Intelligent Parametric Adaptive Hybrid Active–Passive Training Control Method for Rehabilitation Robot
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mechanical Design of Leg-Robot
2.2. Human–Machine Coupled Force Interaction Control Modeling
2.3. Active–Passive Hybrid Training Control Model and Algorithm Design
2.3.1. Models
- (1)
- Hill’s muscle mechanics model
- (2)
- Active–passive hybrid training control model
2.3.2. Active–Passive Hybrid Training Control Algorithm
- (1)
- Calibration of patient joint range of motion and maximum power
- (2)
- Human–machine interaction force difference
- (3)
- Calculation of patient participation in rehabilitation training
- (4)
- Speed offset calculation
- (5)
- Adaptive passive training joint speed adjustment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, M.L.; Harness, E.; Denison, P.; Tefertiller, C.; Evans, N.; Larson, C.A. Activity-based Therapies in Spinal Cord Injury: Clinical Focus and Empirical Evidence in Three Independent Programs. Top. Spinal Cord Inj. Rehabil. 2012, 18, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Dalleck, L.C.; Borresen, E.C.; Parker, A.L.; Abel, K.M.; Habermann, L.A.; McLaughlin, S.J.; Tischendorf, J.S. Development of a Metabolic Equation for the NuStep Recumbent Stepper in Older Adults. Percept. Mot. Ski. 2011, 112, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Li, G.; Sun, Y.; Jiang, G.; Kong, J.; Ju, Z.; Jiang, D. A Review of Upper and Lower Limb Rehabilitation Training Robot. International Conference on Intelligent Robotics and Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 570–580. [Google Scholar]
- Métrailler, P.; Blanchard, V.; Perrin, I.; Brodard, R.; Frischknecht, R.; Schmitt, C.; Fournier, J.; Bouri, M.; Clavel, R. Improvement of rehabilitation possibilities with the MotionMaker TM. In Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006 BioRob 2006, Pisa, Italy, 20–22 February 2006; pp. 359–364. [Google Scholar]
- Feng, Y.; Wang, H.; Du, Y.; Chen, F.; Yan, H.; Yu, H. Trajectory planning of a novel lower limb rehabilitation robot for stroke patient passive training. Adv. Mech. Eng. 2017, 9. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, H.; Yan, H.; Wang, X.; Jin, Z.; Vladareanu, L. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot. J. Healthc. Eng. 2017, 2017, 1523068. [Google Scholar] [CrossRef] [PubMed]
- Okada, S.; Sakaki, T.; Hirata, R.; Okajima, Y.; Uchida, S.; Tomita, Y. TEM: A therapeutic exercise machine for the lower extremities of spastic patients. Adv. Robot. 2001, 14, 597–606. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, Y. Development of an Intention-Based Adaptive Neural Cooperative Control Strategy for Upper-Limb Robotic Rehabilitation. IEEE Robot. Autom. Lett. 2020, 6, 335–342. [Google Scholar] [CrossRef]
- Reinkensmeyer, D.; Dewald, J.; Rymer, W. Guidance-based quantification of arm impairment following brain injury: A pilot study. IEEE Trans. Rehabil. Eng. 1999, 7, 750543. [Google Scholar] [CrossRef] [PubMed]
- Horton, S.; Howell, A.; Humby, K.; Ross, A. Engagement and learning: An exploratory study of situated practice in multi-disciplinary stroke rehabilitation. Disabil. Rehabil. 2011, 33, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Ambrósio, J.A.C.; Kecskeméthy, A. Multibody Dynamics of Biomechanical Models for Human Motion via Optimization; Multibody Dynamics; García Orden, J.C., Goicolea, J.M., Cuadrado, J., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 245–272. [Google Scholar]
- Silva, M.; Freitas, B.; Andrade, R.; Carvalho, Ó.; Renjewski, D.; Flores, P.; Espregueira-Mendes, J. Current Perspectives on the Biomechanical Modelling of the Human Lower Limb: A Systematic Review. Arch. Comput. Methods Eng. 2021, 28, 601–636. [Google Scholar] [CrossRef]
- Baker, J.E.; Thomas, D.D. A thermodynamic muscle model and a chemical basis for AV Hill’s muscle equation. J. Muscle Res. Cell Motil. 2000, 21, 335–344. [Google Scholar] [CrossRef] [PubMed]
- Biewener, A.A.; Wakeling, J.M.; Lee, S.S.; Arnold, A.S. Validation of Hill-Type Muscle Models in Relation to Neuromuscular Recruitment and Force-Velocity Properties: Predicting Patterns of In Vivo Muscle Force. Integr. Comp. Biol. 2014, 54, 1072–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, G.; Zhang, J.; Zuo, G.; Li, M.; Jiang, D.; Yang, L. Dual-Modal Hybrid Control for an Upper-Limb Rehabilitation Robot. Machines 2022, 10, 324. [Google Scholar] [CrossRef]
Joint | Brake Torque | Rated Torque of the Motor | Reduction Ratio | Efficiency | Joint Torque |
---|---|---|---|---|---|
Hip | 1.24 Nm | 1 Nm | 120:1 | 80% | 96 Nm |
Knee | 1.24 Nm | 1 Nm | 120:1 | 80% | 96 Nm |
Ankle | 0.62 Nm | 0.5 Nm | 120:1 | 80% | 48 Nm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Zhuang, Y.; Zhu, Y.; Meng, Q.; Yu, H. Intelligent Parametric Adaptive Hybrid Active–Passive Training Control Method for Rehabilitation Robot. Machines 2022, 10, 545. https://doi.org/10.3390/machines10070545
Hu J, Zhuang Y, Zhu Y, Meng Q, Yu H. Intelligent Parametric Adaptive Hybrid Active–Passive Training Control Method for Rehabilitation Robot. Machines. 2022; 10(7):545. https://doi.org/10.3390/machines10070545
Chicago/Turabian StyleHu, Jie, Yuantao Zhuang, Yudi Zhu, Qiaoling Meng, and Hongliu Yu. 2022. "Intelligent Parametric Adaptive Hybrid Active–Passive Training Control Method for Rehabilitation Robot" Machines 10, no. 7: 545. https://doi.org/10.3390/machines10070545
APA StyleHu, J., Zhuang, Y., Zhu, Y., Meng, Q., & Yu, H. (2022). Intelligent Parametric Adaptive Hybrid Active–Passive Training Control Method for Rehabilitation Robot. Machines, 10(7), 545. https://doi.org/10.3390/machines10070545