On Some Coupled Fixed Points of Generalized T-Contraction Mappings in a bv(s)-Metric Space and Its Application
Abstract
:1. Introduction
2. Preliminaries
- 1.
- andif and only if,
- 2.
- 3.
- , for some.
- (a)
- converges toifas;
- (b)
- is a Cauchy sequence ifas.
3. Main Results
3.1. Coupled Fixed Point Theorems
- 1.
- There existin X, such that sequencesandconverge toandrespectively, where the iterative sequencesandare defined byandfor some arbitrary.
- 2.
- .
- 3.
- If S and g are weakly compatible, then S and g have a unique common coupled fixed point.
3.2. Application to a System of Integral Equations
- (i)
- andare continuous functions.
- (ii)
- (iii)
- For alland, we can find a functionand real numbers, with, , minimumsatisfying
- (iv)
- .
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. Ulianowsk Gos. Ped. Inst. 1989, 30, 26–37. [Google Scholar]
- Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publicationes Mathematicae Debrecen 2000, 57, 31–37. [Google Scholar]
- George, R.; Radenović, S.; Reshma, K.P.; Shukla, S. Rectangular b-metric spaces and contraction principle. J. Nonlinear Sci. Appl. 2015, 8, 1005–1013. [Google Scholar] [CrossRef]
- Hincal, E.; Auwalu, A. A note on Banach contraction mapping principle in cone hexagonal metric space. Br. J. Math. Comput. Sci. 2016, 16, 1–12. [Google Scholar]
- Auwalul, A.; Hincal, E. Kannan type fixed point theorem in cone pentagonal metric spaces. Intern. J. Pure Appl. Math. 2016, 108, 29–38. [Google Scholar]
- Mitrović, Z.D.; Radenović, S. The Banach and Reich contractions in bv(s)-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 3087–3095. [Google Scholar] [CrossRef]
- Mitrović, Z.D. A fixed point theorem for mappings with a contractive iterate in rectangular b-metric spaces. Matematicki Vesnik 2018, 70, 204–210. [Google Scholar]
- George, R.; Mitrović, Z.D. On Reich contraction principle in rectangular cone b-metric space over Banach algebra. J. Adv. Math. Stud. 2018, 11, 10–16. [Google Scholar]
- George, R.; Nabwey, H.A.; Rajagopalan, R.; Radenović, S.; Reshma, K.P. Rectangular cone b-metric spaces over Banach algebra and contraction principle. Fixed Point Theory Appl. 2017, 2017, 14. [Google Scholar] [CrossRef] [Green Version]
- Gu, F. On some common coupled fixed point results in rectangular b-metric spaces. J. Nonlinear Sci. Appl. 2017, 10, 4085–4098. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.R.; Pitchaimani, M. New coupled fixed point theorems in cone metric spaces with applications to integral equations and Markov process. Trans. A. Razmadze Math. Inst. 2018. [Google Scholar] [CrossRef]
- Hussain, N.; Salimi, P.; Al-Mezel, S. Coupled fixed point results on quasi-Banach spaces with application to a system of integral equations. Fixed Point Theory Appl. 2013, 2013, 261. [Google Scholar] [CrossRef] [Green Version]
- Nashine, H.K.; Sintunavarat, W.; Kumam, P. Cyclic generalized contractions and fixed point results with applications to an integral equation. Fixed Point Theory Appl. 2012, 2012, 217. [Google Scholar] [CrossRef] [Green Version]
- Hussain, N.; Roshan, J.R.; Parvaneh, V.; Abbas, M. Common fixed point results for weak contractive mappings in ordered b-dislocated metric spaces with applications. J. Ineq. Appl. 2013, 2013, 486. [Google Scholar] [CrossRef] [Green Version]
- Garai, H.; Dey, L.K.; Mondal, P.; Radenović, S. Some remarks and fixed point results with an application in bv(s)-metric spaces. Nonlinear Anal. Model. Control 2020, 25, 1015–1034. [Google Scholar] [CrossRef]
n | ||
---|---|---|
1 | ||
2 | ||
3 | ||
4 | ||
5 | ||
6 | ||
7 | ||
8 | ||
9 | ||
10 | ||
11 | ||
12 | ||
13 | ||
14 | ||
15 | ||
16 | ||
17 | ||
18 | ||
19 | ||
20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
George, R.; Mitrović, Z.D.; Radenović, S. On Some Coupled Fixed Points of Generalized T-Contraction Mappings in a bv(s)-Metric Space and Its Application. Axioms 2020, 9, 129. https://doi.org/10.3390/axioms9040129
George R, Mitrović ZD, Radenović S. On Some Coupled Fixed Points of Generalized T-Contraction Mappings in a bv(s)-Metric Space and Its Application. Axioms. 2020; 9(4):129. https://doi.org/10.3390/axioms9040129
Chicago/Turabian StyleGeorge, Reny, Zoran D. Mitrović, and Stojan Radenović. 2020. "On Some Coupled Fixed Points of Generalized T-Contraction Mappings in a bv(s)-Metric Space and Its Application" Axioms 9, no. 4: 129. https://doi.org/10.3390/axioms9040129
APA StyleGeorge, R., Mitrović, Z. D., & Radenović, S. (2020). On Some Coupled Fixed Points of Generalized T-Contraction Mappings in a bv(s)-Metric Space and Its Application. Axioms, 9(4), 129. https://doi.org/10.3390/axioms9040129