Comprehensive Criteria for the Extrema in Entropy Production Rate for Heat Transfer in the Linear Region of Extended Thermodynamics Framework
Abstract
:1. Introduction
2. Theoretical Part and Results
3. Conclusions
- Criteria for the extremum value of entropy production for heat transfer in the linear region of Extended Thermodynamics Framework were developed
- Introduction of local heat transfer coefficients in the field
- The advantages of using local heat transfer coefficients are (a) calculation of heat flux without resorting to analytical or numerical solutions and (b) temperature gradient is replaced by temperature difference.
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
a | thermodynamic parameter |
cv | specific heat capacity for constant volume |
hloc | close to equilibrium local heat transfer coefficient |
hres | residual local heat transfer coefficient |
J | flux |
k | thermal conductivity |
L | phenomenological coefficients relating fluxes with thermodynamic driving forces |
Pin | entropy production rate inside the whole system |
s | entropy |
T | absolute temperature |
T0 | reference absolute temperature |
t | time |
V | volume |
xj | space coordinate |
X | thermodynamic driving force |
Greek Letters | |
λ | constant |
μi | chemical potential of i-th substance |
ρ | mass density |
σ | entropy production rate per unit volume |
τ | relaxation time |
References
- Bird, R.B.; Stewart, W.E.; Lightfoot, E.N. Transport Phenomena, 2nd ed.; Wiley: New York, NY, USA, 2002; pp. 764–798. [Google Scholar]
- de Groot, S.R.; Mazur, P. Non-Equilibrium Thermodynamics, 2nd ed.; Dover Publications: New York, NY, USA, 1984; pp. 11–82. [Google Scholar]
- Kuiken, G.D.C. Thermodynamics of Irreversible Processes—Applications to Diffusion and Rheology., 1st ed.; Wiley: New York, NY, USA, 1994; pp. 1–135. [Google Scholar]
- Demirel, Y. Nonequilibrium Thermodynamics, Transport and Rate Processes in Physical, Chemical and Biological Systems, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 1–144. [Google Scholar]
- Kondepudi, D.; Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures, 2nd ed.; Wiley: New York, NY, USA, 2015; pp. 333–455. [Google Scholar]
- Kondepudi, D.P.; Prigogine, I. Thermodynamics Nonequilibrium, in Encyclopedia of Applied Physics, 2nd ed.; Trigg, G.L., Ed.; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Demirel, Y.A.; Sandler, S.I. Nonequilibrium Thermodynamics in Engineering and Science. J. Phys. Chem. B 2004, 108, 31–43. [Google Scholar] [CrossRef]
- Michaelides, E.E. Transport Properties of Nanofluids. A Critical Review. J. Non Equil. Thermodynamics 2013, 38, 1–79. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal Relations in Irreversible Processes I. Phys. Rev. 1931, 37, 405–426. [Google Scholar] [CrossRef]
- Onsager, L. Reciprocal Relations in Irreversible Processes II. Phys. Rev. 1931, 37, 2265–2279. [Google Scholar] [CrossRef] [Green Version]
- Onsager, L.; Fuoss, R.M. Irreversible Processes in Electrolytes: Diffusion, Conductance, and Viscous Flow in Arbitrary Mixtures of Strong Electrolytes. J. Phys. Chem. 1932, 36, 2659–2778. [Google Scholar] [CrossRef]
- Onsager, L. Theories and Problems of Liquid Diffusion. Ann. N. Y. Acad. Sci. 1945, 46, 241–265. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, H. An Introduction to Thermomechanics; North-Holland: Amsterdam, The Netherlands, 1983. [Google Scholar]
- Martyushev, L.M.; Seleznev, V.D. Maximum Entropy Production Principle in Physics, Chemistry and Biology. Phys. Rep. 2006, 426, 1–46. [Google Scholar] [CrossRef]
- Truesdell, C.A. Rational Thermodynamics; Springer: New York, NY, USA, 1984. [Google Scholar]
- Muschik, W.; Ehrentraut, H.; Papenfuss, C. Mesoscopic Continuum Mechanics. In Geometry, Continua and Microstructure; Collection Travaux en Cours 60; Maugin, G., Ed.; Herrman: Paris, France, 1999. [Google Scholar]
- Öttinger, H.C. Beyond Equilibrium Thermodynamics; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Sieniutycz, S.; Farkas, H. Variational and Extremum Principles in Macroscopic Systems; Elsevier: Oxford, UK, 2005. [Google Scholar]
- Bejan, A. Entropy Generation Minimization; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Bejan, A. Shape and Structure, from Engineering to Nature; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bejan, A.; Lorente, S. The Constructal Law of Design and Evolution in Nature. Phil. Trans. R. Soc. B 2010, 365, 1335–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andresen, B. Finite-time thermodynamics. In Finite-Time Thermodynamics and Thermoeconomics, Advances in Thermodynamics; Sieniutycz, S., Salamon, P., Eds.; Taylor and Francis: New York, NY, USA, 1990. [Google Scholar]
- Jou, D.; Lebon, G.; Casas-Vazquez, J. Extended Irreversible Thermodynamics, 3rd ed.; Springer: Berlin, Germany, 2001; pp. 39–70. [Google Scholar]
- Grinstein, G.; Linsker, R. Comments on a Derivation and Application of the “Maximum Entropy Production” Principle. J. Phys. A Math. Theory 2007, 40, 9717–9720. [Google Scholar] [CrossRef]
- Jaynes, E.T. The Minimum Entropy Production Principle. Ann. Rev. Phys. Chem. 1980, 31, 579–601. [Google Scholar] [CrossRef] [Green Version]
- Martyuchev, L.M. Entropy and Entropy Production: Old Misconceptions and New Breakthroughs. Entropy 2013, 15, 1152–1170. [Google Scholar] [CrossRef] [Green Version]
- Di Vita, A. Maximum or Minimum Entropy Production? How to Select a Necessary Criterion of Stability for a Dissipative Fluid or Plasma. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2010, 81, 041137. [Google Scholar] [CrossRef] [PubMed]
- Lucia, U.; Grazzini, G. The Second Law Today: Using Maximum-Minimum Entropy Generation. Entropy 2015, 17, 7786–7797. [Google Scholar] [CrossRef] [Green Version]
- Slattery, J.C. Advanced Transport Phenomena, 1st ed.; Cambridge University Press: Cambridge, UK, 1999; pp. 283–366. [Google Scholar]
- Li, S.-N.; Cao, B.-Y. Generalized variational principles for heat conduction models based on Laplace transform. Int. J. Heat Mass Transf. 2016, 103, 1176–1180. [Google Scholar] [CrossRef]
- Li, S.-N.; Cao, B.-Y. On Entropic Framework Based on Standard and Fractional Phonon Boltzmann Transport Equations. Entropy 2019, 21, 204. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verros, G.D. Comprehensive Criteria for the Extrema in Entropy Production Rate for Heat Transfer in the Linear Region of Extended Thermodynamics Framework. Axioms 2020, 9, 113. https://doi.org/10.3390/axioms9040113
Verros GD. Comprehensive Criteria for the Extrema in Entropy Production Rate for Heat Transfer in the Linear Region of Extended Thermodynamics Framework. Axioms. 2020; 9(4):113. https://doi.org/10.3390/axioms9040113
Chicago/Turabian StyleVerros, George D. 2020. "Comprehensive Criteria for the Extrema in Entropy Production Rate for Heat Transfer in the Linear Region of Extended Thermodynamics Framework" Axioms 9, no. 4: 113. https://doi.org/10.3390/axioms9040113
APA StyleVerros, G. D. (2020). Comprehensive Criteria for the Extrema in Entropy Production Rate for Heat Transfer in the Linear Region of Extended Thermodynamics Framework. Axioms, 9(4), 113. https://doi.org/10.3390/axioms9040113