Next Article in Journal
Deep Reinforcement Learning Agent for S&P 500 Stock Selection
Next Article in Special Issue
New Results on Start-Points for Multi-Valued Maps
Previous Article in Journal
Dissipative Dynamics of Non-Interacting Fermion Systems and Conductivity
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Some Coupled Fixed Points of Generalized T-Contraction Mappings in a bv(s)-Metric Space and Its Application

by
Reny George
1,2,*,
Zoran D. Mitrović
3,* and
Stojan Radenović
4
1
Department of Mathematics, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
2
Department of Mathematics and Computer Science, St. Thomas College, Bhilai, Chhattisgarh 491022, India
3
Faculty of Electrical Emgineering, University of Banja Luka, Patre 5, 78000 Banja Luka, Bosnia and Herzegovina
4
Faculty of Mechanical Engineering, University of Belgrade, Kraljice Marije 16, 11000 Beograd, Serbia
*
Authors to whom correspondence should be addressed.
Axioms 2020, 9(4), 129; https://doi.org/10.3390/axioms9040129
Submission received: 16 October 2020 / Revised: 5 November 2020 / Accepted: 7 November 2020 / Published: 9 November 2020
(This article belongs to the Special Issue Theory and Application of Fixed Point)

Abstract

:
Common coupled fixed point theorems for generalized T-contractions are proved for a pair of mappings S : X × X X and g : X X in a b v ( s ) -metric space, which generalize, extend, and improve some recent results on coupled fixed points. As an application, we prove an existence and uniqueness theorem for the solution of a system of nonlinear integral equations under some weaker conditions and given a convergence criteria for the unique solution, which has been properly verified by using suitable example.

1. Introduction

In the last three decades, the definition of a metric space has been altered by many authors to give new and generalized forms of a metric space. In 1989, Bakhtin [1] introduced one such generalization in the form of a b-metric space and in the year 2000 Branciari [2] gave another generalization in the form a rectangular metric space and generalized metric space. Thereafter, using the above two concepts, many generalizations of a metric space appeared in the form of rectangular b-metric space [3], hexagonal b-metric space [4], pentagonal b-metric space [5], etc. The latest such generalization was given by Mitrović and Radenović [6] in which the authors defined a b v ( s ) -metric space which is a generalization of all the concepts told above. Some recent fixed point theorems in such generalized metric spaces can be found in [6,7,8,9]. In [10,11,12], one can find some interesting coupled fixed point theorems and their applications proved in some generalized forms of a metric space. In the present note, we have given coupled fixed point results for a pair of generalized T-contraction mappings in a b v ( s ) -metric space. Our results are new and it extends, generalize, and improve some of the coupled fixed point theorems recently dealt with in [10,11,12].
In recent years, fixed point theory has been successfully applied in establishing the existence of solution of nonlinear integral equations (see [11,12,13,14,15] ). We have applied one of our results to prove the existence and convergence of a unique solution of a system of nonlinear integral equations using some weaker conditions as compared to those existing in literature.

2. Preliminaries

Definition 1. 
[6] Let X be a nonempty set. Assume that, for all x , y , X and distinct u 1 , , u v X { x , y } , d v : X × X R satisfies:
1. 
d v ( x , y ) 0 and d v ( x , y ) = 0 if and only if x = y ,
2. 
d v ( x , y ) = d v ( y , x ) ,
3. 
d v ( x , y ) s [ d v ( x , u 1 ) + d v ( u 1 , u 2 ) + + d v ( u v 1 , u v ) + d v ( u v , y ) ] , for some s 1 .
Then, ( X , d v ) is a b v ( s ) -metric space.
Definition 2. 
[6] In the b v ( s ) -metric space ( X , d v ) , the sequence < u n >
(a) 
converges to u X if d v ( u n , u ) 0 as n ;
(b) 
is a Cauchy sequence if d v ( u n , u m ) 0 as n , m + .
Clearly, b 1 ( 1 ) -metric space is the usual metric space, whereas b 1 ( s ) , b 2 ( 1 ) , b 2 ( s ) , and b v ( 1 ) -metric spaces are, respectively, the b-metric space ([1]), rectangular metric space ([2]), rectangular b-metric space ([3]), and v-generalized metric space ([2]).
Lemma 1. 
[6] If ( X , d v ) is a b v ( s ) -metric space, then ( X , d v ) is a b 2 v ( s 2 ) -metric space.
Definition 3. 
An element ( u , v ) X × X is called a coupled coincidence point of S : X × X X and g : X X if g ( u ) = S ( u , v ) and g ( v ) = S ( v , u ) . In this case, we also say that ( g ( u ) , g ( v ) ) is the point of coupled coincidence of S and g. If u = g ( u ) = S ( u , v ) and v = g ( v ) = S ( v , u ) , then we say that ( u , v ) is a common coupled fixed point of S and g.
We will denote by C O C P { S , g } and C C O F P { S , g } respectively the set of all coupled coincidence points and the set of all common coupled fixed points of S and g.
Definition 4. 
S : X × X X and g : X X are said to be weakly compatible if and only if S ( g ( u ) , g ( v ) ) = g ( S ( u , v ) ) for all ( u , v ) C O C P { S , g } .

3. Main Results

We will start this section by proving the following lemma which is an extension of Lemma 1.12 of [6] to two sequences:
Lemma 2. 
Let ( X , d v ) be a b v ( s ) -metric space and let < u n > and < v n > be two sequences in X such that u n u n + 1 , v n v n + 1 ( n 0 ) . Suppose that λ [ 0 , 1 ) and c 1 , c 2 are real nonnegative numbers such that
K m , n λ K m 1 , n 1 + c 1 λ m + c 2 λ n , f o r   a l l   m , n N ,
where K m , n = max { d v ( u m , u n ) , d v ( v m , v n ) } or K m , n = d v ( u m , u n ) + d v ( v m , v n ) . Then, < u n > and < v n > are Cauchy sequences.
Proof. 
From (1), we have
K n , n + 1 λ K n 1 , n + c 1 λ n + c 2 λ n + 1 λ n K 0 , 1 + c 1 n λ n + c 2 n λ n + 1 λ n K 0 , 1 + C 0 n λ n .
For m , n , k N , by (1), we have
K m + k , n + k λ max { K m + k 1 , n + k 1 , c 1 λ m + k 1 + c 2 λ n + k 1 ) } λ K m + k 1 , n + k 1 + c 1 λ m + k + c 2 λ n + k ) λ k K m , n + k C 1 λ k ( λ m + λ n ) .
Since 0 < λ < 1 , we can find a positive integer q k such that 0 < λ q k < 1 s . Now, suppose v 2 . Then, by using condition 3 . of a b v ( s ) -metric and inequalities (2) and (3), we have
K m , n s [ K m , m + 1 + K m + 1 , m + 2 + + K m + v 3 , m + v 2 + K m + v 2 , m + q k + K m + q k , n + q k + K n + q k , n ] s [ λ m + λ m + 1 + + λ m + v 3 ] K 0 + s C 0 [ m λ m + ( m + 1 ) λ m + 1 + + ( m + v 3 ) λ m + v 2 ] + s [ λ m K v 2 , q k + m λ m ( λ v 2 + λ q k ) K 0 ] + s [ λ q k K m , n + q k λ q k ( λ m + λ n ) K 0 ] + s [ λ n K q k , 0 + n λ n ( λ q k + 1 ) K 0 ] .
Then,
K m , n s λ m ( 1 s λ q k ) ( 1 λ ) K 0 , 1 + s ( m + v 3 ) λ m ( 1 λ ) ( 1 s λ q k ) + s 1 s λ q k [ λ m K v 2 , q k + m λ m ( λ v 2 + λ q k ) K 0 , 1 ] + s 1 s λ q k [ q k λ q k ( λ m + λ n ) K 0 , 1 ] + s 1 s λ q k [ λ n K q k , 0 + n λ n ( λ q k + 1 ) K 0 , 1 ] .
Thus, from the definition of K m , n , we see that, as m , n + , d v ( u m , u n ) 0 and d v ( v m , v n ) 0 and thus < u n > and < v n > are Cauchy sequences. □

3.1. Coupled Fixed Point Theorems

We now present our main theorems as follows:
Theorem 1. 
Let ( X , d v ) be a b v ( s ) -metric space, T : X X be a one to one mapping, S : X × X X and g : X X be mappings such that S ( X × X ) g ( X ) , T g ( X ) is complete. If there exist real numbers λ , μ , ν with 0 λ < 1 , 0 μ , ν 1 , min { λ μ , λ ν } < 1 s such that, for all u , v , w , z X
d v ( T S ( u , v ) , T S ( w , z ) ) λ max { d v ( T g u , T g w ) , d v ( T g v , T g z ) , μ d v ( T g u , T S ( u , v ) ) , μ d v ( T g v , T S ( v , u ) , ν d v ( T g w , T S ( w , z ) ) , ν d v ( T g z , T S ( z , w ) ) }
then the following holds:
1. 
There exist w x 0 , w y 0 in X, such that sequences < T g u n > and < T g v n > converge to T g w x 0 and T g w y 0 respectively, where the iterative sequences < g u n > and < g v n > are defined by g u n = S ( u n 1 , v n 1 ) and g v n = S ( v n 1 , u n 1 ) for some arbitrary ( u 0 , v 0 ) X × X .
2. 
( w x 0 , w y 0 ) C O C P { S , g } .
3. 
If S and g are weakly compatible, then S and g have a unique common coupled fixed point.
Proof. 
1. We shall start the proof by showing that the sequences < T g u n > and < T g v n > are Cauchy sequences, where < g u n > and < g v n > are as mentioned in the hypothesis.
By (4), we have
d v ( T g u n , T g u n + 1 ) = d v ( T S ( u n 1 , v n 1 ) , T S ( u n , v n ) ) λ max { d v ( T g u n 1 , T g u n ) , d v ( T g v n 1 , T g v n ) , μ d v ( T g u n 1 , T S ( u n 1 , v n 1 ) ) , μ d v ( T g v n 1 , T S ( v n 1 , u n 1 ) ) , ν d v ( T g u n , T S ( u n , v n ) ) , ν d v ( T g v n , T S ( v n , u n ) ) } λ max { d v ( T g u n 1 , T g u n ) , d v ( T g v n 1 , T g v n ) , d v ( T g u n 1 , T g u n ) , d v ( T g v n 1 , T g v n ) , d v ( T g u n , T g u n + 1 ) , d v ( T g v n , T g v n + 1 ) } .
Similarly, we get
d v ( T g v n , T g v n + 1 ) λ max { d v ( T g v n 1 , T g v n ) , d v ( T g u n 1 , T g u n ) , d v ( T g v n 1 , T g v n ) , d v ( T g u n 1 , T g u n ) , d v ( T g v n , T g v n + 1 ) , d v ( T g u n , T g u n + 1 ) } .
Let K n = max { d v ( T g u n , T g u n + 1 ) , d v ( T g v n , T g v n + 1 ) } . By (5) and (6), we get
K n λ max { d v ( T g v n 1 , T g v n ) , d v ( T g u n 1 , T g u n ) , d v ( T g v n , T g v n + 1 ) , d v ( T g u n , T g u n + 1 ) } .
If
max { d v ( T g v n 1 , T g v n ) , d v ( T g u n 1 , T g u n ) , d v ( T g v n , T g v n + 1 ) , d v ( T g u n , T g u n + 1 ) } = d v ( T g v n , T g v n + 1 ) or d v ( T g u n , T g u n + 1 ) ,
then (7) will yield a contradiction. Thus, we have
max { d v ( T g v n 1 , T g v n ) , d v ( T g u n 1 , T g u n ) , d v ( T g v n , T g v n + 1 ) , d v ( T g u n , T g u n + 1 ) } = max { d v ( T g v n 1 , T g v n ) , d v ( T g u n 1 , T g u n ) } ,
and then (7) gives
K n λ max { d v ( T g v n 1 , T g v n ) , d v ( T g u n 1 , T g u n ) } = λ K n 1 λ 2 K n 2 λ n K 0 .
For any m , n N , we have
d v ( T g u m , T g u n ) = d v ( T S ( u m 1 , v m 1 ) , T S ( u n 1 , v n 1 ) λ max { d v ( T g u m 1 , T g u n 1 ) , d v ( T g v m 1 , T g v n 1 ) , μ d v ( T g u m 1 , T S ( u m 1 , v m 1 ) ) , μ d v ( T g v m 1 , T S ( v m 1 , u m 1 ) ) , ν d v ( T g u n 1 , T S ( u n 1 , v n 1 ) ) , ν d v ( T g v n 1 , T S ( v n 1 , u n 1 ) ) } λ max { d v ( T g u m 1 , T g u n 1 ) , d v ( T g v m 1 , T g v n 1 ) , d v ( T g u m 1 , T g u m ) , d v ( T g v m 1 , T g v m ) , d v ( T g u n 1 , T g u n ) , d v ( T g v n 1 , T g v n ) } .
Then, by using (8), we get
d v ( T g u m , T g u n ) λ max { d v ( T g u m 1 , T g u n 1 ) , d v ( T g v m 1 , T g v n 1 ) } + ( λ m + λ n ) K 0 } .
Similarly, we have
d v ( T g v m , T g v n ) λ max { d v ( T g u m 1 , T g u n 1 ) , d v ( T g v m 1 , T g v n 1 ) } + ( λ m + λ n ) K 0 } .
Let K m , n = max { d v ( T g u m , T g u n ) , d v ( T g v m , T g v n ) } . By (9) and (10), we get
K m , n λ K m 1 , n 1 + ( λ m + λ n ) K 0 .
Thus, we see that inequality (1) is satisfied with c 1 = c 2 = K 0 . Hence, by Lemma 2, < T g u n > and < T g v n > are Cauchy sequences. For v = 1 , the same follows from Lemma 1.
Since ( T g ( X ) , d ) is complete, we can find w x 0 , w y 0 X such that
lim n T g u n = T g w x 0 a n d lim n T g v n = T g w y 0 .
2. Now,
d v ( T S ( w x 0 , w y 0 ) , T g w x 0 ) s [ d v ( T S ( w x 0 , w y 0 ) , T S ( u n , v n ) + d v ( T S ( u n , v n ) , T S ( u n + 1 , v n + 1 ) ) + + d v ( T S ( u n + v 2 , v n + v 2 ) , T S ( u n + v 1 , v n + v 1 ) + d v ( T S ( u n + v 1 , v n + v 1 ) , T g w x 0 ) s [ λ m a x { d v ( T g w x 0 , T g u n ) , d v ( T g w y 0 , T g v n ) , μ d v ( T g w x 0 , T S ( w x 0 , w y 0 ) ) , μ d v ( T g w y 0 , T S ( w y 0 , w x 0 ) , ν d v ( T g u n , T S ( u n , v n ) ) , ν d v ( T g v n , T S ( v n , u n ) ) } + d v ( T g u n + 1 , T g u n + 2 ) + + d v ( T g u n + v 1 , T g u n + v ) + d v ( T g u n + v , T g w x 0 ) s [ λ m a x { d v ( T g w x 0 , T g u n ) , d v ( T g w y 0 , T g v n ) , μ d v ( T g w x 0 , T S ( w x 0 , w y 0 ) ) , μ d v ( T g w y 0 , T S ( w y 0 , w x 0 ) , ν d v ( T g u n , T g u n + 1 ) , ν d v ( T g v n , T g v n + 1 ) } + d v ( T g u n + 1 , T g u n + 2 ) + + d v ( T g u n + v 1 , T g u n + v + d v ( T g u n + v , T g w x 0 ) .
Note that, since < T g u n > and < T g v n > are Cauchy sequences, by definition, d v ( T g u n , T g u n + 1 ) 0 , d v ( T g v n , T g v n + 1 ) 0 as n . Thus, from (11), as n , we get
d v ( T S ( w x 0 , w y 0 ) , T g w x 0 ) s λ max { μ d v ( T g w x 0 , T S ( w x 0 , w y 0 ) ) , μ d v ( T g w y 0 , T S ( w y 0 , w x 0 ) ) } .
Similarly, we get
d v ( T S ( w y 0 , w x 0 ) , T g w y 0 ) s λ max { μ d v ( T g w x 0 , T S ( w x 0 , w y 0 ) ) , μ d v ( T g w y 0 , T S ( w y 0 , w x 0 ) } .
Thus, we have
max { d v ( T S ( w x 0 , w y 0 ) , T g w x 0 ) , d v ( T S ( w y 0 , w x 0 ) , T g w y 0 ) } s λ μ max { d v ( T g w x 0 , T S ( w x 0 , w y 0 ) ) , d v ( T g w y 0 , T S ( w y 0 , w x 0 ) } .
Proceeding along the same lines as above, we also have
max { d v ( T g w x 0 , T S ( w x 0 , w y 0 ) ) , d v ( T g w y 0 , T S ( w y 0 , w x 0 ) ) } s λ ν max { d v ( T g w x 0 , T S ( w x 0 , w y 0 ) ) , d v ( T g w y 0 , T S ( w y 0 , w x 0 ) } .
Using (12) and (13) along with the condition min { λ μ , λ ν } < 1 s , we get T S ( w x 0 , w y 0 ) = T g w x 0 and T S ( w y 0 , w x 0 ) = T g w y 0 . As T is one to one, we have S ( w x 0 , w y 0 ) = g w x 0 and S ( w y 0 , w x 0 ) = g w y 0 . Therefore, ( w x 0 , w y 0 ) C O C P { S , g } .
3. Suppose S and g are weakly compatible. First, we will show that, if ( w x 0 , w y 0 ) C O C P { S , g } , then g w x 0 = g w x 0 and g w y 0 = g w y 0 , or in other words the point of coupled coincidence of S and g is unique. By (5), we have
d v ( T g w x 0 , T g w x 0 ) = d v ( T S ( w x 0 , w y 0 ) , T S ( w x 0 , w y 0 ) ) λ m a x { d v ( T g w x 0 , T g w x 0 ) , d v ( T g w y 0 , T g w y 0 ) , μ d v ( T g w x 0 , T S ( w x 0 , w y 0 ) ) , μ d v ( T g w y 0 , T S ( w y 0 , w x 0 ) , ν d v ( T g w x 0 , T S ( w x 0 , w y 0 ) ) , ν d v ( T g w y 0 , T S ( w y 0 , w x 0 ) ) } λ m a x { d v ( T g w x 0 , T g w x 0 ) , d v ( T g w y 0 , T g w y 0 ) } .
Similarly, we have
d v ( T g w y 0 , T g w y 0 ) λ m a x { d v ( T g w x 0 , T g w x 0 ) , d v ( T g w y 0 , T g w y 0 ) } .
Thus, from the above two inequalities, we get
m a x { d v ( T g w x 0 , T g w x 0 ) , d v ( T g w y 0 , T g w y 0 ) λ m a x { d v ( T g w x 0 , T g w x 0 ) , d v ( T g w y 0 , T g w y 0 ) }
which implies that T g w x 0 = T g w x 0 and T g w y 0 = T g w y 0 . Since T is one to one, we get g w x 0 = g w x 0 and g w y 0 = g w y 0 , which is the point of coupled coincidence of S and g is unique. Since S and g are weakly compatible and, since ( w x 0 , w y 0 ) C O C P { S , g } , we have
g g w x 0 = g S ( w x 0 , w y 0 ) = S ( g w x 0 , g w y 0 )
and
g g w y 0 = g S ( w y 0 , w x 0 ) = S ( g w y 0 , g w x 0 )
which shows that ( g w x 0 , g w y 0 ) C O C P { S , g } . By the uniqueness of the point of coupled coincidence, we get g g w x 0 = g w x 0 and g g w y 0 = g w y 0 and thus ( g w x 0 , g w y 0 ) C C O F P { S , g } . Uniqueness of the coupled fixed point follows easily from (4). □
Our next result is a generalized version of Theorem 2.1 of Gu [10].
Theorem 2. 
Let ( X , d v ) , T, S and g be as in Theorem 1 and suppose there exist β 1 , β 2 , β 3 in the interval [0,1), such that β 1 + β 2 + β 3 < 1 , minimum { β 2 , β 3 } < 1 s and for all u , v , w , z X
d v ( T S ( u , v ) , T S ( w , z ) + d v ( T S ( v , u ) , T S ( z , w ) β 1 ( d v ( T g u , T g w ) + d v ( T g v , T g z ) ) + β 2 ( d v ( T g u , T S ( u , v ) ) + d v ( T g v , T S ( v , u ) ) + β 3 ( d v ( T g w , T S ( w , z ) ) + d v ( T g z , T S ( z , w ) ) ) .
Then, conclusions 1, 2, and 3 of Theorem 1 are true.
Proof. 
Let K n = d v ( T g u n , T g u n + 1 ) + d v ( T g v n , T g v n + 1 ) and K m , n = d v ( T g u m , T g u n ) + d v ( T g v m , T g v n ) . From condition (14), we obtain
d v ( T g u n , T g u n + 1 ) + d v ( T g v n , T g v n + 1 ) = d v ( T S ( u n 1 , v n 1 ) , T S ( u n , v n ) ) + d v ( T S ( v n 1 , u n 1 ) , T S ( v n , u n ) ) β 1 [ d v ( T g u n 1 , T g u n ) + d v ( T g v n 1 , T g v n ) ] + β 2 [ d v ( T g u n 1 , T S ( u n 1 , v n 1 ) ) + d v ( T g v n 1 , T S ( v n 1 , u n 1 ) ) ] + β 3 [ d v ( T g u n , T S ( u n , v n ) ) + d v ( T g v n , T S ( v n , u n ) ) ] ( β 1 + β 2 ) [ d v ( T g u n 1 , T g u n ) + d v ( T g v n 1 , T g v n ) ] + β 3 [ d v ( T g u n , T g u n + 1 ) + d v ( T g v n , T g v n + 1 ) ] .
Therefore,
d v ( T g u n , T g u n + 1 ) + d v ( T g v n , T g v n + 1 ) λ [ d v ( T g u n 1 , T g u n ) + d v ( T g v n 1 , T g v n ) ] ,
where λ = β 1 + β 2 1 β 3 < 1 . Thus, we get
K n λ K n 1 λ n K 0 .
For any m , n N , we have
d v ( T g u m , T g u n ) + d v ( T g v m , T g v n ) = d v ( T S ( u m 1 , v m 1 ) , T S ( u n 1 , v n 1 ) + d v ( T S ( v m 1 , u m 1 ) , T S ( v n 1 , u n 1 ) β 1 [ d v ( T g u m 1 , T g u n 1 ) + d v ( T g v m 1 , T g v n 1 ) ] + β 2 [ d v ( T g u m 1 , T S ( u m 1 , v m 1 ) ) + d v ( T g v m 1 , T S ( v m 1 , u m 1 ) ) ] + β 3 [ d v ( T g u n 1 , T S ( u n 1 , v n 1 ) ) + d v ( T g v n 1 , T S ( v n 1 , u n 1 ) ) ] β [ d v ( T g u m 1 , T g u n 1 ) + d v ( T g v m 1 , T g v n 1 ) ] + β 2 [ d v ( T g u m 1 , T g u m ) + d v ( T g v m 1 , T g v m ) ] + β 3 [ d v ( T g u n 1 , T g u n ) + d v ( T g v n 1 , T g v n ) ] .
Then, by using (15), we get
d v ( T g u m , T g u n ) + d v ( T g v m , T g v n ) β 1 [ d v ( T g u m 1 , T g u n 1 ) + d v ( T g v m 1 , T g v n 1 ) ] + ( β 2 λ m + β 3 λ n ) K 0 } .
That is,
K m , n λ K m 1 , n 1 + ( λ m + λ n ) K 0
where λ = β 1 + β 2 + β 3 < 1 . Now for m , n , r N . Thus, we see that inequality (1) is satisfied with c 1 = c 2 = K 0 . Hence, by Lemma 2, < T g u n > and < T g v n > are Cauchy sequences. For v = 1 , the same follows from Lemma 1.
Since ( T g ( X ) , d ) is complete, we can find w x 0 , w y 0 X such that
lim n T g u n = T g w x 0 a n d lim n T g v n = T g w y 0 .
Again, from condition 3 in Definition 1, we have
d v ( T S ( w x 0 , w y 0 ) , T g w x 0 ) ) s [ d v ( T S ( w x 0 , w y 0 ) , T S ( u n , v n ) ) + d v ( T S ( u n , v n ) , T S ( u n + 1 , v n + 1 ) ) + + + d v ( T S ( u n + v 2 , v n + v 2 ) , T S ( u n + v 1 , v n + v 1 ) ) + d v ( T S ( u n + v 1 , v n + v 1 ) , T g w x 0 ) ) ]
and
d v ( T S ( w y 0 , w x 0 ) , T g w y 0 ) ) s [ d v ( T S ( w y 0 , w x 0 ) , T S ( v n , u n ) ) + d v ( T S ( v n , u n ) , T S ( v n + 1 , u n + 1 ) ) + + d v ( T S ( v n + v 2 , u n + v 2 ) , T S ( v n + v 1 , u n + v 1 ) ) + d v ( T S ( v n + v 1 , u n + v 1 ) , T g w x 0 ) ) ] .
Therefore,
d v ( T S ( w x 0 , w y 0 ) , T g w x 0 ) + d v ( T S ( w y 0 , w x 0 ) , T g w y 0 ) s [ d v ( T S ( w x 0 , w y 0 ) , T S ( u n , v n ) + d v ( T S ( w y 0 , w x 0 ) , T S ( v n , u n ) + d v ( T S ( u n , v n ) , T S ( u n + 1 , v n + 1 ) ) + + d v ( T S ( u n + v 2 , v n + v 2 ) , T S ( u n + v 1 , v n + v 1 ) ) + d v ( T S ( v n , u n ) , T S ( v n + 1 , u n + 1 ) ) + + d v ( T S ( v n + v 2 , u n + v 2 ) , T S ( v n + v 1 , u n + v 1 ) ) + d v ( T S ( u n + v 1 , v n + v 1 ) , T g w x 0 ) + d v ( T S ( v n + v 1 , u n + v 1 ) , T g w y 0 ) ] s [ β 1 ( d v ( T g w x 0 , T g u n ) + d v ( T g w y 0 , T g v n ) ) + β 2 ( d v ( T g w x 0 , T S ( w x 0 , w y 0 ) ) + d v ( T g w y 0 , T S ( w y 0 , w x 0 ) ) + β 3 ( d v ( T g u n , T S ( u n , v n ) ) + d v ( T g v n , T S ( v n , u n ) ) ) } + d v ( T g u n , T g u n + 1 ) + + d v ( T g u n 1 , T g u n ) + + d v ( T g v n , T g v n + 1 ) + + d v ( T g v n 1 , T g v n ) + d v ( T g u n + v 1 , T g w x 0 ) + d v ( T g v n + v 1 , T g w y 0 ) ] .
As n , we get
d v ( T S ( w x 0 , w y 0 ) , T g w x 0 ) + d v ( T S ( w y 0 , w x 0 ) , T g w y 0 )   s β 2 [ d v ( T g w x 0 , T S ( w x 0 , w y 0 ) ) + d v ( T g w y 0 , T S ( w y 0 , w x 0 ) ) ] .
Similarly, we can show that
d v ( T g w x 0 , T S ( w x 0 , w y 0 ) ) + d v ( T g w y 0 , T S ( w y 0 , w x 0 ) )   s β 3 [ d v ( T g w x 0 , T S ( w x 0 , w y 0 ) ) + d v ( T g w y 0 , T S ( w y 0 , w x 0 ) ] .
Using (16) and (17) along with the condition min { β 2 , β 3 } < 1 s , we get d v ( T g w x 0 , T S ( w x 0 , w y 0 ) ) + d v ( T g w y 0 , T S ( w y 0 , w x 0 ) ) = 0 , i.e., T S ( w x 0 , w y 0 ) = T g w x 0 and T S ( w y 0 , w x 0 ) = T g w y 0 . As T is one to one, we have S ( w x 0 , w y 0 ) = g w x 0 and S ( w y 0 , w x 0 ) = g w y 0 . Therefore, ( w x 0 , w y 0 ) C O C P { S , g } .
If ( w x 0 , w y 0 ) C O C P { S , g } , then, by (14), we have
d v ( T g w x 0 , w x 0 ) + d v ( T g w y 0 , T g w y 0 ) = d v ( T S ( w x 0 , w y 0 ) , T S ( w x 0 , w y 0 ) ) + d v ( T S ( w y 0 , w x 0 ) , T S ( w y 0 , w x 0 ) ) β 1 [ d v ( T g w x 0 , T g w x 0 ) + d v ( T g w y 0 , T g w y 0 ) ] + β 2 [ d v ( T g w x 0 , T S ( w x 0 , w y 0 ) ) + d v ( T g w y 0 , T S ( w y 0 , w x 0 ) ] + β 3 [ d v ( T g w x 0 , T S ( w x 0 , w y 0 ) ) + d v ( T g w y 0 , T S ( w y 0 , w x 0 ) ) ] β 1 [ d v ( T g w x 0 , T g w x 0 ) + d v ( T g w y 0 , T g w y 0 ) ] .
Thus, d v ( T g w x 0 , T g w x 0 ) + d v ( T g w y 0 , T g w y 0 ) = 0 , which implies that T g w x 0 = T g w x 0 and T g w y 0 = T g w y 0 . Since T is one to one, we get g w x 0 = g w x 0 and g w y 0 = g w y 0 , which is the point of coupled coincidence of S, and g is unique. The remaining part of the proof is the same as in the proof of Theorem 1. □
The next results can be proved as in Theorems 1 and 2 and so we will not give the proof.
Theorem 3. 
Theorem 1 holds if we replace condition (4) with the following condition:
There exist β i [ 0 , 1 ) , i { 1 , , 6 } such that i = 1 6 β i < 1 , min { β 3 + β 4 , β 5 + β 6 } < 1 s and for all u , v , w , z X ,
d v ( T S ( u , v ) , T S ( w , z ) ) β 1 d v ( T g u , T g w ) + β 2 d v ( T g v , T g z ) + β 3 d v ( T g u , T S ( u , v ) ) + β 4 d v ( T g v , T S ( v , u ) + β 5 d v ( T g w , T S ( w , z ) ) + β 6 d v ( T g z , T S ( z , w ) ) .
Taking T to be the identity mapping in Theorems 1–3, we have the following:
Corollary 1. 
Let ( X , d v ) , S, g, λ , μ and ν be as in Theorem 1 such that, for all u , v , w , z X , the following holds:
d v ( S ( u , v ) , S ( w , z ) λ m a x { d v ( g u , g w ) , d v ( g v , g z ) , μ d v ( g u , S ( u , v ) ) , μ d v ( g v , S ( v , u ) , v d v ( g w , S ( w , z ) ) , v d v ( g z , S ( z , w ) ) } .
Then, C O C P { S , g } ϕ . Furthermore, if S and g are weakly compatible, then S and g has a unique common coupled fixed point. Moreover, for some arbitrary ( u 0 , v 0 ) X × X , the iterative sequences ( < g u n > , < g v n > ) defined by g u n = S ( u n 1 , v n 1 ) and g v n = S ( v n 1 , u n 1 ) converge to the unique common coupled fixed point of S and g.
Corollary 2. 
Corollary 1 holds if the condition (19) is replaced with the following condition:
There exist β 1 , β 2 , β 3 in the interval [0,1), such that β 1 + β 2 + β 3 < 1 , min { β 2 , β 3 } < 1 s and for all u , v , w , z X
d v ( S ( u , v ) , S ( w , z ) + d v ( S ( v , u ) , S ( z , w ) β 1 ( d v ( g u , g w ) + d v ( g v , g z ) ) + β 2 ( d v ( g u , S ( u , v ) ) + d v ( g v , S ( v , u ) ) + β 3 ( d v ( g w , S ( w , z ) ) + d v ( g z , S ( z , w ) ) ) .
Corollary 3. 
Corollary 1 holds if the condition (19) is replaced with the following condition:
There exist β i [ 0 , 1 ) , i { 1 , 6 } such that i = 1 6 β i < 1 , min { β 3 + β 4 , β 5 + β 6 } < 1 s and, for all u , v , w , z X ,
d v ( S ( u , v ) , S ( w , z ) β 1 d v ( g u , g w ) + β 2 d v ( g v , g z ) + β 3 d v ( g u , S ( u , v ) ) +   β 4 d v ( g v , S ( v , u ) + β 5 d v ( g w , S ( w , z ) ) + β 6 d v ( g z , S ( z , w ) ) .
Remark 1. 
Since every b-metric space is a b 1 ( s ) metric space, we note that Theorem 1 is a substantial generalization of Theorem 2.2 of Ramesh and Pitchamani [11]. In fact, we do not require continuity and sub sequential convergence of the function T.
Remark 2. 
Note that condition (2.1) of Gu [10] implies (20) and hence Corollary 2 gives an improved version of Theorem 2.1 of Gu [10].
Remark 3. 
Condition (3.1) of Hussain et al. [12] implies (18) and hence Theorem 3 is an extended and generalized version of Theorem 3.1 of [12].

3.2. Application to a System of Integral Equations

In this section, we give an application of Theorem 1 to study the existence and uniqueness of solution of a system of nonlinear integral equations.
Let X = C [ 0 , A ] be the space of all continuous real valued functions defined on [ 0 , A ] , A > 0 . Our problem is to find ( u ( t ) , v ( t ) ) X × X , t [ 0 , A ] such that, for f : [ 0 , A ] × R × R R and G : [ 0 , A ] × [ 0 , A ] R and K C ( [ 0 , A ] , the following holds:
u ( t ) = 0 A G ( t , r ) f ( t , u ( r ) , v ( r ) ) d r + K ( t ) v ( t ) = 0 A G ( t , r ) f ( t , v ( r ) , u ( r ) ) d r + K ( t ) .
Now, suppose F : X × X X is given by
F ( u ( t ) , v ( t ) ) = 0 A G ( t , r ) f ( t , u ( r ) , v ( r ) ) d r + K ( t ) .
F ( v ( t ) , u ( t ) ) = 0 A G ( t , r ) f ( t , v ( r ) , u ( r ) ) d r + K ( t ) .
Then, (22) is equivalent to the coupled fixed point problem F ( u ( t ) , v ( t ) ) = u ( t ) , F ( v ( t ) , u ( t ) ) = v ( t ) .
Theorem 4. 
The system of Equation (22) has a unique solution provided the following holds:
(i) 
G : [ 0 , A ] × [ 0 , A ] R and f : [ 0 , A ] × R × R R are continuous functions.
(ii) 
K C ( [ 0 , A ] .
(iii) 
For all x , y , u , v X and t [ 0 , A ] , we can find a function g : X X and real numbers p 1 , λ , μ , ν with 0 λ < 1 , 0 μ , ν 1 , minimum { λ μ , λ ν } < 1 3 s 1 satisfying
( i i i a ) : f ( t , u ( r ) , v ( r ) ) ) f ( t , x ( r ) , y ( r ) ) ) p λ p m a x { g ( u ( r ) ) g ( x ( r ) ) p , g ( v ( r ) ) g ( y ( r ) ) p , μ g ( u ( r ) ) F ( u ( r ) , v ( r ) ) p , μ g ( v ( r ) ) F ( v ( r ) , u ( r ) ) p , ν g ( x ( r ) ) F ( x ( r ) , y ( r ) ) p , ν g ( y ( r ) ) F ( y ( r ) , x ( r ) ) p } . ( i i i b ) F ( g ( u ( t ) ) , g ( v ( t ) ) ) = g ( F ( u ( t ) , v ( t ) ) )
(iv) 
s u p t [ 0 , A ] 0 A G ( t , r ) p d r 1 λ p 1 .
Moreover, for some arbitrary u 0 ( t ) , v 0 ( t ) in X, the sequence ( < g u n ( t ) > , < g v n ( t ) > ) defined by
g u n ( t ) = 0 A G ( t , r ) f ( t , u n 1 ( r ) , v n 1 ( r ) ) d r + K ( t ) g v n ( t ) = 0 A G ( t , r ) f ( t , v n 1 ( r ) , u n 1 ( r ) ) d r + K ( t ) .
converges to the unique solution.
Proof. 
Define d v : X × X R such that for all u , v X ,
d v ( u , v ) = s u p t [ 0 , A ] u ( t ) v ( t ) s .
Clearly, d v is a b v ( ( v + 1 ) s 1 ) -metric space.
For some r [ 0 , A ] , we have
F ( u ( t ) , v ( t ) ) F ( x ( t ) , y ( t ) ) p = 0 A G ( t , r ) f ( t , u ( r ) , v ( r ) ) d r + g ( t ) 0 A G ( t , r ) f ( t , x ( r ) , y ( r ) ) d r + g ( t ) p 0 A G ( t , r ) p f ( t , u ( r ) , v ( r ) ) f ( t , x ( r ) , y ( r ) ) p d r ( 0 A G ( t , r ) p d r ) λ p [ m a x { g ( u ( r ) ) g ( x ( r ) ) p , g ( v ( r ) ) g ( y ( r ) ) p , μ g ( u ( r ) ) F ( u ( r ) , v ( r ) ) p , μ g ( v ( r ) ) F ( v ( r ) , u ( r ) ) p , ν g ( x ( r ) ) F ( x ( r ) , y ( r ) ) p , ν g ( y ( r ) ) F ( y ( r ) , x ( r ) ) p } . ( 0 A G ( t , r ) p d r ) λ p [ m a x { d v ( g ( u ) , g ( x ) ) , d v ( g ( v ) , g ( y ) ) , μ d v ( g ( u ) , F ( u , v ) ) , μ d v ( g ( v ) , F ( v , u ) ) , ν d v ( g ( x ) , F ( x , y ) ) , ν d v ( g ( y ) , F ( y , x ) ) } .
Thus, using condition (iv), we have
d v ( F ( u , v ) , F ( x , y ) ) = s u p t [ 0 , A ] F ( u ( t ) , v ( t ) ) F ( x ( t ) , y ( t ) ) p λ [ m a x { d v ( g ( u ) , g ( x ) ) , d v ( g ( v ) , g ( y ) ) , μ d v ( g ( u ) , F ( u , v ) ) , μ d v ( g ( v ) , F ( v , u ) ) , ν d v ( g ( x ) , F ( x , y ) ) , ν d v ( g ( y ) , F ( y , x ) ) } .
Thus, all the conditions of Corollary 1 are satisfied and so F has a unique coupled fixed point ( u , v ) C ( [ 0 , A ] × C ( [ 0 , A ] , which is the unique solution of (22) and the sequence ( < g u n ( t ) > , < g v n ( t ) > ) defined by (23) converges to the unique solution of (22). □
Example 1. 
Let X = C [ 0 , 1 ] be the space of all continuous real valued functions defined on [ 0 , 1 ] and define d 3 : X × X R such that, for all u , v X ,
d 3 ( u , v ) = s u p t [ 0 , A ] u ( t ) v ( t ) 2 .
Clearly, d 3 is a b 2 ( 3 ) -metric. Now, consider the functions f : [ 0 , 1 ] × R × R R given by f ( t , u , v ) = t 2 + 9 20 u + 8 20 v , G : [ 0 , 1 ] × [ 0 , 1 ] R given by G ( t , r ) = 45 ( t + r ) 10 , K C ( [ 0 , 1 ] given by K ( t ) = t . Then, Equation (22) becomes
u ( t ) = t + 0 1 45 ( t + r ) 10 ( t 2 + 9 20 u ( r ) + 8 20 v ( r ) ) d r v ( t ) = t + 0 1 45 ( t + r ) 10 ( t 2 + 9 20 v ( r ) + 8 20 u ( r ) ) d r .
Then,
f ( t , u , v ) f ( t , x , y ) 2 = 9 20 ( u x ) + 8 20 ( v y ) 2 M a x { 9 10 ( u x ) , 8 10 ( v y ) } 2 81 100 M a x { u x 2 , v y ) 2 } .
In addition,
s u p t [ 0 , 1 ] 0 1 G ( t , r ) 2 d r = 0 1 45 100 ( t + r ) 2 d r = 1.05 .
We see that all the conditions of Theorem 4 are satisfied, with λ = 9 10 , μ = 0 , ν = 0 , p = 2 and g = I X (Identity mapping). Hence, Theorem 4 ensures a unique solution of (26). Now, for u 0 ( t ) = 1 and v 0 ( t ) = 0 , we construct the sequence ( < u n ( t ) > , < v n ( t ) > } given by
u n ( t ) = t + 0 1 45 ( t + r ) 10 ( t 2 + 9 20 u n 1 ( r ) + 8 20 v n 1 ( r ) ) d r v n ( t ) = t + 0 1 45 ( t + r ) 10 ( t 2 + 9 20 v n 1 ( r ) + 8 20 u n 1 ( r ) ) d r .
Using MATLAB, we see that above sequence converges to { 0.6708 t 3 + 0.3354 t 2 + 2.2339 t + 0.7677 , 0.6708 t 3 + 0.3354 t 2 + 2.2339 t + 0.7677 } , and this is the unique solution of the system of nonlinear integral Equation (26). The convergence table is given in Table 1 below.
Remark 4. 
Condition (iv) of Theorem 4 above is weaker than the corresponding conditions used in similar theorems of [11,13,14].
Remark 5. 
In example 1 above, we see that s u p t [ 0 , 1 ] 0 1 G ( t , r ) 2 d r = 0 1 45 100 ( t + r ) 2 d r = 1.05 > 1 and thus condition (v) of Theorem 3.1 of [11], condition (30) of Theorem 3.1 of [13] and condition (iii) of Theorem 3.1 of [14] are not satisfied.

Author Contributions

Investigation, R.G., Z.D.M., and S.R.; Methodology, R.G.; Software, Z.D.M.; Supervision, R.G., Z.D.M., and S.R. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Acknowledgments

1. The authors are thankful to the Deanship of Scientific Research at Prince Sattam bin Abdulaziz University, Al-Kharj, Kingdom of Saudi Arabia, for supporting this research. 2. The authors are thankful to the learned reviewers for their valuable comments which helped in improving this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. Ulianowsk Gos. Ped. Inst. 1989, 30, 26–37. [Google Scholar]
  2. Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publicationes Mathematicae Debrecen 2000, 57, 31–37. [Google Scholar]
  3. George, R.; Radenović, S.; Reshma, K.P.; Shukla, S. Rectangular b-metric spaces and contraction principle. J. Nonlinear Sci. Appl. 2015, 8, 1005–1013. [Google Scholar] [CrossRef]
  4. Hincal, E.; Auwalu, A. A note on Banach contraction mapping principle in cone hexagonal metric space. Br. J. Math. Comput. Sci. 2016, 16, 1–12. [Google Scholar]
  5. Auwalul, A.; Hincal, E. Kannan type fixed point theorem in cone pentagonal metric spaces. Intern. J. Pure Appl. Math. 2016, 108, 29–38. [Google Scholar]
  6. Mitrović, Z.D.; Radenović, S. The Banach and Reich contractions in bv(s)-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 3087–3095. [Google Scholar] [CrossRef]
  7. Mitrović, Z.D. A fixed point theorem for mappings with a contractive iterate in rectangular b-metric spaces. Matematicki Vesnik 2018, 70, 204–210. [Google Scholar]
  8. George, R.; Mitrović, Z.D. On Reich contraction principle in rectangular cone b-metric space over Banach algebra. J. Adv. Math. Stud. 2018, 11, 10–16. [Google Scholar]
  9. George, R.; Nabwey, H.A.; Rajagopalan, R.; Radenović, S.; Reshma, K.P. Rectangular cone b-metric spaces over Banach algebra and contraction principle. Fixed Point Theory Appl. 2017, 2017, 14. [Google Scholar] [CrossRef] [Green Version]
  10. Gu, F. On some common coupled fixed point results in rectangular b-metric spaces. J. Nonlinear Sci. Appl. 2017, 10, 4085–4098. [Google Scholar] [CrossRef] [Green Version]
  11. Kumar, D.R.; Pitchaimani, M. New coupled fixed point theorems in cone metric spaces with applications to integral equations and Markov process. Trans. A. Razmadze Math. Inst. 2018. [Google Scholar] [CrossRef]
  12. Hussain, N.; Salimi, P.; Al-Mezel, S. Coupled fixed point results on quasi-Banach spaces with application to a system of integral equations. Fixed Point Theory Appl. 2013, 2013, 261. [Google Scholar] [CrossRef] [Green Version]
  13. Nashine, H.K.; Sintunavarat, W.; Kumam, P. Cyclic generalized contractions and fixed point results with applications to an integral equation. Fixed Point Theory Appl. 2012, 2012, 217. [Google Scholar] [CrossRef] [Green Version]
  14. Hussain, N.; Roshan, J.R.; Parvaneh, V.; Abbas, M. Common fixed point results for weak contractive mappings in ordered b-dislocated metric spaces with applications. J. Ineq. Appl. 2013, 2013, 486. [Google Scholar] [CrossRef] [Green Version]
  15. Garai, H.; Dey, L.K.; Mondal, P.; Radenović, S. Some remarks and fixed point results with an application in bv(s)-metric spaces. Nonlinear Anal. Model. Control 2020, 25, 1015–1034. [Google Scholar] [CrossRef]
Table 1. Convergence of sequences < u n ( t ) > and < v n ( t ) > .
Table 1. Convergence of sequences < u n ( t ) > and < v n ( t ) > .
n u n ( t ) = t + 0 1 45 ( t + r ) 10 ( t 2 + 9 20 u n 1 ( r ) + 8 20 v n 1 ( r ) ) d r v n ( t ) = t + 0 1 45 ( t + r ) 10 ( t 2 + 9 20 v n 1 ( r ) + 8 20 u n 1 ( r ) ) d r
1 u 1 ( t ) = t + 0.0167 ( 2 t + 1 ) ( 20 t 2 + 9 ) ) v 1 ( t ) = t + . 0671 ( 2 t + 1 ) ( 5 t 2 + 2 ) )
2 u 2 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 1.3 t + 0.5007 v 2 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 1.29 t + 0.5115
3 u 3 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 1.8210 t + 0.5174 v 3 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 1.8208 t + 0.5171
4 u 4 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 1.9734 t + 0.6179 v 4 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 1.9734 t + 0.6178
5 u 5 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.0743 t + 0.6755 v 5 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.0743 t + 0.6755
6 u 6 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.1359 t + 0.7111 v 6 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.1359 t + 0.7111
7 u 7 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.1737 t + 0.73298 v 7 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.1737 t + 0.73298
8 u 8 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.19699 t + 0.7464 v 8 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.19699 t + 0.7464
9 u 9 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2113 t + 0.7547 v 9 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2113 t + 0.7547
10 u 10 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2200 t + 0.7597 v 10 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2200 t + 0.7597
11 u 11 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2254 t + 0.7628 v 11 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2254 t + 0.7628
12 u 12 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2287 t + 0.7647 v 12 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2287 t + 0.7647
13 u 13 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2308 t + 0.7658 v 13 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2308 t + 0.7658
14 u 14 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.23199 t + 0.7666 v 14 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.23199 t + 0.7666
15 u 15 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2328 t + 0.7671 v 15 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2328 t + 0.7671
16 u 16 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2333 t + 0.7674 v 16 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2333 t + 0.7674
17 u 17 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2336 t + 0.7675 v 17 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2336 t + 0.7675
18 u 18 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2338 t + 0.7676 v 18 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2338 t + 0.7676
19 u 19 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2339 t + 0.7677 v 19 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2339 t + 0.7677
20 u 20 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2339 t + 0.7677 v 20 ( t ) = 0.6708 t 3 + 0.3354 t 2 + 2.2339 t + 0.7677
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

George, R.; Mitrović, Z.D.; Radenović, S. On Some Coupled Fixed Points of Generalized T-Contraction Mappings in a bv(s)-Metric Space and Its Application. Axioms 2020, 9, 129. https://doi.org/10.3390/axioms9040129

AMA Style

George R, Mitrović ZD, Radenović S. On Some Coupled Fixed Points of Generalized T-Contraction Mappings in a bv(s)-Metric Space and Its Application. Axioms. 2020; 9(4):129. https://doi.org/10.3390/axioms9040129

Chicago/Turabian Style

George, Reny, Zoran D. Mitrović, and Stojan Radenović. 2020. "On Some Coupled Fixed Points of Generalized T-Contraction Mappings in a bv(s)-Metric Space and Its Application" Axioms 9, no. 4: 129. https://doi.org/10.3390/axioms9040129

APA Style

George, R., Mitrović, Z. D., & Radenović, S. (2020). On Some Coupled Fixed Points of Generalized T-Contraction Mappings in a bv(s)-Metric Space and Its Application. Axioms, 9(4), 129. https://doi.org/10.3390/axioms9040129

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop