Diagnosing Faults of Pneumatic Soft Actuators Based on Multimodal Spatiotemporal Features and Ensemble Learning
Abstract
1. Introduction
2. Overview of Soft Robot Fault Diagnosis
Diagnostic System Framework
3. Methodology
3.1. The VMD Method
3.2. Multiscale Permutation Entropy Algorithm
- (1)
- Coarse-grain the time series to obtain a new vector:
- (2)
- Reconstruct the subsequences into m-dimensional time series:
- (3)
- Arrange and calculate the probability:
- (4)
- Therefore, the MPE calculation formula for time series signals is
3.3. Cloud Model Theory
3.4. Ensemble Learning Model
3.5. Bayesian-Optimization-Based Random Forest Model
Algorithm 1: Bayesian optimization. |
1. For datasets with n = 1, 2, 3, …… |
2. A new function xn+1 is obtained by optimizing the acquisition function . |
3. The objective function is queried to obtain yn+1. |
4. The dataset is updated as Fn+1 = {Fn+1, (xn+1,yn+1)}. |
5. Update the Gaussian probabilistic model. |
6. Iteratively update and select the next point until the stopping criterion is met. |
4. Results and Discussion
4.1. Experimental Platform Construction
4.2. Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahn, S.; Jung, W.; Ko, K.; Lee, Y.; Lee, C.; Hwang, Y. Thermopneumatic soft micro bellows actuator for standalone operation. Micromachines 2021, 12, 46. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Q.; Guo, Q.; Gong, Y. Dynamic modeling and experimental validation of a water hydraulic soft manipulator based on an improved newton—Euler iterative method. Micromachines 2022, 13, 130. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; He, W.; Zhu, S. Human-powered master controllers for reconfigurable fluidic soft robots. Soft Robot. 2023, 10, 1126–1136. [Google Scholar] [CrossRef]
- Garriga-Casanovas, A.; Treratanakulchai, S.; Franco, E.; Zari, E.; Ferrandy, V.; Virdyawan, V.; y Baena, F.R. Optimised design and performance comparison of soft robotic manipulators. In Proceedings of the 2022 7th International Conference on Mechanical Engineering and Robotics Research (ICMERR), Krakow, Poland, 9–11 December 2022. [Google Scholar]
- Lin, Y.; Xu, Y.X.; Juang, J.Y. Single-actuator soft robot for in-pipe crawling. Soft Robot. 2023, 10, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Sun, Z.; Le, X.; Xie, J.; Lee, C. Soft robotic perception system with ultrasonic auto-positioning and multimodal sensory intelligence. ACS Nano 2023, 17, 4985–4998. [Google Scholar] [CrossRef]
- Shiva, A.; Sadati, S.H.; Noh, Y.; Fraś, J.; Ataka, A.; Würdemann, H.; Hauser, H.; Walker, I.D.; Nanayakkara, T.; Althoefer, K. Elasticity versus hyperelasticity considerations in quasistatic modeling of a soft finger-like robotic appendage for real-time position and force estimation. Soft Robot. 2019, 6, 228–249. [Google Scholar] [CrossRef]
- Shepherd, R.F.; Stokes, A.A.; Nunes, R.M.D.; Whitesides, G.M. Soft machines that are resistant to puncture and that self seal. Adv. Mater. 2013, 25, 6709–6713. [Google Scholar] [CrossRef] [PubMed]
- Białek, M.; Rybarczyk, D. Research on the operational properties of the soft gripper pads. Sci. Rep. 2024, 14, 32133. [Google Scholar] [CrossRef] [PubMed]
- Hanada, E.; Takano, K.; Antoku, Y.; Matsumura, K.; Watanabe, Y.; Nose, Y. A practical procedure to prevent electromagnetic interference with electronic medical equipment. J. Med. Syst. 2002, 26, 61–65. [Google Scholar] [CrossRef]
- Liu, A.; Yang, Z.; Li, H.; Wang, C.; Liu, X. Intelligent diagnosis of rolling element bearing based on refined composite multiscale reverse dispersion entropy and random forest. Sensors 2022, 22, 2046. [Google Scholar] [CrossRef]
- Hashimoto, M.; Kawashima, H.; Oba, F. A multi-model based fault detection and diagnosis of internal sensors for mobile robot. In Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), Las Vegas, NV, USA, 27–31 October 2003; Volume 4, pp. 3787–3792. [Google Scholar]
- Nordin, F.H.; Sabry, A.H.; Ab Kadir, M.Z.A. Fault detection and diagnosis of industrial robot based on power consumption modeling. IEEE Trans. Ind. Electron. 2019, 67, 7929–7940. [Google Scholar] [CrossRef]
- Deng, F.; Guo, S.; Zhou, R.; Chen, J. Sensor multifault diagnosis with improved support vector machines. IEEE Trans. Autom. Sci. Eng. 2015, 14, 1053–1063. [Google Scholar] [CrossRef]
- Sneider, H.; Frank, P.M. Observer-based supervision and fault detection in robots using nonlinear and fuzzy logic residual evaluation. IEEE Trans. Control Syst. Technol. 2002, 4, 274–282. [Google Scholar] [CrossRef]
- Sun, X.; Jia, X. A fault diagnosis method of industrial robot rolling bearing based on data driven and random intuitive fuzzy decision. IEEE Access 2019, 7, 148764–148770. [Google Scholar] [CrossRef]
- Pan, J.; Qu, L.; Peng, K. Deep residual neural-network-based robot joint fault diagnosis method. Sci. Rep. 2022, 12, 17158. [Google Scholar] [CrossRef]
- Skoundrianos, E.N.; Tzafestas, S.G. Finding fault-fault diagnosis on the wheels of a mobile robot using local model neural networks. IEEE Robot. Autom. Mag. 2004, 11, 83–90. [Google Scholar] [CrossRef]
- Lv, J.; Yu, Z.; Sun, G.; Liu, J. Deep learning-based fault diagnosis and Electrochemical Impedance Spectroscopy frequency selection method for Proton Exchange Membrane Fuel Cell. J. Power Sources 2024, 591, 233815. [Google Scholar] [CrossRef]
- Wu, C.; Liu, J.; Xiong, Y.; Wu, L. Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems. IEEE Trans. Neural Netw. Learn. Syst. 2017, 29, 3022–3033. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, H.; Chen, C.; Wang, T.; Chen, Z. Graph Fusion and Propagation for Fault Diagnosis in Industrial Robots with Limited Labeled Data. IEEE Sens. J. 2025, 25, 31742–31753. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, Z.; Zhang, X.; Song, L.; Yu, Z.; Wang, Y. Fault Diagnosis of Industrial Robot Based on Multi-Source Data Fusion and Channel Attention Convolutional Neural Networks. IEEE Access 2024, 12, 82247–82260. [Google Scholar] [CrossRef]
- Miao, Z.; Zhou, F.; Yuan, X.; Xia, Y.; Chen, K. Multi-heterogeneous sensor data fusion method via convolutional neural network for fault diagnosis of wheeled mobile robot. Appl. Soft Comput. 2022, 129, 109554. [Google Scholar] [CrossRef]
- Cui, H.; Guan, Y.; Chen, H. Rolling element fault diagnosis based on VMD and sensitivity MCKD. IEEE Access 2021, 9, 120297–120308. [Google Scholar] [CrossRef]
- Li, Y.; Xu, M.; Wei, Y.; Huang, W. A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree. Measurement 2016, 77, 80–94. [Google Scholar] [CrossRef]
- Zhou, K.; Lu, N.; Jiang, B. Basic probability assignment using intuitive fuzzy cloud model for information fusion and its application in fault diagnosis. IEEE Trans. Instrum. Meas. 2023, 73, 3504413. [Google Scholar] [CrossRef]
- Liu, H.C.; Li, Z.; Song, W.; Su, Q. Failure mode and effect analysis using cloud model theory and PROMETHEE method. IEEE Trans. Reliab. 2017, 66, 1058–1072. [Google Scholar] [CrossRef]
- Le, V.; Yao, X.; Miller, C.; Tsao, B.H. Series DC arc fault detection based on ensemble machine learning. IEEE Trans. Power Electron. 2020, 35, 7826–7839. [Google Scholar] [CrossRef]
- Yu, W.; Zhao, C. Online fault diagnosis for industrial processes with Bayesian network-based probabilistic ensemble learning strategy. IEEE Trans. Autom. Sci. Eng. 2019, 16, 1922–1932. [Google Scholar] [CrossRef]
- Alfarizi, M.G.; Tajiani, B.; Vatn, J.; Yin, S. Optimized random forest model for remaining useful life prediction of experimental bearings. IEEE Trans. Ind. Inform. 2022, 19, 7771–7779. [Google Scholar] [CrossRef]
State | IMF1 | IMF2 | IMF3 | ||||||
---|---|---|---|---|---|---|---|---|---|
MPE1 | MPE2 | MPE3 | MPE1 | MPE2 | MPE3 | MPE1 | MPE2 | MPE3 | |
F0 | 0.3748 | 0.3890 | 0.4020 | 0.9273 | 1.0765 | 1.1878 | 1.0027 | 1.1867 | 1.3214 |
F1 | 0.4078 | 0.4222 | 0.4377 | 0.8933 | 1.0299 | 1.1336 | 1.0883 | 1.3340 | 1.504 |
F2 | 0.5721 | 0.5870 | 0.6009 | 0.8283 | 0.9142 | 0.9722 | 0.9510 | 1.1138 | 1.2422 |
F3 | 0.3748 | 0.3874 | 0.4020 | 0.8764 | 0.9723 | 1.0487 | 0.9883 | 1.1164 | 1.2424 |
Description | Hyperparameter | Search Range |
---|---|---|
Number of decision trees | Nest | [10, 100] |
Maximum depth of each tree | Dtre | [10, 200] |
Minimum number of samples to split a node | Tspit | [2, 50] |
Minimum number of samples at a leaf node | Tleaf | [1, 20] |
Diagnostic Algorithm | Test Accuracy (%) | Kappa Coefficient (Test Set) |
---|---|---|
KNN | 73.00 | 0.637 |
SVM | 97.30 | 0.964 |
Neural Network | 93.90 | 0.919 |
This work | 99.10 | 0.986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, T.; Lv, Y.; Wang, L.; Li, H.; Yi, T.; He, Y.; Lv, Z. Diagnosing Faults of Pneumatic Soft Actuators Based on Multimodal Spatiotemporal Features and Ensemble Learning. Machines 2025, 13, 749. https://doi.org/10.3390/machines13080749
Duan T, Lv Y, Wang L, Li H, Yi T, He Y, Lv Z. Diagnosing Faults of Pneumatic Soft Actuators Based on Multimodal Spatiotemporal Features and Ensemble Learning. Machines. 2025; 13(8):749. https://doi.org/10.3390/machines13080749
Chicago/Turabian StyleDuan, Tao, Yi Lv, Liyuan Wang, Haifan Li, Teng Yi, Yigang He, and Zhongming Lv. 2025. "Diagnosing Faults of Pneumatic Soft Actuators Based on Multimodal Spatiotemporal Features and Ensemble Learning" Machines 13, no. 8: 749. https://doi.org/10.3390/machines13080749
APA StyleDuan, T., Lv, Y., Wang, L., Li, H., Yi, T., He, Y., & Lv, Z. (2025). Diagnosing Faults of Pneumatic Soft Actuators Based on Multimodal Spatiotemporal Features and Ensemble Learning. Machines, 13(8), 749. https://doi.org/10.3390/machines13080749