A Novel Kind of Knowledge Graph Construction Method for Intelligent Machine as a Service Modeling
Abstract
:1. Introduction
2. Related Work
2.1. Resource Modeling Methods for IMaaS
2.2. Knowledge Graph Modeling Methods for the Manufacturing Domain
3. Method
3.1. E-R Diagrams for IMaaS Modeling
3.1.1. E-R Diagram Device Resource Modelling
3.1.2. Mapping and Conversion of a Two-Dimensional Table
3.2. Construction of the Schema Layer Based on E-R Diagram
3.2.1. Triplet Naming and Value Space Setting
3.2.2. The Method of Construction for the Schema Layer
3.3. Construction of the Data Layer Based on the Schema Layer
3.3.1. The Generation of the Data Layer
3.3.2. The Construction of a Knowledge Graph Based on the Data Layer
4. Case Validation
4.1. Case Background
4.2. Construction of the Schema Layer of Desktop FDM-3D Printing IMaaS
4.3. Construction of the Data Layer and Generation of KG of Desktop FDM-3D Printing IMaaS
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Lyu, M.; Wang, Z.; Chen, C.-H.; Zheng, P. Exploiting Knowledge Graphs in Industrial Products and Services: A Survey of Key Aspects, Challenges, and Future Perspectives. Comput. Ind. 2021, 129, 103449. [Google Scholar] [CrossRef]
- Dalle Lucca Tosi, M.; Dos Reis, J.C. Understanding the Evolution of a Scientific Field by Clustering and Visualizing Knowledge Graphs. J. Inf. Sci. 2022, 48, 71–89. [Google Scholar] [CrossRef]
- Galkin, M.; Auer, S.; Vidal, M.-E.; Scerri, S. Enterprise Knowledge Graphs: A Semantic Approach for Knowledge Management in the Next Generation of Enterprise Information Systems. In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS), Porto, Portugal, 26–29 April 2017; SciTePress: Setúbal, Portugal, 2017; Volume 2, pp. 88–98. [Google Scholar]
- Wang, Q.; Mao, Z.; Wang, B.; Guo, L. Knowledge Graph Embedding: A Survey of Approaches and Applications. IEEE Trans. Knowl. Data Eng. 2017, 29, 2724–2743. [Google Scholar] [CrossRef]
- Pan, J.Z.; Vetere, G.; Gomez-Perez, J.M.; Wu, H. (Eds.) Exploiting Linked Data and Knowledge Graphs in Large Organisations; Springer International Publishing: Cham, Switzerland, 2017; ISBN 978-3-319-45652-2. [Google Scholar]
- Zhao, Y.; Smidts, C. A Method for Systematically Developing the Knowledge Base of Reactor Operators in Nuclear Power Plants to Support Cognitive Modeling of Operator Performance. Reliab. Eng. Syst. Saf. 2019, 186, 64–77. [Google Scholar] [CrossRef]
- Chen, X.; Jia, S.; Xiang, Y. A Review: Knowledge Reasoning over Knowledge Graph. Expert Syst. Appl. 2020, 141, 112948. [Google Scholar] [CrossRef]
- Ren, H.; Jiang, P.; Li, Q. Machine as a Smart Service: A Hybrid Knowledge Graph Approach. Flex. Serv. Manuf. J. 2024. [Google Scholar] [CrossRef]
- Du, K.; Yang, B.; Wang, S.; Chang, Y.; Li, S.; Yi, G. Relation Extraction for Manufacturing Knowledge Graphs Based on Feature Fusion of Attention Mechanism and Graph Convolution Network. Knowl. Based Syst. 2022, 255, 109703. [Google Scholar] [CrossRef]
- Kang, S.; Patil, L.; Rangarajan, A.; Moitra, A.; Jia, T.; Robinson, D.; Ameri, F.; Dutta, D. Extraction of Formal Manufacturing Rules from Unstructured English Text. Comput. Aided Des. 2021, 134, 102990. [Google Scholar] [CrossRef]
- He, Y.; Hao, C.; Wang, Y.; Li, Y.; Wang, Y.; Huang, L.; Tian, X. An Ontology-Based Method of Knowledge Modelling for Remanufacturing Process Planning. J. Clean. Prod. 2020, 258, 120952. [Google Scholar] [CrossRef]
- Eum, K.; Kang, M.; Kim, G.; Park, M.W.; Kim, J.K. Ontology-Based Modeling of Process Selection Knowledge for Machining Feature. Int. J. Precis. Eng. Manuf. 2013, 14, 1719–1726. [Google Scholar] [CrossRef]
- Ye, Y.; Hu, T.; Zhang, C.; Luo, W. Design and Development of a CNC Machining Process Knowledge Base Using Cloud Technology. Int. J. Adv. Manuf. Technol. 2018, 94, 3413–3425. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, W. A Study on the Reuse of Remanufacturing Assembly Processes through the Integration of Multiple Sources of Information. J. Clean. Prod. 2023, 423, 138660. [Google Scholar] [CrossRef]
- Ostrosi, E.; Fougères, A.-J. Intelligent Virtual Manufacturing Cell Formation in Cloud-Based Design and Manufacturing. Eng. Appl. Artif. Intell. 2018, 76, 80–95. [Google Scholar] [CrossRef]
- Yang, M.; Dai, W.; Jiang, P. An Expert System for Analysing the Printability and Integratability of Assembly Structures under the Context of Design for Additive Manufacturing. J. Eng. Des. 2023, 34, 691–717. [Google Scholar] [CrossRef]
- Lin, Y.-J.; Chen, Z.-X.; Huang, C.-Y. Knowledge Reasoning for Intelligent Manufacturing Control System. Procedia Manuf. 2019, 39, 1880–1888. [Google Scholar] [CrossRef]
- Zhao, X.; Tang, J.; Tan, Q. Resource Modeling Method for Networked Collaborative Manufacturing Equipment Based on Neo4j. Mod. Manuf. Eng. 2018, 449, 55. [Google Scholar]
- Yuan, M.; Deng, K.; Chaovalitwongse, W.A. Manufacturing Resource Modeling for Cloud Manufacturing: Manufacturing Resource Modeling for CMFG. Int. J. Intell. Syst. 2017, 32, 414–436. [Google Scholar] [CrossRef]
- Kjellberg, T.; von Euler-Chelpin, A.; Hedlind, M.; Lundgren, M.; Sivard, G.; Chen, D. The Machine Tool Model—A Core Part of the Digital Factory. CIRP Ann. 2009, 58, 425–428. [Google Scholar] [CrossRef]
- Li, J.; Dou, K.; Zhou, Y.; Liu, J.; Li, Q.; Tang, Y. MBSE-Based Construction Method of Unified Information Model for Production Equipment. In Innovative Intelligent Industrial Production and Logistics; Terzi, S., Madani, K., Gusikhin, O., Panetto, H., Eds.; Communications in Computer and Information Science; Springer Nature: Cham, Switzerland, 2023; Volume 1886, pp. 348–367. ISBN 978-3-031-49338-6. [Google Scholar]
- Liang, K.; Meng, L.; Liu, M.; Liu, Y.; Tu, W.; Wang, S.; Zhou, S.; Liu, X.; Sun, F.; He, K. A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic, and Multi-Modal. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 1–20. [Google Scholar] [CrossRef]
- Zheng, P.; Xia, L.; Li, C.; Li, X.; Liu, B. Towards Self-X Cognitive Manufacturing Network: An Industrial Knowledge Graph-Based Multi-Agent Reinforcement Learning Approach. J. Manuf. Syst. 2021, 61, 16–26. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, F.; Wan, L.; Wang, Z. Intelligent Fault Diagnostic Model for Industrial Equipment Based on Multimodal Knowledge Graph. IEEE Sens. J. 2023, 23, 26269–26278. [Google Scholar] [CrossRef]
- Buchgeher, G.; Gabauer, D.; Martinez-Gil, J.; Ehrlinger, L. Knowledge Graphs in Manufacturing and Production: A Systematic Literature Review. IEEE Access 2021, 9, 55537–55554. [Google Scholar] [CrossRef]
- Liu, B.; Chen, C.-H.; Wang, Z. A Multi-Hierarchical Aggregation-Based Graph Convolutional Network for Industrial Knowledge Graph Embedding towards Cognitive Intelligent Manufacturing. J. Manuf. Syst. 2024, 76, 320–332. [Google Scholar] [CrossRef]
- Ren, H.; Yang, M.; Jiang, P. Improving Attention Network to Realize Joint Extraction for the Construction of Equipment Knowledge Graph. Eng. Appl. Artif. Intell. 2023, 125, 106723. [Google Scholar] [CrossRef]
- Zhang, G.; Cao, X.; Zhang, M. A Knowledge Graph System for the Maintenance of Coal Mine Equipment. Math. Probl. Eng. 2021, 2021, 2866751. [Google Scholar] [CrossRef]
- Xia, L.; Liang, Y.; Leng, J.; Zheng, P. Maintenance Planning Recommendation of Complex Industrial Equipment Based on Knowledge Graph and Graph Neural Network. Reliab. Eng. Syst. Saf. 2023, 232, 109068. [Google Scholar] [CrossRef]
- You, S.; Li, X.; Chen, W. Intelligent Prediction for Device Status Based on IoT Temporal Knowledge Graph. In Proceedings of the 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, 9–11 August 2020; pp. 560–565. [Google Scholar]
- Zhou, B.; Shen, X.; Lu, Y.; Li, X.; Hua, B.; Liu, T.; Bao, J. Semantic-Aware Event Link Reasoning over Industrial Knowledge Graph Embedding Time Series Data. Int. J. Prod. Res. 2023, 61, 4117–4134. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y. A Task-centric Knowledge Graph Construction Method Based on Multi-modal Representation Learning for Industrial Maintenance Automation. Eng. Rep. 2024, e12952. [Google Scholar] [CrossRef]
- Yan, H.; Yang, J.; Wan, J. KnowIME: A System to Construct a Knowledge Graph for Intelligent Manufacturing Equipment. IEEE Access 2020, 8, 41805–41813. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z. An Error Recognition Method for Power Equipment Defect Records Based on Knowledge Graph Technology. Front. Inf. Technol. Electron. Eng. 2019, 20, 1564–1577. [Google Scholar] [CrossRef]
- Haruna, A.; Yang, M.; Jiang, P.; Ren, H. Collaborative Task of Entity and Relation Recognition for Developing a Knowledge Graph to Support Knowledge Reasoning for Design for Additive Manufacturing. Adv. Eng. Inform. 2024, 60, 102364. [Google Scholar] [CrossRef]
- Fangzhou, H.; Wei, B.; Zhiqi, W. Knowledge Graph Construction and Digital Twin Modeling Integrating Multi-Modal Data. J. Electr. Syst. 2024, 20, 1011–1022. [Google Scholar] [CrossRef]
- Meng, F.; Yang, S.; Wang, J.; Xia, L.; Liu, H. Creating Knowledge Graph of Electric Power Equipment Faults Based on BERT–BiLSTM–CRF Model. J. Electr. Eng. Technol. 2022, 17, 2507–2516. [Google Scholar] [CrossRef]
- Zeng, Y.; Hou, X. Construction of Hierarchical Knowledge Graph Based on Electromechanical Equipment. In Proceedings of the 2021 6th International Conference on Systems, Control and Communications (ICSCC), Chongqing, China, 15 October 2021; ACM: New York, NY, USA, 2021; pp. 35–40. [Google Scholar]
- He, L.; Jiang, P. Manufacturing Knowledge Graph: A Connectivism to Answer Production Problems Query with Knowledge Reuse. IEEE Access 2019, 7, 101231–101244. [Google Scholar] [CrossRef]
- Lou, P.; Yu, D.; Jiang, X.; Hu, J.; Zeng, Y.; Fan, C. Knowledge Graph Construction Based on a Joint Model for Equipment Maintenance. Mathematics 2023, 11, 3748. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, Y.; Qi, Q.; Tao, F. Ids-Kg: An Industrial Dataspace-Based Knowledge Graph Construction Approach for Smart Maintenance. J. Ind. Inf. Integr. 2024, 38, 100566. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Han, J.; Yan, P.; Li, B.; Yang, M.; Jiang, P. A Novel Kind of Knowledge Graph Construction Method for Intelligent Machine as a Service Modeling. Machines 2024, 12, 723. https://doi.org/10.3390/machines12100723
Liu Y, Han J, Yan P, Li B, Yang M, Jiang P. A Novel Kind of Knowledge Graph Construction Method for Intelligent Machine as a Service Modeling. Machines. 2024; 12(10):723. https://doi.org/10.3390/machines12100723
Chicago/Turabian StyleLiu, Yuhao, Jiayuan Han, Peng Yan, Biyao Li, Maolin Yang, and Pingyu Jiang. 2024. "A Novel Kind of Knowledge Graph Construction Method for Intelligent Machine as a Service Modeling" Machines 12, no. 10: 723. https://doi.org/10.3390/machines12100723
APA StyleLiu, Y., Han, J., Yan, P., Li, B., Yang, M., & Jiang, P. (2024). A Novel Kind of Knowledge Graph Construction Method for Intelligent Machine as a Service Modeling. Machines, 12(10), 723. https://doi.org/10.3390/machines12100723