Multi-Objective Optimization of Milling Ti-6Al-4V Alloy for Improved Surface Integrity and Sustainability Performance
Abstract
:1. Introduction
2. Experimental Work
2.1. CNC Machine Tool, Workpiece Material, and Cutting Tool
2.2. Cooling Conditions and Parameter Selection
2.3. Response Measurements
3. Results and Discussion
3.1. Results and Analysis of Surface Roughness
3.2. Results and Analysis of Microhardness
3.3. Results and Analysis of Electrical Energy Consumption
4. Sustainability-Based Optimization Model
5. Discussion
6. Conclusions
- The lowest values of the average height of the selected area were obtained under cryogenic cooling owing to the enhanced penetration of the coolant into the tool–chip interface and, consequently, this reduced the formation of built-up edge. For both cooling/lubricating conditions, lower feed per tooth leads to better surface quality.
- By comparing two lubricooling techniques, it can be observed that cryogenic cooling induces a higher microhardness on the machined surface, as compared to MQL, due to a significant decrease in the cutting temperature, which favors hardness increase during the machining process.
- No noticeable difference was observed between the two lubricooling techniques regarding the machine tool’s electrical energy consumption. This study revealed that higher levels of cutting speed and feed per tooth caused a decrease in energy consumption due to the reduced time needed to complete the machining operation.
- The developed mathematical models of the average height of selected area, microhardness, and electrical energy consumption are adequate according to statistical analysis. The ANOVA for the average height of the selected area and microhardness revealed that these machinability metrics were primarily influenced by the lubricooling technique. It can also be underlined that feed per tooth and cutting speed were major influencing factors on energy consumption.
- A multi-objective optimization model was established to balance the machinability metrics (surface quality, microhardness, energy consumption, and MRR) and sustainability metrics (carbon emissions, operator health and safety impacts, and waste management). The optimal setting of process parameters that maximizes the multiple performance index was found to be as follows: cryogenic cooling, vc = 110 m/min, fz = 0.13 mm/z. The main contribution percentages for feed per tooth, eco-friendly cutting environment, and cutting speed to multiple performance index in the ball-end milling of the Ti-6Al-4V alloy were 39.4%, 36.8%, and 22.9%, respectively.
- Confirmatory test reveals an improvement of 6.9% for the multiple performance index from initial to optimal levels of process parameters, which is satisfactory.
- The implementation of the Taguchi method based on orthogonal arrays not only provides an effective tool to reduce the time and cost of experimentation, but also enhances efficiency.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haque, H.; Sekh, M.; Kibria, G.; Haidar, S. Improvement of surface quality of Ti-6Al-4V alloy by powder mixed electrical discharge machining using copper powder. F. U. Mech. Eng. 2023, 21, 63–79. [Google Scholar] [CrossRef]
- Yin, J.; Sun, R.; Ming, C.; Chen, C.; Zeng, S. Investigation of single grain grinding of titanium alloy using diamond abrasive grain with positive rake angle. Machines 2024, 12, 451. [Google Scholar] [CrossRef]
- Cica, D.; Kramar, D. Machinability investigation and sustainability analysis of high-pressure coolant assisted turning of the nickel-based superalloy Inconel 718. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2023, 237, 43–54. [Google Scholar] [CrossRef]
- Shah, P.; Khanna, N.; Maruda, R.W.; Gupta, M.K.; Krolczyk, G.M. Life cycle assessment to establish sustainable cutting fluid strategy for drilling Ti-6Al-4V. Sustain. Mater. Technol. 2021, 30, e00337. [Google Scholar] [CrossRef]
- Krolczyk, G.M.; Maruda, R.W.; Krolczyk, J.B.; Wojciechowski, S.; Mia, M.; Nieslony, P.; Budzik, G. Ecological trends in machining as a key factor in sustainable production—A review. J. Clean. Prod. 2019, 218, 601–615. [Google Scholar] [CrossRef]
- Jamil, M.; He, N.; Huang, X.; Zhao, W.; Khan, A.M.; Iqbal, A. Thermophysical, tribological, and machinability characteristics of newly developed sustainable hybrid lubri-coolants for milling Ti-6Al-4V. J. Manuf. Process. 2022, 73, 572–594. [Google Scholar] [CrossRef]
- Li, M.; Yu, T.; Zhang, R.; Yang, L.; Li, H.; Wang, W. MQL milling of TC4 alloy by dispersing graphene into vegetable oil-based cutting fluid. Int. J. Adv. Manuf. Technol. 2018, 99, 1735–1753. [Google Scholar] [CrossRef]
- Cai, X.J.; Liu, Z.Q.; Chen, M.; An, Q.L. An experimental investigation on effects of minimum quantity lubrication oil supply rate in high-speed end milling of Ti-6Al-4V. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2012, 226, 1784–1792. [Google Scholar] [CrossRef]
- Garcia, U.; Ribeiro, M.V. Ti6Al4V titanium alloy end milling with minimum quantity of fluid technique use. Mater. Manuf. Process. 2016, 31, 905–918. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Cai, X.J.; Chen, M.; An, Q.L. Investigation of cutting force and temperature of end-milling Ti-6Al-4V with different minimum quantity lubrication (MQL) parameters. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2011, 225, 1273–1279. [Google Scholar] [CrossRef]
- Jamil, M.; Khan, A.M.; Hegab, H.; Gupta, M.K.; Mia, M.; He, N.; Zhao, G.; Song, Q.; Liu, Z. Milling of Ti-6Al-4V under hybrid Al2O3-MWCNT nanofluids considering energy consumption, surface quality, and tool wear: A sustainable machining. Int. J. Adv. Manuf. Technol. 2020, 107, 4141–4157. [Google Scholar] [CrossRef]
- Jamil, M.; He, N.; Zhao, W.; Khan, A.M.; Laghari, R.A. Tribology and machinability performance of hybrid Al2O3-MWCNTs nanofluids-assisted MQL for milling Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2022, 119, 2127–2144. [Google Scholar] [CrossRef]
- Bai, X.; Li, C.; Dong, L.; Yin, Q. Experimental evaluation of the lubrication performances of different nanofluids for minimum quantity lubrication (MQL) in milling Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2019, 101, 2621–2632. [Google Scholar] [CrossRef]
- Osman, K.A.; Yılmaz, V.; Ünver, H.O.; Seker, U.; Kılıç, S.E. Slot milling of titanium alloy with hexagonal boron nitride and minimum quantity lubrication and multi-objective process optimization for energy efficiency. J. Clean. Prod. 2020, 258, 120739. [Google Scholar] [CrossRef]
- Shokrani, A.; Dhokia, V.; Newman, S.T. Comparative investigation on using cryogenic machining in CNC milling of Ti-6Al-4V titanium alloy. Mach. Sci. Technol. 2016, 20, 475–494. [Google Scholar] [CrossRef]
- Shokrani, A.; Dhokia, V.; Newman, S.T. Investigation of the effects of cryogenic machining on surface integrity in CNC end milling of Ti-6Al-4V titanium alloy. J. Manuf. Process. 2016, 21, 172–179. [Google Scholar] [CrossRef]
- Shokrani, A.; Dhokia, V.; Newman, S.T. Energy conscious cryogenic machining of Ti-6Al-4V titanium alloy. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 2018, 232, 1690–1706. [Google Scholar] [CrossRef]
- Sadik, M.I.; Isakson, S. The role of PVD coating and coolant nature in wear development and tool performance in cryogenic and wet milling of Ti-6Al-4V. Wear 2017, 386–387, 204–210. [Google Scholar] [CrossRef]
- Lee, I.; Bajpai, V.; Moon, S.; Byun, J.; Lee, Y.; Park, H.W. Tool life improvement in cryogenic cooled milling of the preheated Ti-6Al-4V. Int. J. Adv. Manuf. Technol. 2015, 79, 665–673. [Google Scholar] [CrossRef]
- Masood, I.; Jahanzaib, M.; Haider, A. Tool wear and cost evaluation of face milling grade 5 titanium alloy for sustainable machining. Adv. Prod. Eng. Manag. 2016, 11, 239–250. [Google Scholar] [CrossRef]
- Safari, H.; Sharif, S.; Izman, S.; Jafari, H.; Kurniawan, D. Cutting force and surface roughness characterization in cryogenic high-speed end milling of Ti-6Al-4V ELI. Mater. Manuf. Process. 2014, 9, 350–356. [Google Scholar] [CrossRef]
- Albertelli, P.; Monno, M. Energy assessment of different cooling technologies in Ti-6Al-4V milling. Int. J. Adv. Manuf. Technol. 2021, 112, 3279–3306. [Google Scholar] [CrossRef]
- Saini, A.; Pabla, B.S.; Dhami, S.S. Improvement in performance of cryogenically treated tungsten carbide tools in face milling of Ti-6Al-4V alloy. Mater. Manuf. Process. 2020, 35, 598–607. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Liu, K.; Zhao, D.; Jiang, S.; Yang, Y.; Yu, Q. Tough-brittle transition mechanism and specific cutting energy analysis during cryogenic machining of Ti–6Al–4V alloy. J. Clean. Prod. 2023, 383, 135533. [Google Scholar] [CrossRef]
- Yuan, S.M.; Yan, L.T.; Liu, W.D.; Liu, Q. Effects of cooling air temperature on cryogenic machining of Ti-6Al-4V alloy. J. Mater. Process. Technol. 2011, 211, 356–362. [Google Scholar] [CrossRef]
- Park, K.-H.; Suhaimi, M.A.; Yang, G.-D.; Lee, D.-Y.; Lee, S.-W.; Kwon, P. Milling of titanium alloy with cryogenic cooling and minimum quantity lubrication (MQL). Int. J. Precis. Eng. Manuf. 2017, 18, 5–14. [Google Scholar] [CrossRef]
- Jamil, M.; Zhao, W.; He, N.; Gupta, M.K.; Sarikaya, M.; Khan, A.M.; Sanjay, M.R.; Siengchin, S.; Pimenov, D.Y. Sustainable milling of Ti-6Al-4V: A trade-off between energy efficiency, carbon emissions and machining characteristics under MQL and cryogenic environment. J. Clean. Prod. 2021, 281, 125374. [Google Scholar] [CrossRef]
- Cai, C.; Liang, X.; An, Q.; Tao, Z.; Ming, W.; Chen, M. Cooling/lubrication performance of dry and supercritical CO2-based minimum quantity lubrication in peripheral milling Ti-6Al-4V. Int. J. Precis. Eng. Manuf. Green Technol. 2021, 8, 405–421. [Google Scholar] [CrossRef]
- An, Q.; Cai, C.; Zou, F.; Liang, X.; Chen, M. Tool wear and machined surface characteristics in side milling Ti6Al4V under dry and supercritical CO2 with MQL conditions. Tribol. Int. 2020, 151, 106511. [Google Scholar] [CrossRef]
- Park, K.-H.; Yang, G.-D.; Lee, M.-G.; Jeong, H.; Lee, S.-W.; Lee, D.Y. Eco-friendly face milling of titanium alloy. Int. J. Precis. Eng. Manuf. 2014, 15, 1159–1164. [Google Scholar] [CrossRef]
- Bagherzadeh, A.; Kuram, E.; Budak, E. Experimental evaluation of eco-friendly hybrid cooling methods in slot milling of titanium alloy. J. Clean. Prod. 2021, 289, 125817. [Google Scholar] [CrossRef]
- Tesic, S.; Cica, D.; Borojevic, S.; Sredanovic, B.; Zeljkovic, M.; Kramar, D.; Pusavec, F. Optimization and prediction of specific energy consumption in ball-end milling of Ti-Al6-4V alloy under MQL and cryogenic cooling and lubrication conditions. Int. J. Precis. Eng. Manuf. Green Technol. 2022, 9, 1427–1437. [Google Scholar] [CrossRef]
- Park, K.-H.; Yang, G.-D.; Suhaimi, M.A.; Lee, D.Y.; Kim, T.-G.; Kim, D.-W.; Lee, S.-W. The effect of cryogenic cooling and minimum quantity lubrication on end milling of titanium alloy Ti-6Al-4V. J. Mech. Sci. Technol. 2015, 29, 5121–5126. [Google Scholar] [CrossRef]
- Wu, G.; Li, G.; Pan, W.; Raja, I.; Wang, X.; Ding, S. Experimental investigation of eco-friendly cryogenic minimum quantity lubrication (CMQL) strategy in machining of Ti-6Al-4V thin-wall part. J. Clean. Prod. 2022, 357, 131993. [Google Scholar] [CrossRef]
- Ha, S.-J.; Lim, D.-W.; Kim, J.-H.; Park, J.-Y.; Song, K.-H. Economic evaluation and machining performance in Ti-6Al-4V titanium alloy milling by integrated CO2 & MQL injection system. J. Mech. Sci. Technol. 2021, 35, 4135–4142. [Google Scholar] [CrossRef]
- Rotella, G.; Dillon, O.W., Jr.; Umbrello, D.; Settineri, L.; Jawahir, I.S. The effects of cooling conditions on surface integrity in machining of Ti6Al4V alloy. Int. J. Adv. Manuf. Technol. 2014, 71, 47–55. [Google Scholar] [CrossRef]
- Hegab, H.; Darras, B.; Kishawy, H. Towards sustainability assessment of machining processes. J. Clean. Prod. 2018, 170, 694–703. [Google Scholar] [CrossRef]
- Narita, H.; Desmira, N.; Fujimoto, H. Environmental burden analysis for machining operation using LCA method. In Manufacturing Systems and Technologies for the New Frontier; Mitsuishi, M., Ueda, K., Kimura, F., Eds.; Springer: Tokyo, Japan, 2008; pp. 65–68. [Google Scholar]
No. | Control Factor Level | Machining Outputs | Sustainable Indicators | MPI | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
LCT | fz (mm/z) | vc (m/min) | Sa (μm) | HV0.1 | E (Wh) | MRR (mm3/min) | CO2 Emission (kgCO2/kWh) | OHS | WM | ||
1. | 1 | 1 | 1 | 1.57 | 375 | 393.3 | 211.0 | 0.1498 | 2 | 2 | 0.4178 |
2. | 1 | 2 | 2 | 1.56 | 367 | 237.9 | 387.6 | 0.0906 | 2 | 2 | 0.5976 |
3. | 1 | 3 | 3 | 1.54 | 369 | 200.2 | 615.8 | 0.0763 | 2 | 2 | 0.7462 |
4. | 1 | 1 | 1 | 1.47 | 380 | 404.6 | 211.0 | 0.1542 | 2 | 2 | 0.4237 |
5. | 1 | 2 | 2 | 1.70 | 381 | 241.9 | 387.6 | 0.0922 | 2 | 2 | 0.5852 |
6. | 1 | 3 | 3 | 1.70 | 380 | 181.9 | 615.8 | 0.0693 | 2 | 2 | 0.7827 |
7. | 1 | 1 | 1 | 1.60 | 373 | 394 | 211.0 | 0.1501 | 2 | 2 | 0.4139 |
8. | 1 | 2 | 2 | 1.68 | 368 | 240 | 387.6 | 0.0914 | 2 | 2 | 0.5831 |
9. | 1 | 3 | 3 | 1.59 | 376 | 181.4 | 615.8 | 0.0691 | 2 | 2 | 0.7937 |
10. | 1 | 1 | 1 | 1.59 | 377 | 398.7 | 211.0 | 0.1519 | 2 | 2 | 0.4142 |
11. | 1 | 2 | 2 | 1.77 | 392 | 243.4 | 387.6 | 0.0927 | 2 | 2 | 0.5819 |
12. | 1 | 3 | 3 | 1.65 | 371 | 179.3 | 615.8 | 0.0683 | 2 | 2 | 0.7913 |
13. | 1 | 1 | 2 | 1.73 | 368 | 290 | 301.4 | 0.1105 | 2 | 2 | 0.4950 |
14. | 1 | 2 | 3 | 1.54 | 376 | 199.6 | 503.9 | 0.0760 | 2 | 2 | 0.7131 |
15. | 1 | 3 | 1 | 1.58 | 395 | 266.2 | 331.6 | 0.1014 | 2 | 2 | 0.5534 |
16. | 1 | 1 | 2 | 1.55 | 365 | 285.4 | 301.4 | 0.1087 | 2 | 2 | 0.5137 |
17. | 1 | 2 | 3 | 1.59 | 380 | 196.5 | 503.9 | 0.0749 | 2 | 2 | 0.7169 |
18. | 1 | 3 | 1 | 1.51 | 392 | 262.5 | 331.6 | 0.1000 | 2 | 2 | 0.5634 |
19. | 2 | 1 | 2 | 1.51 | 399 | 285.6 | 301.4 | 0.1088 | 1 | 2 | 0.6580 |
20. | 2 | 2 | 3 | 1.51 | 405 | 202.5 | 503.9 | 0.0772 | 1 | 2 | 0.8787 |
21. | 2 | 3 | 1 | 1.45 | 409 | 262.8 | 331.6 | 0.1001 | 1 | 2 | 0.7103 |
22. | 2 | 1 | 2 | 1.44 | 403 | 280.8 | 301.4 | 0.1070 | 1 | 2 | 0.6736 |
23. | 2 | 2 | 3 | 1.40 | 400 | 198.7 | 503.9 | 0.0757 | 1 | 2 | 0.9022 |
24. | 2 | 3 | 1 | 1.40 | 414 | 265.9 | 331.6 | 0.1013 | 1 | 2 | 0.7160 |
25. | 2 | 1 | 3 | 1.41 | 422 | 229.5 | 391.9 | 0.0874 | 1 | 2 | 0.7995 |
26. | 2 | 2 | 1 | 1.25 | 404 | 317.2 | 271.3 | 0.1209 | 1 | 2 | 0.6563 |
27. | 2 | 3 | 2 | 1.29 | 406 | 209.3 | 473.7 | 0.0797 | 1 | 2 | 0.8860 |
28. | 2 | 1 | 3 | 1.33 | 417 | 233.4 | 391.9 | 0.0889 | 1 | 2 | 0.8012 |
29. | 2 | 2 | 1 | 1.35 | 413 | 319.3 | 271.3 | 0.1217 | 1 | 2 | 0.6420 |
30. | 2 | 3 | 2 | 1.46 | 401 | 206 | 473.7 | 0.0785 | 1 | 2 | 0.8623 |
31. | 2 | 1 | 3 | 1.24 | 411 | 241.9 | 391.9 | 0.0922 | 1 | 2 | 0.8004 |
32. | 2 | 2 | 1 | 1.16 | 406 | 332.6 | 271.3 | 0.1267 | 1 | 2 | 0.6604 |
33. | 2 | 3 | 2 | 1.33 | 419 | 213.5 | 473.7 | 0.0813 | 1 | 2 | 0.8762 |
34. | 2 | 1 | 3 | 1.35 | 410 | 238.4 | 391.9 | 0.0908 | 1 | 2 | 0.7858 |
35. | 2 | 2 | 1 | 1.18 | 419 | 330 | 271.3 | 0.1257 | 1 | 2 | 0.6653 |
36. | 2 | 3 | 2 | 1.28 | 413 | 215.6 | 473.7 | 0.0821 | 1 | 2 | 0.8770 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 0.6495 | 3 | 0.2165 | 28.86 | <0.0001 | Significant |
LCT | 0.5894 | 1 | 0.5894 | 78.58 | <0.0001 | Significant |
fz | 0.0224 | 1 | 0.0224 | 2.99 | 0.0935 | Not significant |
fz2 | 0.0377 | 1 | 0.0377 | 5.02 | 0.0321 | Significant |
Residual | 0.24 | 32 | 0.0075 | |||
Total | 0.8895 | 35 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 10,142.1 | 4 | 2535.51 | 50 | <0.0001 | Significant |
LCT | 5468.45 | 1 | 5468.45 | 107.38 | <0.0001 | Significant |
vc | 84.38 | 1 | 84.38 | 1.66 | 0.2066 | Not significant |
fz | 66.67 | 1 | 66.67 | 1.31 | 0.2603 | Not significant |
vc × fz | 452.23 | 1 | 452.23 | 8.92 | 0.0055 | Significant |
Residual | 1572.17 | 31 | 50.72 | 1.99 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 1.45∙105 | 5 | 28,995.6 | 715.02 | <0.0001 | Significant |
vc | 44,290 | 1 | 44,290 | 1092.18 | <0.0001 | Significant |
fz | 89,279.6 | 1 | 89,279.6 | 2201.6 | <0.0001 | Significant |
vc × fz | 6922.2 | 1 | 6 922.2 | 170.7 | <0.0001 | Significant |
vc2 | 561.1 | 1 | 561.1 | 13.84 | 0.0008 | Significant |
fz2 | 3925 | 1 | 3925 | 96.79 | <0.0001 | Significant |
Residual | 1216.6 | 30 | 40.6 | |||
Total | 1.462∙105 | 35 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
LCT | 52.07 | 1 | 52.07 | 1366.62 | <0.0001 | Significant |
vc | 32.39 | 1 | 32.39 | 850.16 | <0.0001 | Significant |
fz | 55.67 | 1 | 55.67 | 1461.02 | <0.0001 | Significant |
Residual | 1.22 | 32 | 0.038 | |||
Total | 141.35 | 35 |
Outputs | Initial Parameter Setting | Optimal Parameter Setting | Improvement (%) |
---|---|---|---|
Sa (µm) | 1.40 | 1.39 | 0.7 |
HV0.1 | 400 | 412 | 3 |
E (Wh) | 198.7 | 184.3 | 7.2 |
MRR (mm3/min) | 503.9 | 615.8 | 22.2 |
MPI | 0.9022 | 0.9643 | 6.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cica, D.; Tesic, S.; Markovic, M.; Sredanovic, B.; Borojevic, S.; Zeljkovic, M.; Kramar, D.; Pušavec, F. Multi-Objective Optimization of Milling Ti-6Al-4V Alloy for Improved Surface Integrity and Sustainability Performance. Machines 2025, 13, 221. https://doi.org/10.3390/machines13030221
Cica D, Tesic S, Markovic M, Sredanovic B, Borojevic S, Zeljkovic M, Kramar D, Pušavec F. Multi-Objective Optimization of Milling Ti-6Al-4V Alloy for Improved Surface Integrity and Sustainability Performance. Machines. 2025; 13(3):221. https://doi.org/10.3390/machines13030221
Chicago/Turabian StyleCica, Djordje, Sasa Tesic, Milisav Markovic, Branislav Sredanovic, Stevo Borojevic, Milan Zeljkovic, Davorin Kramar, and Franci Pušavec. 2025. "Multi-Objective Optimization of Milling Ti-6Al-4V Alloy for Improved Surface Integrity and Sustainability Performance" Machines 13, no. 3: 221. https://doi.org/10.3390/machines13030221
APA StyleCica, D., Tesic, S., Markovic, M., Sredanovic, B., Borojevic, S., Zeljkovic, M., Kramar, D., & Pušavec, F. (2025). Multi-Objective Optimization of Milling Ti-6Al-4V Alloy for Improved Surface Integrity and Sustainability Performance. Machines, 13(3), 221. https://doi.org/10.3390/machines13030221