Regression Model for the Prediction of Total Motor Power Used by an Industrial Robot Manipulator during Operation
Abstract
:1. Introduction
- RQ1—Can a data-driven model for total motor power use of an industrial robotic manipulator be developed based on the data collected during operation?
- RQ2—What are the feature importances of the parameters that may be collected during this process, and are some lower than the others?
- RQ3—Can some of the collected parameters be removed without sacrificing the performance of the data-driven machine learning-based model?
- Utilization of real, experimentally collected data, compared to the mathematical models, should create a more robust model, as the data may include noise and other minor measurement errors not present in the data created by a mathematical model.
- The testing of the importance of individual features was not performed in the previous work, mostly because the model was based on the mathematical model developed with a method requiring predetermined variables (speeds, accelerations, and positions of the robot joints). With the models newly developed in the presented work, features can be simply eliminated, allowing authors to test the possible benefits of that type of preprocessing.
- The model developed in the aforementioned paper did not make use of certain variables that were not available to the model but may have a certain influence on the output—such as kinematic variables pertaining to the limits and singularities.
2. Materials and Methods
2.1. Dataset Collection
- total Motor Power,
- for each of the joints (J1–J6):
- –
- position in degrees,
- –
- linear velocity,
- –
- angular velocity, and
- At the end effector:
- –
- linear speed,
- –
- orientation speed,
- –
- linear acceleration,
- –
- position:
- ∗
- X,
- ∗
- Y, and
- ∗
- Z,
- –
- orientation:
- ∗
- Q1,
- ∗
- Q2,
- ∗
- Q3, and
- ∗
- Q4,
- –
- nearness of limit, and
- –
- nearness of wrist singularity.
2.1.1. Correlation Analysis
2.1.2. Feature Importance
2.2. Regression Methodology
Regression Model Evaluation
- 1.
- Randomly split the dataset into five subsets —, , , , .
- 2.
- For i in the range from 1 to 5:
- Create a dataset consisting of the four folds whose index doesn’t equal i.
- Split the train and test datasets by randomly selecting points in such a way that is 70% of the dataset, and is 30% of the dataset.
- Perform the training procedure using the two datasets and obtain a trained model.
- Calculate the performance indexes on the fold which was not used in the training set and save them.
- 3.
- Calculate the mean score and the standard deviation of the performance indexes across all folds.
3. Results
3.1. Dataset Pruning Results
3.2. Regression Results
3.3. Validation of Results on Different Industrial Robotic Manipulators
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MLP | Multilayer Perceptron |
ML | Machine Learning |
RF | Random Forest |
MDI | Mean Decrease in Impurity |
FP | Feature Permutation |
References
- Baressi Šegota, S.; Anđelić, N.; Šercer, M.; Meštrić, H. Dynamics Modeling of Industrial Robotic Manipulators: A Machine Learning Approach Based on Synthetic Data. Mathematics 2022, 10, 1174. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Yang, T. A survey of energy-efficient motion planning for wheeled mobile robots. Ind. Robot. Int. J. Robot. Res. Appl. 2020, 47, 607–621. [Google Scholar] [CrossRef]
- Farooq, M.U.; Eizad, A.; Bae, H.K. Power solutions for autonomous mobile robots: A survey. Robot. Auton. Syst. 2023, 159, 104285. [Google Scholar] [CrossRef]
- Bern, J.M.; Schnider, Y.; Banzet, P.; Kumar, N.; Coros, S. Soft robot control with a learned differentiable model. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020; pp. 417–423. [Google Scholar]
- Wang, T.; Zhang, L.; Wang, X. Fault detection for motor drive control system of industrial robots using CNN-LSTM-based observers. CES Trans. Electr. Mach. Syst. 2023, 7, 144–152. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, H.; Ding, H. Real-time path correction of industrial robots in machining of large-scale components based on model and data hybrid drive. Robot. Comput.-Integr. Manuf. 2023, 79, 102447. [Google Scholar] [CrossRef]
- Benotsmane, R.; Kovács, G. Optimization of energy consumption of industrial robots using classical PID and MPC controllers. Energies 2023, 16, 3499. [Google Scholar] [CrossRef]
- Al-Tameemi, M.I.; Hasan, A.A.; Oleiwi, B.K. Design and implementation monitoring robotic system based on you only look once model using deep learning technique. IAES Int. J. Artif. Intell. 2023, 12, 106. [Google Scholar] [CrossRef]
- Baressi Šegota, S.; Anđelić, N.; Lorencin, I.; Saga, M.; Car, Z. Path planning optimization of six-degree-of-freedom robotic manipulators using evolutionary algorithms. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420908076. [Google Scholar] [CrossRef]
- Kudela, J.; Juříček, M.; Parak, R. A Collection of Robotics Problems for Benchmarking Evolutionary Computation Methods. In Proceedings of the International Conference on the Applications of Evolutionary Computation (Part of EvoStar), Brno, Czech Republic, 12 April 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 364–379. [Google Scholar]
- Jaramillo-Morales, M.F.; Dogru, S.; Gomez-Mendoza, J.B.; Marques, L. Energy estimation for differential drive mobile robots on straight and rotational trajectories. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420909654. [Google Scholar] [CrossRef]
- Jiang, P.; Wang, Z.; Li, X.; Wang, X.V.; Yang, B.; Zheng, J. Energy consumption prediction and optimization of industrial robots based on LSTM. J. Manuf. Syst. 2023, 70, 137–148. [Google Scholar] [CrossRef]
- Lin, H.I.; Mandal, R.; Wibowo, F.S. BN-LSTM-based energy consumption modeling approach for an industrial robot manipulator. Robot. Comput.-Integr. Manuf. 2024, 85, 102629. [Google Scholar] [CrossRef]
- Huang, K.C.; Yang, H.H.; Chen, W.T. Multi-Scale Aggregation with Self-Attention Network for Modeling Electrical Motor Dynamics. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 7097–7103. [Google Scholar]
- Kontopoulou, V.I.; Panagopoulos, A.D.; Kakkos, I.; Matsopoulos, G.K. A review of ARIMA vs. machine learning approaches for time series forecasting in data driven networks. Future Internet 2023, 15, 255. [Google Scholar] [CrossRef]
- Moein, M.M.; Saradar, A.; Rahmati, K.; Mousavinejad, S.H.G.; Bristow, J.; Aramali, V.; Karakouzian, M. Predictive models for concrete properties using machine learning and deep learning approaches: A review. J. Build. Eng. 2023, 63, 105444. [Google Scholar] [CrossRef]
- Šegota, S.B.; Anđelić, N.; Mrzljak, V.; Lorencin, I.; Kuric, I.; Car, Z. Utilization of multilayer perceptron for determining the inverse kinematics of an industrial robotic manipulator. Int. J. Adv. Robot. Syst. 2021, 18, 1729881420925283. [Google Scholar] [CrossRef]
- Husnain, A.; Rasool, S.; Saeed, A.; Hussain, H.K. Revolutionizing Pharmaceutical Research: Harnessing Machine Learning for a Paradigm Shift in Drug Discovery. Int. J. Multidiscip. Sci. Arts 2023, 2, 149–157. [Google Scholar] [CrossRef]
- ABB Ltd. ABB IRB 120 3/0.6 Product Manual; ABB Ltd.: Zurich, Switzerland, 2022. [Google Scholar]
- ABB Ltd. Operating Manual RobotStudio; ABB Ltd.: Zurich, Switzerland, 2022. [Google Scholar]
- ABB Ltd. Technical Reference Manual—RAPID Instructions, Functions and Data Types; ABB Ltd.: Zurich, Switzerland, 2022. [Google Scholar]
- Baressi Šegota, S. Robot Motor Power Dataset. 2024. Available online: https://www.kaggle.com/datasets/sandibaressiegota/robot-motor-power-dataset (accessed on 27 March 2024).
- Sevšek, L.; Šegota, S.B.; Car, Z.; Pepelnjak, T. Determining the influence and correlation for parameters of flexible forming using the random forest method. Appl. Soft Comput. 2023, 144, 110497. [Google Scholar] [CrossRef]
- Molnar, C.; Freiesleben, T.; König, G.; Herbinger, J.; Reisinger, T.; Casalicchio, G.; Wright, M.N.; Bischl, B. Relating the partial dependence plot and permutation feature importance to the data generating process. In Proceedings of the World Conference on Explainable Artificial Intelligence, Lisbon, Portugal, 26–28 July 2023; Springer: Berlin/Heidelberg, Germany, 2023; pp. 456–479. [Google Scholar]
- Scornet, E. Trees, forests, and impurity-based variable importance in regression. Ann. L’Institut Henri Poincare (B) Probab. Stat. 2023, 59, 21–52. [Google Scholar] [CrossRef]
- Gárate-Escamila, A.K.; El Hassani, A.H.; Andrès, E. Classification models for heart disease prediction using feature selection and PCA. Inform. Med. Unlocked 2020, 19, 100330. [Google Scholar] [CrossRef]
- Anđelić, N.; Baressi Šegota, S. Development of symbolic expressions ensemble for breast cancer type classification using genetic programming symbolic classifier and decision tree classifier. Cancers 2023, 15, 3411. [Google Scholar] [CrossRef]
- Gu, J.; Hua, W.; Yu, W.; Zhang, Z.; Zhang, H. Surrogate model-based multiobjective optimization of high-speed PM synchronous machine: Construction and comparison. IEEE Trans. Transp. Electrif. 2022, 9, 678–688. [Google Scholar] [CrossRef]
- Fahimifar, S.; Mousavi, K.; Mozaffari, F.; Ausloos, M. Identification of the most important external features of highly cited scholarly papers through 3 (ie, Ridge, Lasso, and Boruta) feature selection data mining methods: Identification of the most important external features of highly cited scholarly papers through 3 (ie, Ridge, Lasso, and Boruta) feature selection data mining methods. Qual. Quant. 2023, 57, 3685–3712. [Google Scholar]
- Afrin, S.; Shamrat, F.J.M.; Nibir, T.I.; Muntasim, M.F.; Moharram, M.S.; Imran, M.; Abdulla, M. Supervised machine learning based liver disease prediction approach with LASSO feature selection. Bull. Electr. Eng. Inform. 2021, 10, 3369–3376. [Google Scholar] [CrossRef]
- Yang, X.; Wen, W. Ridge and lasso regression models for cross-version defect prediction. IEEE Trans. Reliab. 2018, 67, 885–896. [Google Scholar] [CrossRef]
- Afzal, S.; Ziapour, B.M.; Shokri, A.; Shakibi, H.; Sobhani, B. Building energy consumption prediction using multilayer perceptron neural network-assisted models; comparison of different optimization algorithms. Energy 2023, 282, 128446. [Google Scholar] [CrossRef]
- Xu, Y.; Li, F.; Asgari, A. Prediction and optimization of heating and cooling loads in a residential building based on multi-layer perceptron neural network and different optimization algorithms. Energy 2022, 240, 122692. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Almeida, L.B. Multilayer perceptrons. In Handbook of Neural Computation; CRC Press: Boca Raton, FL, USA, 2020; p. C1–2. [Google Scholar]
- de Rooij, M.; Weeda, W. Cross-validation: A method every psychologist should know. Adv. Methods Pract. Psychol. Sci. 2020, 3, 248–263. [Google Scholar] [CrossRef]
- Xiong, Z.; Cui, Y.; Liu, Z.; Zhao, Y.; Hu, M.; Hu, J. Evaluating explorative prediction power of machine learning algorithms for materials discovery using k-fold forward cross-validation. Comput. Mater. Sci. 2020, 171, 109203. [Google Scholar] [CrossRef]
- Chen, G.; Muriki, H.; Sharkey, A.; Pradalier, C.; Chen, Y.; Dellaert, F. A Hybrid Cable-Driven Robot for Non-Destructive Leafy Plant Monitoring and Mass Estimation using Structure from Motion. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 11809–11816. [Google Scholar]
- Meattini, R.; Caporali, A.; Bernardini, A.; Palli, G.; Melchiorri, C. Self-Supervised Regression Of sEMG Signals Combining Non-Negative Matrix Factorization with Deep Neural Networks for Robot Hand Multiple Grasping Motion Control. IEEE Robot. Autom. Lett. 2023, 8, 8533–8540. [Google Scholar] [CrossRef]
- Peng, F.; Lu, Y.; Wang, Y.; Yang, L.; Yang, Z.; Li, H. Predicting the formation of disinfection by-products using multiple linear and machine learning regression. J. Environ. Chem. Eng. 2023, 11, 110612. [Google Scholar] [CrossRef]
- Efendi, S.; Nasution, M.K.; Herman, M. The Role of Detection Rate in MAPE to Improve Measurement Accuracy for Predicting FinTech Data in Various Regressions. In Proceedings of the 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), Jakarta, Indonesia, 16 February 2023; pp. 874–879. [Google Scholar]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Wang, H.C.; Song, Y.P.; Zhou, S.Q.; Li, Q.N.; Liang, B.; Liu, W.Z.; Zhao, Y.W.; Wang, A.J. Machine learning framework for intelligent aeration control in wastewater treatment plants: Automatic feature engineering based on variation sliding layer. Water Res. 2023, 246, 120676. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Cheang, B.; Luo, Z.; Lim, A. An exponential factorization machine with percentage error minimization to retail sales forecasting. ACM Trans. Knowl. Discov. Data (TKDD) 2021, 15, 1–32. [Google Scholar] [CrossRef]
- McKinney, W.; Team, P. Pandas-Powerful python data analysis toolkit. Pandas—Powerful Python Data Anal. Toolkit 2015, 1625. [Google Scholar] [CrossRef]
Joint i | Lower Limit [deg] | Higher Limit [deg] |
---|---|---|
1 | −90 | 90 |
2 | −10 | 45 |
3 | −100 | 40 |
4 | −160 | 160 |
5 | −120 | 120 |
6 | −400 | 400 |
Hyperparameter | Possible Values | Count |
---|---|---|
Number of layers | 1, 2, 3, 4, 5 | 5 |
Number of neurons | 1, 2, 4, 8, 16, 32, 63, 128 | 8 |
Activation | ReLU, Identity, Logistic, Tanh | 4 |
Solver | Adam, LBFGS | 2 |
Learning rate type | Constant, Adaptive, Inverse Scaling | 3 |
Initial learning rate | 0.5, 0.1, 0.01, 0.001, 0.0001, 0.00001 | 6 |
L2 regularization | 0.1, 0.01, 0.001, 0.0001 | 4 |
Variable | MDI | FP | r |
---|---|---|---|
Speed | 0.006633 | 0.022868 | 0.864878 |
Orientation Speed | 0.015512 | 0.06297 | 0.786160 |
Linear Acceleration | 0.018431 | 0.01354 | 0.100195 |
X | 0.003113 | 0.002259 | 0.015793 |
Y | 0.004271 | 0.002472 | 0.004599 |
Z | 0.004953 | 0.005973 | 0.006784 |
Q1 | 0.001689 | 0.000749 | −0.008261 |
Q2 | 0.00285 | 0.001533 | −0.012481 |
Q3 | 0.002023 | 0.000823 | 0.005319 |
Q4 | 0.001947 | 0.000731 | 0.005534 |
Near Limit | 0.000953 | 0.000534 | 0.023404 |
Near Wrist Singularity | 0.000464 | 0.000076 | −0.031361 |
J1 Position | 0.005847 | 0.002896 | 0.009030 |
J2 Position | 0.003984 | 0.0039 | 0.012479 |
J3 Position | 0.00337 | 0.002305 | −0.012455 |
J4 Position | 0.003876 | 0.003745 | −0.082532 |
J5 Position | 0.004741 | 0.004204 | −0.019140 |
J6 Position | 0.004488 | 0.003533 | −0.002446 |
J1 Velocity | 0.00509 | 0.008328 | 0.869247 |
J1 Angular Velocity | 0.006935 | 0.013666 | 0.869241 |
J2 Velocity | 0.011475 | 0.012808 | 0.842528 |
J2 Angular Velocity | 0.02747 | 0.024638 | 0.892606 |
J3 Velocity | 0.004454 | 0.008734 | 0.842867 |
J3 Angular Velocity | 0.612407 | 0.387411 | 0.905022 |
J4 Velocity | 0.005742 | 0.004314 | 0.880788 |
J4 Angular Velocity | 0.009264 | 0.01536 | 0.853524 |
J5 Velocity | 0.085447 | 0.042204 | 0.884634 |
J5 Angular Velocity | 0.017717 | 0.015253 | 0.859018 |
J6 Velocity | 0.020685 | 0.016591 | 0.882829 |
J6 Angular Velocity | 0.104168 | 0.039164 | 0.793835 |
Dataset | Metric | Fold | AVG | MIN | MAX | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||||||
Pruned | 0.99935 | 0.99929 | 0.99922 | 0.99921 | 0.99915 | 0.99924 | 0.00007 | 0.99915 | 0.99935 | |
0.32432 | 0.33442 | 0.33379 | 0.33343 | 0.35349 | 0.33589 | 0.00955 | 0.32431 | 0.35349 | ||
Complete | 0.98953 | 0.98792 | 0.98766 | 0.98744 | 0.98725 | 0.98796 | 0.00081 | 0.98725 | 0.98953 | |
0.41137 | 0.46954 | 0.57454 | 0.43379 | 0.45549 | 0.46895 | 0.05636 | 0.41136 | 0.57454 |
Robot | MAPE | |
---|---|---|
IRB 120-laboratory | 0.99538 | 0.34914 |
IRB 120-simulation | 0.98943 | 0.70443 |
IRB 1010 | 0.97658 | 0.93569 |
IRB 1100 | 0.98014 | 0.81644 |
IRB 1200 | 0.97213 | 0.97089 |
IRB 1410 | 0.97025 | 1.01027 |
IRB 2600 | 0.95134 | 1.11287 |
IRB 4600 | 0.95345 | 1.23064 |
IRB 5710 | 0.95152 | 1.26427 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baressi Šegota, S.; Anđelić, N.; Štifanić, J.; Car, Z. Regression Model for the Prediction of Total Motor Power Used by an Industrial Robot Manipulator during Operation. Machines 2024, 12, 225. https://doi.org/10.3390/machines12040225
Baressi Šegota S, Anđelić N, Štifanić J, Car Z. Regression Model for the Prediction of Total Motor Power Used by an Industrial Robot Manipulator during Operation. Machines. 2024; 12(4):225. https://doi.org/10.3390/machines12040225
Chicago/Turabian StyleBaressi Šegota, Sandi, Nikola Anđelić, Jelena Štifanić, and Zlatan Car. 2024. "Regression Model for the Prediction of Total Motor Power Used by an Industrial Robot Manipulator during Operation" Machines 12, no. 4: 225. https://doi.org/10.3390/machines12040225
APA StyleBaressi Šegota, S., Anđelić, N., Štifanić, J., & Car, Z. (2024). Regression Model for the Prediction of Total Motor Power Used by an Industrial Robot Manipulator during Operation. Machines, 12(4), 225. https://doi.org/10.3390/machines12040225