MATLAB Application for User-Friendly Design of Fully Convolutional Data Description Models for Defect Detection of Industrial Products and Its Concurrent Visualization †
Abstract
:1. Introduction
2. FCDD (Fully Convolutional Data Description)
2.1. Deep One-Class Classification
2.2. Fully Convolutional Data Description Model
2.3. How to Determine Threshold Value for Prediction by FCDD
3. Comparison of Transfer Learning-Based CNN and FCDD
3.1. In Case of Transfer Learning-Based CNN Model Based on VGG19
3.2. In Case of FCDD
4. Further Comparisons of CNN and FCDD
4.1. Defect Detection and Visualization of Fibrous Industrial Material
4.1.1. In Case of Transfer Learning-Based CNN Model Based on VGG19
4.1.2. In Case of FCDD
4.2. Defect Detection and Visualization of Wrap Film Product
4.2.1. In Case of Transfer Learning-Based CNN Model Based on VGG19
4.2.2. In Case of FCDD
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADAM | Adaptive Moment Estimation Optimizer |
CAE | Convolutional AutoEncoder |
CNN | Convolutional Neural Network |
FCDD | Fully Convolutional Data Description |
FCN | Fully Convolution Network |
Grad-CAM | Gradient-Weighted Class Activation Mapping |
HSC | Hyper Sphere Classifier |
SGDM | Stochastic Gradient Decent Momentum Optimizer |
SVM | Support Vector Machine |
VAE | Variational AutoEncoder |
References
- Liznerski, P.; Ruff, L.; Vandermeulen, R.A.; Franks, B.J.; Kloft, M.; Muller, K.R. Explainable Deep One-Class Classification. In Proceedings of the International Conference on Learning Representations 2021, Vienna, Austria, 4 May 2021; pp. 1–25. [Google Scholar]
- Jang, S.J.; Bae, S.J. Detection of Defect Patterns on Wafer Bin Map Using Fully Convolutional Data Description (FCDD). J. Soc. Korea Ind. Syst. Eng. 2023, 46, 1–12. [Google Scholar] [CrossRef]
- Yasuno, T.; Okano, M.; Fujii, J. One-class Damage Detector Using Deeper Fully Convolutional Data Descriptions for Civil Application. Artif. Intell. Mach. Learn. 2023, 3, 996–1011. [Google Scholar] [CrossRef]
- Bora, D.J.; Sravani, E.; Tharun, K.; Sushma, K. Lung Cancer Recognition using CNN Algorithm and MATLAB. In Proceedings of the 2024 10th International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 12–14 April 2024; pp. 475–480. [Google Scholar] [CrossRef]
- Subbarayudu, B.; Yadalam, H.; Seepiri, J.; Bhogathi, J. Glaucoma Detection through Synergistic Combination of Image Processing and Deep CNN using MATLAB. In Proceedings of the 2024 5th International Conference for Emerging Technology (INCET), Belgaum, India, 24–26 May 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Makhunga, N.; Ngong, M.S.P.; Iktide, U.O. Design and Modelling of a Machine Learning Based Face Recognition Model for Access Control in an Electrical Plant Control Room. In Proceedings of the 2025 33rd Southern African Universities Power Engineering Conference (SAUPEC), Pretoria, South Africa, 29–30 January 2025; pp. 1–6. [Google Scholar] [CrossRef]
- Dioses, I.A.M.; Mariano, J.L.; Peña, G.C.D.; Santiago, P.N.M.; Macaso, J.A.; Lucas, T.J. Performance of Transfer Learning Method in Classification of Saccharum Officinarum Diseases. In Proceedings of the 2024 IEEE 12th Conference on Systems, Process & Control (ICSPC), Malacca, Malaysia, 6–7 December 2024; pp. 125–130. [Google Scholar] [CrossRef]
- SivaramKrishnan, M.; Palpandian, P.; Mahieshwar, J.; Mohanraj, V.; Vimal, K.K. Anti-Interference Dynamic Integral Neural Network for Optimizing Energy Management in Retrofitted Hybrid Electric Vehicles. In Proceedings of the 2024 3rd International Conference on Automation, Computing and Renewable Systems (ICACRS), Pudukkottai, India, 4–6 December 2024; pp. 1648–1654. [Google Scholar] [CrossRef]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Mehadjbia, A.; Slaoui-Hasnaoui, F. Metal Structural Defect Detection Based-On Deep Learning and Grad-Cam. In Proceedings of the 2024 International Conference on Circuit, Systems and Communication (ICCSC), Fez, Morocco, 28–29 June 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Agrawal, B.P.; Nair, P.S.; Babu, S.B.G.T.; Rajprabu, R.; Pesaru, P.R.; Natrayan, L. Deep Learning Methods for Detecting ImageBased Defects in Manufacturing Processes. In Proceedings of the 2024 Ninth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), Chennai, India, 4–5 April 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Lee, T.C.; Hung, W.C.; Tsai, M.C.; Lin, C.C.; Hsiao, F.L. Defect Detection of Optical Microscope Images in Semiconductor Fabrication Process Based on Pre-trained Convolution Neural Network. In Proceedings of the IET International Conference on Engineering Technologies and Applications (ICETA 2024), High Tatras, Slovakia, 24–25 October 2024; pp. 102–103. [Google Scholar] [CrossRef]
- Moupojou, E.; Retraint, F.; Tapamo, H.; Nkenlifack, M.; Kacfah, C.; Tagne, A. Segment Anything Model and Fully Convolutional Data Description for Plant Multi-Disease Detection on Field Images. IEEE Access 2024, 12, 102592–102605. [Google Scholar] [CrossRef]
- Nagata, F.; Sakata, S.; Kato, H.; Watanabe, K.; Habib, M.K. Defect Detection and Visualization of Understanding Using Fully Convolutional Data Description Models. In Proceedings of the 16th IIAI International Congress on Advanced Applied Informatics, Takamatsu, Japan, 6–12 July 2024; pp. 78–83. [Google Scholar]
- Ruff, L.; Vandermeulen, R.A.; Franks, B.J.; Muller, K.R.; Kloft, M. Rethinking assumptions in deep anomaly detection. arXiv 2020, arXiv:2006.00339. [Google Scholar]
- Huber, P.J. Robust Estimation of a Location Parameter. Ann. Math. Stat. 1964, 35, 73–101. [Google Scholar] [CrossRef]
- Kaggle: San Francisco, CA, USA. 2020. Available online: https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-casting-product?resource=download-directory (accessed on 20 March 2025).
- Arima, K.; Nagata, F.; Shimizu, T.; Otuka, A.; Kato, H.; Watanabe, K.; Habib, M.K. Improvements of Detection Accuracy and Its Confidence of Defective Areas by YOLOv2 Using a Dataset Augmentation Method. In Artificial Life and Robotics; Springer: Berlin/Heidelberg, Germany, 2023; Volume 28, pp. 625–631. [Google Scholar]
- Murphy, K.P. Machine Learning: A Probabilistic Perspective; The MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Computer Vision—ECCV 2014, Proceedings of the 13th European Conference, Proceedings, Part III (Lecture Notes in Computer Science, 8691), Zurich, Switzerland, 6–12 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 818–833. [Google Scholar]
- Kingma, D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015; 15p. Available online: https://arxiv.org/pdf/1412.6980.pdf (accessed on 15 February 2024).
- Shimizu, T.; Nagata, F.; Habib, M.K.; Armina, K.; Otsuka, A.; Watanabe, K. Advanced Defect Detection in Wrap Film Products: A Hybrid Approach with Convolutional Neural Networks and One-Class Support Vector Machines with Variational Autoencoder-Derived Covariance Vectors. Machines 2024, 12, 603. [Google Scholar] [CrossRef]
Predicted | Anomaly (NG) | Normal (OK) | |
---|---|---|---|
True | |||
Anomaly (NG) | 99 | 1 | |
Normal (OK) | 0 | 100 |
Predicted | Anomaly (NG) | Normal (OK) | |
---|---|---|---|
True | |||
Anomaly (NG) | 99 | 1 | |
Normal (OK) | 0 | 100 |
Predicted | Anomaly (NG) | Normal (OK) | |
---|---|---|---|
True | |||
Anomaly (NG) | 50 | 5 | |
Normal (OK) | 5 | 41 |
Predicted | Anomaly (NG) | Normal (OK) | |
---|---|---|---|
True | |||
Anomaly (NG) | 50 | 5 | |
Normal (OK) | 6 | 40 |
Predicted | Anomaly (NG) | Normal (OK) | |
---|---|---|---|
True | |||
Anomaly (NG) | 618 | 10 | |
Normal (OK) | 23 | 445 |
Predicted | Anomaly (NG) | Normal (OK) | |
---|---|---|---|
True | |||
Anomaly (NG) | 620 | 8 | |
Normal (OK) | 11 | 457 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagata, F.; Sakata, S.; Watanabe, K.; Habib, M.K.; Ghani, A.S.A. MATLAB Application for User-Friendly Design of Fully Convolutional Data Description Models for Defect Detection of Industrial Products and Its Concurrent Visualization. Machines 2025, 13, 328. https://doi.org/10.3390/machines13040328
Nagata F, Sakata S, Watanabe K, Habib MK, Ghani ASA. MATLAB Application for User-Friendly Design of Fully Convolutional Data Description Models for Defect Detection of Industrial Products and Its Concurrent Visualization. Machines. 2025; 13(4):328. https://doi.org/10.3390/machines13040328
Chicago/Turabian StyleNagata, Fusaomi, Shingo Sakata, Keigo Watanabe, Maki K. Habib, and Ahmad Shahrizan Abdul Ghani. 2025. "MATLAB Application for User-Friendly Design of Fully Convolutional Data Description Models for Defect Detection of Industrial Products and Its Concurrent Visualization" Machines 13, no. 4: 328. https://doi.org/10.3390/machines13040328
APA StyleNagata, F., Sakata, S., Watanabe, K., Habib, M. K., & Ghani, A. S. A. (2025). MATLAB Application for User-Friendly Design of Fully Convolutional Data Description Models for Defect Detection of Industrial Products and Its Concurrent Visualization. Machines, 13(4), 328. https://doi.org/10.3390/machines13040328