On Smoothness of the Solution to the Abel Equation in Terms of the Jacobi Series Coefficients
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Funding
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E. Some Properties of Fractional Integrals I; Mathematische Zeitschrift; Springer: Berlin, Germany, 1928; Volume 27, pp. 565–606. [Google Scholar]
- Rubin, B.S. Fractional integrals in Hölder spaces with, and operators of potential type. Izv. Akad. Nauk Armyan. SSR Ser. Mat. 1974, 9, 308–324. (in Russian). [Google Scholar]
- Rubin, B.S. The fractional integrals and Riesz potentials with radial density in the spaces with power weight. Izv. Akad. Nauk Armyan. SSR Ser. Mat. 1986, 21, 488–503. (in Russian). [Google Scholar]
- Rubin, B.S. One-dimensional representation, inversion and certain properties of the Riesz potentials of radial functions. Math. Notes 1983, 34, 521–533. [Google Scholar] [CrossRef]
- Karapetyants, N.K.; Rubin, B.S. Operators of fractional integration in spaces with a weight. Izv. Akad. Nauk Armyan. SSR Ser. Mat. 1984, 19, 31–43. (in Russian). [Google Scholar]
- Karapetyants, N.K.; Rubin, B.S. Radial Riesz Potential on the Disk and the Fractional Integration Operators; Reports of the Academy of Sciences of the USSR; Steklov Mathematical Institute RAS: Mosscow, Russia, 1982; Volume 25, pp. 522–525. [Google Scholar]
- Vaculov, B.G.; Samko, N. Spherical fractional and hypersingular integrals of variable order in generalized Hölder spaces with variable characteristic. Math. Nachr. 2011, 284, 355–369. [Google Scholar]
- Samko, S.G.; Murdaev, K.M. Weighted Zigmund estimates for fractional differentiation and integration, and their applications. Proc. Steklov Inst. Math. 1989, 180, 233–235. [Google Scholar]
- Samko, S.G.; Vakulov, B.G. On equivalent norms in fractional order function spaces of continuous functions on the unit sphere. Fract. Calc. Appl. Anal. 2000, 4, 401–433. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Basel, Switzerland; Philadelphia, PA, USA, 1993. [Google Scholar]
- Kukushkin, M.V. Riemann-Liouville operator in weighted Lp spaces via the Jacobi series expansion. Axioms 2019, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Behroozifar, M.; Ahmadpour, F. Comparative Study on Solving Fractional Differential Equations via Shifted Jacobi Collocation Method; Bulletin of the Iranian Mathematical Society: Tehran, Iran, 2017; Volume 43, pp. 535–560. [Google Scholar]
- Çekim, B.; Erkuş-Duman, E. Extended Jacobi Functions via Riemann-Liouville Fractional Derivative; Abstract and Applied Analysis; Hindawi Publishing Corporation: New York, NY, USA, 2013; pp. 1–7, Article ID 350182. [Google Scholar] [CrossRef] [Green Version]
- Doha, E.H.; Bhrawy, A.H.; Ezz-Eldien, S.S. A New Jacobi Operational Matrix: An Application for Solving Fractional Differential Equations. Appl. Math. Model. 2012, 36, 4931–4943. [Google Scholar] [CrossRef]
- Banerji, P.K.; Choudhary, S. On the Fractional Calculus of a General Class of Polynomials. Indian J. Pure Appl. Math. 1996, 27, 675–679. [Google Scholar]
- Kazem, S.; Abbasbandy, S.; Kumar, S. Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Model. 2013, 37, 5498–5510. [Google Scholar] [CrossRef]
- Saadatmandi, A.; Dehghan, M. A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 2010, 59, 1326–1336. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Shen, J.; Wang, L. Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 2015, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Muckenhoupt, B. Mean Convergence of Jacobi Series. Proc. Am. Math. Soc. 1969, 23, 306–310. [Google Scholar] [CrossRef]
- Newman, J.; Rudin, W. Mean convergence of orthogonal series. Proc. Am. Math. Soc. 1952, 3, 219–222. [Google Scholar] [CrossRef]
- Pollard, H. The mean convergence of orthogonal series I. Trans. Am. Math. Soc. 1947, 62, 387–403. [Google Scholar] [CrossRef]
- Pollard, H. The mean convergence of orthogonal series II. Trans. Am. Math. Soc. 1948, 63, 355–367. [Google Scholar] [CrossRef]
- Pollard, H. The mean convergence of orthogonal series III. Duke Math. J. 1949, 16, 189–191. [Google Scholar] [CrossRef]
- Gorenflo, R.; Vessella, S. Abel Integral Equations; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Li, C.; Li, C.P.; Kacsmar, B.; Lacroix, R.; Tilbury, K. The Abel Integral Equations in Distribution. Adv. Anal. 2017, 2, 88–104. [Google Scholar] [CrossRef]
- Marcinkiewicz, J.; Zygmund, A. Some theorems on orthogonal systems. Fundam. Math. 1937, 28, 309–335. [Google Scholar]
- Li, X.; Chen, C. Inequalities for the gamma function. J. Inequal. Pure Appl. Math. 2007, 8, 1–3. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukushkin, M.V. On Smoothness of the Solution to the Abel Equation in Terms of the Jacobi Series Coefficients. Axioms 2020, 9, 81. https://doi.org/10.3390/axioms9030081
Kukushkin MV. On Smoothness of the Solution to the Abel Equation in Terms of the Jacobi Series Coefficients. Axioms. 2020; 9(3):81. https://doi.org/10.3390/axioms9030081
Chicago/Turabian StyleKukushkin, Maksim V. 2020. "On Smoothness of the Solution to the Abel Equation in Terms of the Jacobi Series Coefficients" Axioms 9, no. 3: 81. https://doi.org/10.3390/axioms9030081
APA StyleKukushkin, M. V. (2020). On Smoothness of the Solution to the Abel Equation in Terms of the Jacobi Series Coefficients. Axioms, 9(3), 81. https://doi.org/10.3390/axioms9030081