Fractional Hilfer Operator. Axioms, 9(2), 68. https://doi.org/10.3390/axioms9020068