Dynamic Characteristics, Analysis, and Measurement of a Large Optical Mirror Processing System
Abstract
:1. Introduction
2. Composition of the LOMPS
2.1. 5-DOF-HPR
2.2. FSS
2.3. CCOS Grinding System
3. Dynamic Characteristic Analysis of LOMPS
3.1. Dynamic Characteristic Analysis of the 5-DOF-HPR
3.1.1. Element Division and Establishment of Element Dynamics
3.1.2. Elastic Dynamic Analysis of UPS Branch Chain
3.1.3. Elastic Dynamic Analysis of UP Branch Chain
3.1.4. Constraints for the 5-DOF-HPR
3.1.5. System Dynamics Equation
3.2. Dynamic Characteristics Analysis of the FSS
3.3. Dynamic Characteristics Analysis of the CCOS Grinding System
4. Dynamic Characteristic Measurement Experiment
4.1. Natural Frequency Measurement Experiment of the LOMPS
4.1.1. Modal Experiment of the 5-DOF-HPR
4.1.2. Modal Experiment of the FSS
4.1.3. Modal Experiment of the FSS and “Mirror”
4.2. Amplitude Experiment
4.2.1. Amplitude of the 5-DOF-HPR at Different Running Speeds
4.2.2. Amplitude Under Different Support Heights
4.2.3. Amplitude of the CCOS Grinding System at Different Speeds
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CCOS | Computer-Controlled Optical Surfacing |
5-DOF-HPR | Five-Degrees-of-Freedom Hybrid Processing Robot |
FSS | Flexible Support System |
LOMPS | Large Optical Mirror Processing System |
References
- Jin, Z.J.; Cheng, G.; Guo, F.; Chen, S.B. Human-machine-environment information fusion and control compensation strategy for large optical mirror processing system. Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci. 2020, 35, 2507–2523. [Google Scholar] [CrossRef]
- Jiang, B.C.; Zhao, D.W.; Wang, B.Q.; Zhao, H.J.; Liu, Y.H.; Lu, X.C. Flatness maintenance and roughness reduction of silicon mirror in chemical mechanical polishing process. Sci. China-Technol. Sci. 2020, 63, 166–172. [Google Scholar] [CrossRef]
- Kong, Y.X.; Cheng, G.; Guo, F.; Gu, W.; Zhang, L.B. Inertia matching analysis of a 5-DOF hybrid optical machining manipulator. J. Mech. Sci. Technol. 2019, 33, 4991–5002. [Google Scholar] [CrossRef]
- Sun, T.; Lian, B.B.; Song, Y.M.; Feng, L. Elastodynamic optimization of a 5-DoF parallel kinematic machine considering parameter uncertainty. IEEE-ASME Trans. Mechatron. 2019, 24, 315–325. [Google Scholar] [CrossRef]
- Lin, C.J.; Wang, H.C.; Wang, C.C. Automatic calibration of tool center point for six degree of freedom robot. Actuators 2023, 12, 107. [Google Scholar] [CrossRef]
- He, F.X.; Dai, L.; Chen, Q.S.; Liu, Y.; Luo, Z. Three-dimensional stability analysis of robotic machining process. Ind. Robot.-Int. J. Robot. Res. Appl. 2020, 47, 82–89. [Google Scholar] [CrossRef]
- Gierlak, P.; Warminski, J. Analysis of bifurcation vibrations of an industrial robot arm system with joints compliance. Appl. Sci. 2023, 13, 11941. [Google Scholar] [CrossRef]
- Ariano, A.; Perna, V.; Senatore, A.; Scatigno, R.; Nicolo, F.; Fazioli, F.; Avallone, G.; Pesce, S.; Gagliano, A. Simulation and experimental validation of novel trajectory planning strategy to reduce vibrations and improve productivity of robotic manipulator. Electronics 2020, 9, 581. [Google Scholar] [CrossRef]
- Hwang, S.W.; Bak, J.H.; Yoon, J.; Park, J.H. Oscillation Reduction and frequency analysis of under-constrained cable-driven parallel robot with three cables. Robotica 2020, 38, 375–395. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, K.Y.; Zhang, A.M. Research on flexible dynamics of a 6-DOF industrial robot and residual vibration control with a pre-adaptive input shaper. J. Mech. Sci. Technol. 2019, 33, 1875–1889. [Google Scholar] [CrossRef]
- Min, F.Y.; Wang, G.; Liu, N. Collision detection and identification on robot manipulators based on vibration analysis. Sensors 2019, 19, 1080. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.J.; Chung, S.Y.; Kang, H.S.; Hwang, M.J. Trapezoidal motion profile to suppress residual vibration of flexible object moved by robot. Electronics 2019, 8, 30. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, K.P.; Jiao, J.; Cao, D.Q.; Chi, W.C.; Tang, J. Dynamic isotropy design and analysis of a six-DOF active micro-vibration isolation manipulator on satellites. Robot. Comput.-Integr. Manuf. 2018, 49, 408–425. [Google Scholar]
- Yang, H.Y.; Zhou, Z.G.; Dang, Y.G.; Wang, X.Y.; Li, G.G.; Xu, Z.D. Nonlinear dynamics characteristics of a magnetically actuated dual-spin capsule robot. Nonlinear Dyn. 2023, 111, 20771–20792. [Google Scholar] [CrossRef]
- Tang, X.W.; Li, Z.P.; Yan, R.; Peng, F.Y.; Fan, Z. Operational impact excitation method for milling robot end frequency response function identification under movement state and pose-dependent dynamic compliance analysis. J. Manuf. Sci. Eng.-Trans. ASME 2023, 145, 034501. [Google Scholar] [CrossRef]
- Hoevenaars, A.G.L.; Krut, S.; Herder, J.L. Jacobian-based natural frequency analysis of parallel manipulators. Mech. Mach. Theory 2020, 148, 103775. [Google Scholar] [CrossRef]
- Ma, S.G.; Liang, B.; Wang, T.S. Dynamic analysis of a hyper-redundant space manipulator with a complex rope network. Aerosp. Sci. Technol. 2020, 100, 105768. [Google Scholar] [CrossRef]
- Wu, J.J. Finite element analysis and vibration testing of a three-dimensional crane structure. Measurement 2006, 39, 740–749. [Google Scholar] [CrossRef]
- Nguyen, V.; Cvitanic, T.; Melkote, S. Data-driven modeling of the modal properties of a six-degrees-of-freedom industrial robot and its application to robotic milling. J. Manuf. Sci. Eng.-Trans. ASME 2019, 141, 121006. [Google Scholar] [CrossRef]
- Ganesh, S.S.; Rao, A.B.K. Design optimization of a 2-DOF parallel kinematic machine based on natural frequency. J. Mech. Sci. Technol. 2020, 34, 835–841. [Google Scholar] [CrossRef]
- Dong, C.L.; Liu, H.T.; Huang, T.; Chetwynd, D.G. A screw theory-based semi-analytical approach for elastodynamics of the tricept robot. J. Mech. Robot.-Trans. ASME 2019, 11, 031005. [Google Scholar] [CrossRef]
- Yang, Q.J.; Zhu, R.; Niu, Z.G.; Chen, C.; Mao, Q.; Zheng, Y.J. Natural frequency analysis of hydraulic quadruped robot and structural optimization of the leg. J. Dyn. Syst. Meas. Control-Trans. ASME 2020, 142, 011009. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Zhang, K.; Wang, Z.Q.; Lu, J.X. Design and analysis of demolition robot arm based on finite element method. Adv. Mech. Eng. 2019, 11, 1–9. [Google Scholar] [CrossRef]
- Guan, E.G.; Miao, H.H.; Li, P.B.; Liu, J.H.; Zhao, Y.Z. Dynamic model analysis of hydraulic support. Adv. Mech. Eng. 2019, 11, 168781401882014. [Google Scholar] [CrossRef]
- Lin, Z.H.; Huang, Y.D. Effect of bell plate structure on high- and low-frequency characteristics of hydraulic mount. Appl. Rheol. 2024, 34, 20240014. [Google Scholar] [CrossRef]
- Xie, B.W.; Yang, Y. Study on working characteristics of 4-column hydraulic support in lifting-lowering-moving state based on microcontact theory and rigid-flexible-mechanical-hydraulic coupling simulation model. Actuators 2024, 13, 193. [Google Scholar] [CrossRef]
- Xu, H.G.; Zhang, J.H.; Sun, G.M.; Huang, W.D.; Huang, X.C.; Lyu, F.; Xu, B.; Su, Q. The direct measurement of the cylinder block dynamic characteristics based on a non-contact method in an axial piston pump. Measurement 2021, 167, 108279. [Google Scholar] [CrossRef]
- Tao, M.L.; Lin, F.; Shu, L.; Deng, H.B.; Zhang, Y.H. Research on impedance network modeling and output characteristics of magnetostrictive electro-hydraulic actuator. J. Adv. Mech. Des. Syst. Manuf. 2023, 17, 2023. [Google Scholar] [CrossRef]
Natural Frequency | 1st Order | 2nd Order | 3rd Order | 4th Order | |
---|---|---|---|---|---|
Posture 1 | Simulation calculation value (Hz) | 34.453 | 59.199 | 79.452 | 127.587 |
Experimental test value (Hz) | 39.063 | 68.359 | 87.891 | 146.484 | |
Relative error | 11.8% | 13.4% | 9.6% | 12.9% | |
Posture 2 | Simulation calculation value (Hz) | 44.238 | 70.554 | 103.594 | 147.908 |
Experimental test value (Hz) | 48.828 | 78.568 | 117.188 | 161.826 | |
Relative error | 9.4% | 10.2% | 11.6% | 8.6% | |
Posture 3 | Simulation calculation value (Hz) | 35.085 | 60.079 | 80.301 | 133.242 |
Experimental test value (Hz) | 38.726 | 67.656 | 89.422 | 147.719 | |
Relative error | 9.4% | 11.2% | 10.2% | 9.8% | |
Posture 4 | Simulation calculation value (Hz) | 25.957 | 56.876 | 74.212 | 111.084 |
Experimental test value (Hz) | 29.297 | 62.846 | 82.642 | 126.953 | |
Relative error | 11.4% | 9.5% | 10.2% | 12.5% |
Natural Frequency | 1st Order | 2nd Order | 3rd Order | 4th Order | |
---|---|---|---|---|---|
Posture 1 | Simulation calculation value (Hz) | 8.136 | 12.065 | 16.09 | 25.434 |
Experimental test value (Hz) | 8.970 | 13.773 | 18.181 | 29.747 | |
Relative error | 9.3% | 12.4% | 11.5% | 14.5% | |
Posture 2 | Simulation calculation value (Hz) | 8.124 | 12.104 | 18.582 | 31.771 |
Experimental test value (Hz) | 9.274 | 13.993 | 21.139 | 36.062 | |
Relative error | 12.4% | 13.5% | 12.1% | 11.9% | |
Posture 3 | Simulation calculation value (Hz) | 8.180 | 14.845 | 23.251 | 34.390 |
Experimental test value (Hz) | 9.069 | 16.999 | 24.902 | 36.428 | |
Relative error | 9.8% | 12.67% | 7.9% | 5.6% | |
Posture 4 | Simulation calculation value (Hz) | 8.187 | 16.124 | 25.234 | 34.395 |
Experimental test value (Hz) | 9.476 | 18.490 | 29.934 | 38.997 | |
Relative error | 13.6% | 12.8% | 15.7% | 11.8% |
Natural Frequency | 1st Order | 2nd Order | 3rd Order | 4th Order | |
---|---|---|---|---|---|
Posture 1 | Experimental test value (Hz) | 9.471 | 17.646 | 26.929 | 36.617 |
Posture 2 | 10.317 | 18.355 | 29.502 | 42.909 | |
Posture 3 | 10.686 | 23.806 | 31.947 | 47.457 | |
Posture 4 | 10.3878 | 24.620 | 36.3855 | 51.538 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Z.; Yin, Z.; Liu, H.; Liu, F. Dynamic Characteristics, Analysis, and Measurement of a Large Optical Mirror Processing System. Machines 2024, 12, 788. https://doi.org/10.3390/machines12110788
Jin Z, Yin Z, Liu H, Liu F. Dynamic Characteristics, Analysis, and Measurement of a Large Optical Mirror Processing System. Machines. 2024; 12(11):788. https://doi.org/10.3390/machines12110788
Chicago/Turabian StyleJin, Zujin, Zixin Yin, Hao Liu, and Fuchao Liu. 2024. "Dynamic Characteristics, Analysis, and Measurement of a Large Optical Mirror Processing System" Machines 12, no. 11: 788. https://doi.org/10.3390/machines12110788
APA StyleJin, Z., Yin, Z., Liu, H., & Liu, F. (2024). Dynamic Characteristics, Analysis, and Measurement of a Large Optical Mirror Processing System. Machines, 12(11), 788. https://doi.org/10.3390/machines12110788