Assessing the Effect of Interimplant Distance and Angle on Different Impression Techniques
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Comparison of Distance Trueness
3.2. Comparison of Angle Trueness
3.3. Effects of Distance and Angle Parameters on Different Impressions
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreno, A.; Gimenez, B.; Ozcan, M.; Pradies, G. A clinical protocol for intraoral digital impression of screw-retained CAD/CAM framework on multiple implants based on wavefront sampling technology. Implant Dent. 2013, 22, 320–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richi, M.W.; Kurtulmus-Yilmaz, S.; Ozan, O. Comparison of the accuracy of different impression procedures in case of multiple and angulated implants: Accuracy of impressions in multiple and angulated implants. Head Face Med. 2020, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Bacchi, A.; Consani, R.L.; Mesquita, M.F.; Dos Santos, M.B. Effect of framework material and vertical misfit on stress distribution in implant-supported partial prosthesis under load application: 3-D finite element analysis. Acta Odontol. Scand. 2013, 71, 1243–1249. [Google Scholar] [CrossRef] [PubMed]
- Hanif, A.; Qureshi, A. Complications in implant dentistry. Eur. J. Dent. 2017, 11, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Taylor, T.D.; Agar, J.R.; Vogiatzi, T. Implant prosthodontics: Current perspective and future directions. Int. J. Oral Maxillofac. Implant. 2000, 15, 66–75. [Google Scholar]
- Abduo, J.; Bennani, V.; Waddell, N.; Lyons, K.; Swain, M. Assessing the fit of implant fixed prostheses: A critical review. Int. J. Oral Maxillofac. Implant. 2010, 25, 506–515. [Google Scholar]
- Wee, A.G. Comparison of impression materials for direct multi-implant impressions. J. Prosthet. Dent. 2000, 83, 323–331. [Google Scholar] [CrossRef]
- Kim, S.; Nicholls, J.I.; Han, C.H.; Lee, K.W. Displacement of implant components from impressions to definitive casts. Int. J. Oral Maxillofac. Implant. 2006, 21, 747–755. [Google Scholar]
- Kwon, J.H.; Son, Y.H.; Han, C.H.; Kim, S. Accuracy of implant impressions without impression copings: A three-dimensional analysis. J Prosthet. Dent. 2011, 105, 367–373. [Google Scholar] [CrossRef]
- Kim, K.R.; Seo, K.Y.; Kim, S. Conventional open-tray impression versus intraoral digital scan for implant-level complete-arch impression. J. Prosthet. Dent. 2019, 122, 543–549. [Google Scholar] [CrossRef]
- Asawa, N.; Bulbule, N.; Kakade, D.; Shah, R. Angulated implants: An alternative to bone augmentation and sinus lift procedure: Systemic review. J. Clinic Diag. Res. 2015, 9, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.P.; Anilkumar, S.; Chaukramath, R.; Gopalkrishnan, S. Rehabilitation of edentulous maxillary arch with implant- assisted fixed complete prosthesis using multi-unit straight and angulated abutments. Eur. J. Prosthodont. 2016, 4, 37–40. [Google Scholar] [CrossRef]
- Oltra, D.P.; Marti, E.C.; Ali, J.A.; Diago, M.P. Rehabilitation of the atrophic maxilla with tilted implants: Review of literature. J. Oral Implantol. 2013, 39, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Gintaute, A.; Papatriantafyllou, N.; Aljehani, M.; Att, W. Accuracy of computerized and conventional impression-making procedures of straight and tilted dental implants. Int. J. Esthet. Dent. 2018, 13, 550–565. [Google Scholar]
- Alikhasi, M.; Siadat, H.; Nasirpour, A.; Hasanzade, M. Three-dimensional accuracy of digital impression versus conventional method: Effect of implant angulation and connection type. Int. J. Dent. 2018, 2018, 3761750. [Google Scholar] [CrossRef]
- Ribeiro, P.; Herrero-Climent, M.; Díaz-Castro, C.; Ríos-Santos, J.; Padrós, R.; Mur, J.; Falcão, C. Accuracy of implant casts generated with conventional and digital Impressions—An in vitro study. Int. J. Environ. Res. Public Health 2018, 15, 1599. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.S.; Ryu, J.J.; Shin, S.W.; Lee, J.Y. Effects of implant angulation and impression coping type on the dimensional accuracy of impressions. Implant Dent. 2015, 24, 726–729. [Google Scholar] [CrossRef]
- Pereira, A.L.C.; De Freitas, R.F.C.P.; Campos, M.D.F.T.P.; Tôrres, A.C.S.P.; De Medeiros, A.K.B.; Carreiro, A.D.F.P. Trueness of a device for intraoral scanning to capture the angle and distance between implants in edentulous mandibular arches. J. Prosthet. Dent. 2021, in press. [Google Scholar] [CrossRef]
- Tan, M.Y.; Hui Xin Yee, S.; Wong, K.M.; Tan, Y.H.; Tan, K.B.C. Comparison of three-dimensional accuracy of digital and conventional implant impressions: Effect of interimplant distance in an edentulous arch. Int. J. Oral Maxillofac. Implant. 2019, 34, 366–380. [Google Scholar] [CrossRef]
- Amin, S.; Weber, H.P.; Finkelman, M.; El Rafie, K.; Kudara, Y.; Papaspyridakos, P. Digital vs. conventional full-arch implant impressions: A comparative study. Clin. Oral Implant. Res. 2017, 28, 1360–1367. [Google Scholar] [CrossRef]
- Gimenez, B.; Özcan, H.; Martínez-Rus, F.; Pradíes, L. Accuracy of a digital impression system based on active wavefront sampling technology for implants considering operator experience, implant angulation, and depth. Clin. Implant. Dent. Relat. Res. 2015, 17, e54–e64. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.S.; Harris, B.T.; Elathamna, E.N.; Abdel-Azim, T.; Morton, D. Effect of implant divergence on the accuracy of definitive casts created from traditional and digital implant-level impressions: An in vitro comparative study. Int. J. Oral Maxillofac. Implant. 2015, 30, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gimenez, B.; Özcan, H.; Martínez-Rus, F.; Pradíes, L. Accuracy of a digital impression system based on active triangulation technology with blue light for implants: Effect of clinically relevant parameters. Implant Dent. 2015, 24, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, R.; Gherlone, E.F.; Calesini, G.; Zarone, F. Effect of implant angulation, connection length, and impression material on the dimensional accuracy of implant impressions: An in vitro comparative study. Clin. Implant. Dent. Relat. Res. 2010, 12, 63–76. [Google Scholar] [CrossRef]
- Kurtulmuş-Yılmaz, S.; Ozan, O.; Özçelik, T.B.; Yağız, A. Digital evaluation of the accuracy of impression techniques and materials in angulated implants. J. Dent. 2014, 42, 1551–1559. [Google Scholar] [CrossRef]
- Gimenez, B.; Özcan, M.; Martinez-Rus, F.; Pradies, G. Accuracy of a digital impression system based on parallel confocal laser technology for implants with consideration of operator experience and implant angulation and depth. Int. J. Oral Maxillofac. Implant. 2014, 29, 853–862. [Google Scholar] [CrossRef]
- Ma, J.; Rubenstein, J.E. Complete arch implant impression technique. J. Prosthet. Dent. 2012, 107, 405–410. [Google Scholar] [CrossRef]
- Flügge, T.; Van Der Meer, W.J.; Gonzalez, B.M.; Vach, K.; Wismeijer, D.; Wang, P. The accuracy of different dental impression techniques for implant-supported dental prostheses: A systematic review and meta-analysis. Clin. Oral Implant. Res. 2018, 29, 374–392. [Google Scholar] [CrossRef] [Green Version]
- Gimenez, B.; Pradies, G.; Martinez-Rus, F.; Özcan, M. Accuracy of two digital implant impression systems based on confocal microscopy with variations in customized software and clinical parameters. Int. J. Oral Maxillofac. Implant. 2015, 30, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Flügge, T.; Att, W.; Metzger, M.; Nelson, K. A Novel method to evaluate precision of optical implant impressions with commercial scan bodies—An experimental approach. J. Prosthodont. 2017, 26, 34–41. [Google Scholar] [CrossRef]
- Drago, C. Ratios of cantilever lengths and anterior-posterior spreads of definitive hybrid full-arch, screw-retained prostheses: Results of a clinical study. J. Prosthodont. 2018, 27, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Papaspyridakos, P.; Rajput, N.; Kudara, Y.; Weber, H.P. Digital workflow for fixed implant rehabilitation of an extremely atrophic edentulous mandible in three appointments. J. Esthet. Restor. Dent. 2017, 29, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Marghalani, A.; Weber, H.P.; Finkelman, M.; Kudara, Y.; El Rafie, K.; Papaspyridakos, P. Digital versus conventional implant impressions for partially edentulous arches: An evaluation of accuracy. J. Prosthet. Dent. 2018, 119, 574–579. [Google Scholar] [CrossRef] [PubMed]
- CS 3500 Real-Time Full Arch Scan I Streamhealth Dental. Available online: https://www.youtube.com/watch?v=sMEykCIrBkI&t=31s (accessed on 29 November 2021).
- Tutorial: CEREC Omnicam Scanning Technique. Available online: https://www.youtube.com/watch?v=E5hzbRNK7pk&t=95s (accessed on 29 November 2021).
- 3Shape TRIOS Scan Strategy—Full Arch. Available online: https://www.youtube.com/watch?v=M_KbWcCianY&t=126s (accessed on 29 November 2021).
- Thanasrisuebwong, P.; Kulchotirat, T.; Anunmana, C. Effects of inter-implant distance on the accuracy of intraoral scanner: An in vitro study. J. Adv. Prosthodont. 2021, 13, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, K.; Tanaka, S.; Yokoyama, S.; Sanda, M.; Baba, K. Effects of different types of intraoral scanners and scanning ranges on the precision of digital implant impressions in edentulous maxilla: An in vitro study. Clin. Oral Implant. Res. 2020, 31, 74–83. [Google Scholar] [CrossRef]
- Mizumoto, R.M.; Alp, G.; Özcan, M.; Yilmaz, B. The effect of scanning the palate and scan body position on the accuracy of complete-arch implant scans. Clin. Implant. Dent. Relat. Res. 2019, 21, 987–994. [Google Scholar] [CrossRef]
- Schmidt, A.; Billig, J.W.; Schlenz, M.A.; Wöstmann, B. The influence of using different types of scan bodies on the transfer accuracy of implant position: An in vitro study. Int. J. Prosthodont. 2021, 34, 254–260. [Google Scholar] [CrossRef]
- Kim, R.J.Y.; Benic, G.I.; Park, J.M. Trueness of digital intraoral impression in reproducing multiple implant position. PLoS ONE 2019, 14, e0222070. [Google Scholar] [CrossRef] [Green Version]
- Mangano, F.G.; Hauschild, U.; Veronesi, G.; Imburgia, M.; Mangano, C.; Admakin, O. Trueness and precision of 5 intraoral scanners in the impressions of single and multiple implants: A comparative in vitro study. BMC Oral Health 2019, 19, 101. [Google Scholar] [CrossRef] [Green Version]
- Braian, M.; Wennerberg, A. Trueness and precision of 5 intraoral scanners for scanning edentulous and dentate complete-arch mandibular casts: A comparative in vitro study. J. Prosthet. Dent. 2019, 122, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Moura, R.V.; Kojima, A.N.; Saraceni, C.H.C.; Bassolli, L.; Balducci, I.; Özcan, M.; Mesquita, A.M.M. Evaluation of the accuracy of conventional and digital impression techniques for implant restorations. J. Prosthodont. 2019, 28, 530–535. [Google Scholar] [CrossRef] [PubMed]
DO | DT | DC | C | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Median (Min–Max) | Mean ± SD | Median (Min–Max) | Mean ± SD | Median (Min–Max) | Mean ± SD | Median (Min–Max) | Test Statistics | p | |
D1-2 * | 0.35 ± 0.21 | 0.32 (0.06–0.73) b | 0.5 ± 0.3 | 0.45 (0.16–1.18) ab | 0.5 ± 0.43 | 0.38 (0.15–1.54) b | 1.48 ± 0.78 | 1.33 (0.27–3.02) a | 15,511 | 0.001 |
D2-3 * | 0.25 ± 0.16 | 0.22 (0.01–0.55) a | 0.44 ± 0.36 | 0.32 (0.08–1.01) a | 0.73 ± 0.46 | 0.73 (0.1–1.45) a | 1.72 ± 1.41 | 1.43 (0.47–5.05) b | 17,118 | 0.001 |
D3-4 * | 0.42 ± 0.37 a | 0.41 (0.03–1.24) | 0.37 ± 0.27 a | 0.28 (0.03–0.74) | 0.73 ± 0.43 ab | 0.63 (0.08–1.41) | 1.19 ± 0.83 b | 1.12 (0.18–2.74) | 5197 | 0.025 |
D4-5 * | 1.18 ± 1.17 | 0.6 (0.03–3.03) | 0.35 ± 0.28 | 0.22 (0.12–0.97) | 0.51 ± 0.48 | 0.43 (0.08–1.52) | 0.72 ± 0.74 | 0.57 (−0.19–2.26) | 3773 | 0.287 |
D5-6 * | 0.44 ± 0.3 a | 0.41 (0.07–0.99) | 0.81 ± 0.26 ab | 0.82 (0.53–1.27) | 0.69 ± 0.37 ab | 0.84 (0.07–1.11) | 1.39 ± 0.86 b | 1.76 (0.19–2.7) | 6255 | 0.011 |
D6-7 * | 1.16 ± 0.25 | 1.25 (0.77–1.49) b | 0.8 ± 0.25 | 0.76 (0.44–1.16) b | 0.18 ± 0.19 | 0.12 (0.01–0.53) a | 0.79 ± 0.6 | 0.79 (0.09–1.62) b | 20,540 | 0.000 |
D7-8 * | 0.68 ± 0.36 b | 0.7 (0.07–1.25) | 0.37 ± 0.3 ab | 0.29 (0.01–0.89) | 0.32 ± 0.2 a | 0.3 (0.01–0.65) | 0.39 ± 0.3 ab | 0.28 (0.03–0.96) | 3149 | 0.037 |
DO | DT | DC | C | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean ± SD | Median (Min-Max) | Mean ± SD | Median (Min-Max) | Mean ± SD | Median (Min-Max) | Mean ± SD | Median (Min-Max) | Test Statistics | p | |
A1-2 * | 0.17 ± 0.37 | 0.05 (0.01–1.23) | 0.06 ± 0.02 | 0.07 (0.01–0.09) | 0.05 ± 0.06 | 0.03 (0–0.19) | 0.05 ± 0.03 | 0.05 (0.02–0.1) | 4210 | 0.240 |
A2-3 * | 0.01 ± 0 | 0 (0–0.01) a | 0.01 ± 0.01 | 0.01 (0–0.03) a | 0.01 ± 0.01 | 0.01 (0–0.03) a | 0.13 ± 0.06 | 0.11 (0.06–0.27) b | 25,948 | 0.000 |
A3-4 * | 0.02 ± 0.01 b | 0.02 (0–0.03) | 0.02 ± 0.01 b | 0.02 (0–0.03) | 0.06 ± 0.03 a | 0.05 (0.02–0.13) | 0.08 ± 0.05 a | 0.06 (0.01–0.16) | 9410 | 0.001 |
A4-5 * | 0.21 ± 0.4 | 0.05 (0–1.27) ab | 0.03 ± 0.01 | 0.03 (0–0.04) b | 0.23 ± 0.31 | 0.16 (0–1.11) a | 0.06 ± 0.05 | 0.04 (0.01–0.15) ab | 12,022 | 0.007 |
A5-6 * | 0.03 ± 0.01 a | 0.03 (0.01–0.04) | 0.01 ± 0.01 b | 0.01 (0–0.02) | 0.03 ± 0.01 a | 0.03 (0.02–0.03) | 0.09 ± 0.08 a | 0.07 (0–0.22) | 8803 | 0.000 |
A6-7 * | 0.01 ± 0.01 a | 0.01 (0–0.02) | 0.01 ± 0.01 a | 0.01 (0–0.03) | 0.01 ± 0 a | 0.01 (0–0.02) | 0.02 ± 0.01 b | 0.02 (0–0.05) | 7397 | 0.001 |
A7-8 * | 0.04 ± 0.01 | 0.04 (0.01–0.06) ab | 0.01 ± 0.01 | 0.01 (0–0.02) b | 0.09 ± 0.02 | 0.09 (0.07–0.13) ab | 0.02 ± 0.02 | 0.01 (0–0.07) b | 27,985 | 0.000 |
Mean ± SD | Median (Min–Max) | |
---|---|---|
D1-2 | 0.08 ± 0.19 | 0.05 (0–1.22) d |
D2-3 | 0.04 ± 0.06 | 0.01 (0–0.27) ab |
D3-4 | 0.04 ± 0.04 | 0.03 (0–0.16) c |
D4-5 | 0.13 ± 0.26 | 0.04 (0–1.27) cd |
D5-6 | 0.04 ± 0.05 | 0.02 (0–0.22) b |
D6-7 | 0.01 ± 0.01 | 0.01 (0–0.05) a |
D7-8 | 0.04 ± 0.04 | 0.04 (0–0.13) c |
Test Statistics | p | |
52.508 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albayrak, B.; Korkmaz, İ.H.; Wee, A.G.; Sukotjo, C.; Bayındır, F. Assessing the Effect of Interimplant Distance and Angle on Different Impression Techniques. Machines 2022, 10, 293. https://doi.org/10.3390/machines10050293
Albayrak B, Korkmaz İH, Wee AG, Sukotjo C, Bayındır F. Assessing the Effect of Interimplant Distance and Angle on Different Impression Techniques. Machines. 2022; 10(5):293. https://doi.org/10.3390/machines10050293
Chicago/Turabian StyleAlbayrak, Berkman, İsmail Hakkı Korkmaz, Alvin G. Wee, Cortino Sukotjo, and Funda Bayındır. 2022. "Assessing the Effect of Interimplant Distance and Angle on Different Impression Techniques" Machines 10, no. 5: 293. https://doi.org/10.3390/machines10050293
APA StyleAlbayrak, B., Korkmaz, İ. H., Wee, A. G., Sukotjo, C., & Bayındır, F. (2022). Assessing the Effect of Interimplant Distance and Angle on Different Impression Techniques. Machines, 10(5), 293. https://doi.org/10.3390/machines10050293