Temperature-Sensitive Points Optimization of Spindle on Vertical Machining Center with Improved Fuzzy C-Means Clustering
Abstract
:1. Introduction
2. Improved FCM Algorithm
2.1. Traditional FCM Clustering Algorithm
2.2. Initializing the Membership Matrix
3. Key Temperature Points Selection
3.1. F-Test of Multiple Linear Regression
3.2. F-Test for Key Thermal Points
4. Experimental Verification on Vertical Machining Centers
5. Conclusions
- (1)
- Using the initial membership matrix to improve FCM clustering can effectively screen out the temperature-sensitive points and avoid collinearity between temperature points. The key temperature variables can be screened for multiple linear regression using the F-test.
- (2)
- Multiple linear regression was conducted between the selected thermal points data and thermal error data, and the obtained model has high accuracy and good robustness. It indicates that the temperature variables selected with the proposed method formulate the thermal characteristics exactly.
- (3)
- The model can be a duplicate for the machine tool with a similar configuration and different operating conditions to predict the thermal error successfully, and the generalizing ability of the modeling method was verified.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ramesh, R.; Mannan, M.A.; Poo, A.N. Error compensation in machine tools—A review Part II: Thermal errors. Int. J. Mach. Tools Manuf. Des. Res. Appl. 2000, 40, 1257–1284. [Google Scholar] [CrossRef]
- Bryan, J. International Status of Thermal Error Research (1990). CIRP Ann. 1990, 39, 645–656. [Google Scholar] [CrossRef]
- Yang, J.G. Error Synthetic Compensation Technique and Application for NCMachine Tools. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 1998. [Google Scholar]
- Li, Y.; Zhao, W.; Lan, S.; Ni, J.; Wu, W.; Lu, B. A review on spindle thermal error compensation in machine tools. Int. J. Mach. Tools Manuf. 2015, 95, 20–38. [Google Scholar] [CrossRef]
- Li, Y.X.; Yang, J.G.; Gelvis, T.; Li, Y.Y. Optimization of measuring points for machine tool thermal error based on grey system theory. Int. J. Adv. Manuf. Technol. 2008, 35, 745–750. [Google Scholar] [CrossRef]
- En-ming, M.; Ya-yun, G.; Lian-chun, D.; Ji-chao, M. Temperature-sensitive point selection of thermal error model of CNC machining center. Int. J. Adv. Manuf. Technol. 2014, 74, 681–691. [Google Scholar] [CrossRef]
- Han, J.; Wang, L.; Cheng, N.; Wang, H. Thermal error modeling of machine tool based on fuzzy c-means cluster analysis and minimal-resource allocating networks. Int. J. Adv. Manuf. Technol. 2012, 60, 463–472. [Google Scholar] [CrossRef]
- Wei, X.; Gao, F.; Li, Y. Optimization of thermal error model critical point for gantry machine tool feeding system. Chin. J. Sci. Instrum. 2016, 37, 1340–1346. [Google Scholar]
- Ramesh, R.; Mannan, M.A.; Poo, A.N. Thermal error measurement and modelling in machine tools. Int. J. Mach. Tools Manuf. 2003, 43, 405–419. [Google Scholar] [CrossRef]
- Zhang, T.; Ye, W.; Liang, R.; Lou, P.; Yang, X. Temperature Variable Optimization for Precision Machine Tool Thermal Error Compensation on Optimal Threshold. Chin. J. Mech. Eng. 2013, 26, 158–165. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Li, T.; Han, J. Thermal sensor selection for the thermal error modeling of machine tool based on the fuzzy clustering method. Int. J. Adv. Manuf. Technol. 2013, 69, 121–126. [Google Scholar] [CrossRef]
- Hu, J.; Yin, H.; Wei, G.; Song, Y. An improved FCM clustering algorithm with adaptive weights based on PSO-TVAC algorithm. Appl. Intell. 2022, 52, 9521–9536. [Google Scholar] [CrossRef]
- Zhao, J.-l.; Wu, L.-y.; Huang, L.-k. Research on Optimization and Modeling of Temperature Measurement Points Based on Improved Fuzzy C Means Clustering Algorithm. Modul. Mach. Tool Autom. Manuf. Tech. 2019, 63–66. [Google Scholar] [CrossRef]
- Liu, H.; Miao, E.; Wang, J.; Zhang, L.; Zhao, S. Temperature-Sensitive Point Selection and Thermal Error Model Adaptive Update Method of CNC Machine Tools. Machines 2022, 10, 427. [Google Scholar] [CrossRef]
- Bezdek, J.C.; Ehrlich, R.; Full, W. FCM: The fuzzy c-means clustering algorithm. Comput. Geosci. 1984, 10, 191–203. [Google Scholar] [CrossRef]
- Esme, E.; Karlik, B. Fuzzy c-means based support vector machines classifier for perfume recognition. Appl. Soft Comput. 2016, 46, 452–458. [Google Scholar] [CrossRef]
- Wu, Z.H.; Liu, L.K. The Improved Membership Matrix Initialization Method of FCM for Image Segmentation. Adv. Mater. Res. 2014, 989, 3743–3746. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, B.; Dai, Y.; Zhu, W.; Wang, Q.; Wang, B. Research on Thermal Error Modeling of Motorized Spindle Based on BP Neural Network Optimized by Beetle Antennae Search Algorithm. Machines 2021, 9, 286. [Google Scholar] [CrossRef]
- Dalia, M.; Marcin, M.; Jan, B.; Elbestawi, M.A.; Ghayoomi, M.M. Applications of Machine Learning in Process Monitoring and Controls of L-PBF Additive Manufacturing: A Review. Appl. Sci. 2021, 11, 11910. [Google Scholar]
- Simba, K.R.; Bui, B.D.; Msukwa, M.R.; Uchiyama, N. Robust iterative learning contouring controller with disturbance observer for machine tool feed drives. ISA Trans. 2018, 75, 207–215. [Google Scholar] [CrossRef] [PubMed]
Temperature Measurement Points | Membership Matrix | |
---|---|---|
1 | 0 | |
… | … | … |
Class of Clustering | Thermal Points Sorted by Test Statistics |
---|---|
Group 1 | |
Group 2 |
Class of Clustering | Thermal Points Sort by Test Statistic |
---|---|
Group 1 | |
Group 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Qu, Q.; Xiao, Y.; Liu, Q.; Tao, T. Temperature-Sensitive Points Optimization of Spindle on Vertical Machining Center with Improved Fuzzy C-Means Clustering. Machines 2023, 11, 80. https://doi.org/10.3390/machines11010080
Shi H, Qu Q, Xiao Y, Liu Q, Tao T. Temperature-Sensitive Points Optimization of Spindle on Vertical Machining Center with Improved Fuzzy C-Means Clustering. Machines. 2023; 11(1):80. https://doi.org/10.3390/machines11010080
Chicago/Turabian StyleShi, Hu, Qiangqiang Qu, Yao Xiao, Qingxin Liu, and Tao Tao. 2023. "Temperature-Sensitive Points Optimization of Spindle on Vertical Machining Center with Improved Fuzzy C-Means Clustering" Machines 11, no. 1: 80. https://doi.org/10.3390/machines11010080
APA StyleShi, H., Qu, Q., Xiao, Y., Liu, Q., & Tao, T. (2023). Temperature-Sensitive Points Optimization of Spindle on Vertical Machining Center with Improved Fuzzy C-Means Clustering. Machines, 11(1), 80. https://doi.org/10.3390/machines11010080