Advances in Noise and Vibrations for Machines
- Insight into Vibration Sources: from electromagnetic forces in motors to chatter dynamics in machining, the studies elucidate root causes and modeling strategies and algorithms.
- Advanced Signal Processing and Machine Learning: deploying autoencoders, Kriging models, and deep learning for predictive fault detection and design optimization.
- Noise Mitigation via Design Optimization: contributions demonstrate how parameter tuning—notably barrier geometry or machining conditions—can suppress unwanted vibrations and acoustic emissions.
- Bridging Simulation and Experimentation: all articles validate their computational solutions through experimental data, reinforcing practical significance.
Conflicts of Interest
References
- Peng, Z.K.; Chu, F.L. Application of the Wavelet Transform in Machine Condition Monitoring and Fault Diagnostics: A Review with Bibliography. Mech. Syst. Signal Process 2004, 18, 199–221. [Google Scholar] [CrossRef]
- Scislo, L.; Szczepanik-Scislo, N. Quantification of Construction Materials Quality via Frequency Response Measurements: A Mobile Testing Station. Sensors 2023, 23, 8884. [Google Scholar] [CrossRef] [PubMed]
- Scislo, L. Single-Point and Surface Quality Assessment Algorithm in Continuous Production with the Use of 3D Laser Doppler Scanning Vibrometry System. Sensors 2023, 23, 1263. [Google Scholar] [CrossRef]
- Scislo, L. Verification of Mechanical Properties Identification Based on Impulse Excitation Technique and Mobile Device Measurements. Sensors 2023, 23, 5639. [Google Scholar] [CrossRef]
- Castellani, F.; Astolfi, D.; Peppoloni, M.; Natili, F.; Buttà, D.; Hirschl, A. Experimental Vibration Analysis of a Small Scale Vertical Wind Energy System for Residential Use. Machines 2019, 7, 35. [Google Scholar] [CrossRef]
- Guinchard, M.; Angeletti, M.; Boyer, F.; Catinaccio, A.; Gargiulo, C.; Lacny, L.; Laudi, E.; Scislo, L. Experimental Modal Analysis of Lightweight Structures Used in Particle Detectors: Optical Non-Contact Method. In Proceedings of the 9th International Particle Accelerator Conference, IPAC18, Vancouver, BC, Canada, 29 April–4 May 2018; Koscielniak, S., Ed.; JACoW: Geneva, Switzerland, 2018; pp. 2565–2567. [Google Scholar]
- Mohd Ghazali, M.H.; Rahiman, W. Vibration Analysis for Machine Monitoring and Diagnosis: A Systematic Review. Shock. Vib. 2021, 1, 9469318. [Google Scholar] [CrossRef]
- Castellani, F.; Natili, F.; Astolfi, D.; Vidal, Y. Wind Turbine Gearbox Condition Monitoring through the Sequential Analysis of Industrial SCADA and Vibration Data. Energy Rep. 2024, 12, 750–761. [Google Scholar] [CrossRef]
- Pavlović, I.; Bratić, K.; Kiciński, R.; Kluczyk, M. Testing and Modeling of Shaft Vibrations Due to Misalignment. J. Mar. Sci. Eng. 2024, 12, 2284. [Google Scholar] [CrossRef]
- Romanssini, M.; de Aguirre, P.C.C.; Compassi-Severo, L.; Girardi, A.G. A Review on Vibration Monitoring Techniques for Predictive Maintenance of Rotating Machinery. Eng 2023, 4, 1797–1817. [Google Scholar] [CrossRef]
- Jung, D.; Zhang, Z.; Winslett, M. Vibration Analysis for IoT Enabled Predictive Maintenance. In Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering (ICDE), San Diego, CA, USA, 19–22 April 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1271–1282. [Google Scholar]
- Surucu, O.; Gadsden, S.A.; Yawney, J. Condition Monitoring Using Machine Learning: A Review of Theory, Applications, and Recent Advances. Expert Syst. Appl. 2023, 221, 119738. [Google Scholar] [CrossRef]
- Drygala, I.; Dulinska, J.; Kondrat, K. Dynamic Performance of a Suspended Reinforced Concrete Footbridge under Pedestrian Movements. IOP Conf. Ser. Mater. Sci. Eng. 2018, 307, 012060. [Google Scholar] [CrossRef]
- Drygała, I.; Dulinska, J.M.; Polak, M.A.; Wazowski, M. Dynamic Response of a Cable-Stayed Footbridge to High-Energy Mining Tremors. E3S Web Conf. 2019, 106, 01022. [Google Scholar] [CrossRef]
- Della, C.N.; Shu, D. Vibration of Delaminated Composite Laminates: A Review. Appl. Mech. Rev. 2007, 60, 1–20. [Google Scholar] [CrossRef]
- Singh, T.; Sehgal, S.; Prakash, C.; Dixit, S. Real-Time Structural Health Monitoring and Damage Identification Using Frequency Response Functions along with Finite Element Model Updating Technique. Sensors 2022, 22, 4546. [Google Scholar] [CrossRef] [PubMed]
- Zona, A. Vision-Based Vibration Monitoring of Structures and Infrastructures: An Overview of Recent Applications. Infrastructures 2020, 6, 4. [Google Scholar] [CrossRef]
- Godarzi, N.; Hejazi, F. A Review of Health Monitoring and Model Updating of Vibration Dissipation Systems in Structures. CivilEng 2025, 6, 3. [Google Scholar] [CrossRef]
- Basseville, M.; Benveniste, A.; Goursat, M.; Meve, L. In-Flight Vibration Monitoring of Aeronautical Structures. IEEE Control Syst. 2007, 27, 27–42. [Google Scholar] [CrossRef]
- Torres, N.N.S.; Lima, J.G.; Maciel, J.N.; Gazziro, M.; Filho, A.C.L.; Souto, C.R.; Salvadori, F.; Ando Junior, O.H. Non-Invasive Techniques for Monitoring and Fault Detection in Internal Combustion Engines: A Systematic Review. Energies 2024, 17, 6164. [Google Scholar] [CrossRef]
- Scislo, L.; Szczepanik-Scislo, N. Influence of Mechanical Ventilation and Cooling Systems on Vibrations of High Precision Machines. In Proceedings of the E3S Web of Conferences, Munich, Germany, 11–13 May 2019; Volume 100. [Google Scholar]
- Schaumann, M.; Gamba, D.; Garcia Morales, H.; Corsini, R.; Guinchard, M.; Scislo, L.; Wenninger, J. The Effect of Ground Motion on the LHC and HL-LHC Beam Orbit. Nucl. Instrum. Methods Phys. Res. A 2023, 1055, 168495. [Google Scholar] [CrossRef]
- Scislo, L.; Guinchard, M. Source Based Measurements and Monitoring of Ground Motion Conditions during Civil Engineering Works for High Luminosity Upgrade of the LHC. In Proceedings of the 26th International Congress on Sound and Vibration, ICSV, Montreal, QC, Canada, 7–11 July 2019; Canadian Acoustical Association: Montreal, QC, Canada, 2019. [Google Scholar]
- Ścisło, Ł.; Łacny, Ł.; Guinchard, M. COVID-19 Lockdown Impact on CERN Seismic Station Ambient Noise Levels. Open Eng. 2021, 11, 1233–1240. [Google Scholar] [CrossRef]
- Łacny, Ł.; Ścisło, Ł.; Guinchard, M. Application of Probabilistic Power Spectral Density Technique to Monitoring the Long-Term Vibrational Behaviour of CERN Seismic Network Stations. Vib. Phys. Syst. 2020, 31, 3. [Google Scholar] [CrossRef]
- Mohanty, S.C.; Dash, R.R.; Rout, T. Vibration and Dynamic Stability Analysis of a Functionally Graded Timoshenko Beam on Pasternak Elastic Foundation. Int. J. Aerosp. Lightweight Struct. (IJALS) 2013, 2, 383–403. [Google Scholar] [CrossRef]
- Yang, W.-P.; Chen, L.-W.; Wang, C.-C. Vibration and Dynamic Stability of a Traveling Sandwich Beam. J. Sound. Vib. 2005, 285, 597–614. [Google Scholar] [CrossRef]
- Abohamer, M.K.; Awrejcewicz, J.; Amer, T.S. Modeling of the Vibration and Stability of a Dynamical System Coupled with an Energy Harvesting Device. Alex. Eng. J. 2023, 63, 377–397. [Google Scholar] [CrossRef]
- Wu, Y.; Huo, R. Dynamical Modeling and Active Vibration Control Analysis of a Double-Layer Cylindrical Thin Shell with Active Actuators. Sci 2025, 7, 78. [Google Scholar] [CrossRef]
- Kozień, M.S.; Ścisło, Ł. Simulation of Control Algorithm for Active Reduction of Transversal Vibrations of Beams by Piezoelectric Elements Based on Identification of Bending Moment. Acta Phys. Pol. A 2015, 128, A-56–A-61. [Google Scholar] [CrossRef]
- Paternoster, A.; Vanlanduit, S.; Springael, J.; Braet, J. Measurement and Analysis of Vibration and Shock Levels for Truck Transport in Belgium with Respect to Packaged Beer during Transit. Food Packag. Shelf Life 2018, 15, 134–143. [Google Scholar] [CrossRef]
- Scislo, L.; Andruszkiewicz, P. Verification of the Possibility of Using a Smartphone with Matlab Mobile in Transport Monitoring Applications. In Proceedings of the 2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Dortmund, Germany, 7–9 September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 735–740. [Google Scholar]
- Ajdari, B.; Salimi, N.; Strambini, L.; Cepolina, E.M. Noise Pollution Monitoring at Pedestrian Level by Autonomous Vehicles in Urban Areas. Sci. Total Environ. 2025, 992, 179945. [Google Scholar] [CrossRef]
- Hao, Y.; Qi, H.; Liu, S.; Nian, V.; Zhang, Z. Study of Noise and Vibration Impacts to Buildings Due to Urban Rail Transit and Mitigation Measures. Sustainability 2022, 14, 3119. [Google Scholar] [CrossRef]
- Scislo, L.; Drygala, I. 3D Vibration Measurements with Optical Systems: Selected Methods for Measurement Enhancements. Procedia Struct. Integr. 2024, 64, 2246–2253. [Google Scholar] [CrossRef]
- Masoumi, M.; Bilgin, B. Experimental Acoustic Noise and Sound Quality Characterization of a Switched Reluctance Motor Drive with Hysteresis and PWM Current Control. Machines 2025, 13, 82. [Google Scholar] [CrossRef]
- Wang, S.-M.; Hsu, L.-J.; Gunawan, H.; Tu, R.-Q. Optimization of Machining Parameters for Reducing Drum Shape Error Phenomenon in Wire Electrical Discharge Machining Processes. Machines 2024, 12, 908. [Google Scholar] [CrossRef]
- Li, X.; Liu, R.; Zhu, Z. Data Acquisition and Chatter Recognition Based on Multi-Sensor Signals for Blade Whirling Milling. Machines 2025, 13, 206. [Google Scholar] [CrossRef]
- Wu, H.; He, L.; Tao, Z.; Zhang, D.; Luo, Y. An Integrated SEA–Deep Learning Approach for the Optimal Geometry Performance of Noise Barrier. Machines 2025, 13, 670. [Google Scholar] [CrossRef]
- Foroutan, K.; Torabi, F. Nonlinear Vibration of Oblique-Stiffened Multilayer Functionally Graded Cylindrical Shells Under External Excitation with Internal and Superharmonic Resonances. Machines 2025, 13, 225. [Google Scholar] [CrossRef]
- Şen, M. Determining Vibration Characteristics and FE Model Updating of Friction-Welded Beams. Machines 2025, 13, 653. [Google Scholar] [CrossRef]
- Mlinarič, J.; Pregelj, B.; Dolanc, G. End-of-Line Quality Control Based on Mel-Frequency Spectrogram Analysis and Deep Learning. Machines 2025, 13, 626. [Google Scholar] [CrossRef]
- Mo, G.; Liu, C.; Liu, G.; Liu, F. Improved Nonlinear Dynamic Model of Helical Gears Considering Frictional Excitation and Fractal Effects in Backlash. Machines 2025, 13, 262. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Diao, A.; Ma, Z. Influence of Distributor Structure on Through-Sea Valve Vibration Characteristics and Improvement Design. Machines 2024, 12, 791. [Google Scholar] [CrossRef]
- Shen, C.; Lu, C. A Method to Obtain Frequency Response Functions of Operating Mechanical Systems Based on Experimental Modal Analysis and Operational Modal Analysis. Machines 2024, 12, 516. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scislo, L.; Astolfi, D.; Castellani, F. Advances in Noise and Vibrations for Machines. Machines 2025, 13, 723. https://doi.org/10.3390/machines13080723
Scislo L, Astolfi D, Castellani F. Advances in Noise and Vibrations for Machines. Machines. 2025; 13(8):723. https://doi.org/10.3390/machines13080723
Chicago/Turabian StyleScislo, Lukasz, Davide Astolfi, and Francesco Castellani. 2025. "Advances in Noise and Vibrations for Machines" Machines 13, no. 8: 723. https://doi.org/10.3390/machines13080723
APA StyleScislo, L., Astolfi, D., & Castellani, F. (2025). Advances in Noise and Vibrations for Machines. Machines, 13(8), 723. https://doi.org/10.3390/machines13080723