Measuring the Microscopic Structures of Human Dental Enamel Can Predict Caries Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enamel Specimens
2.2. DNA Samples and Genotyping
2.3. Correlation Tests with Caries Experience and Enamel Microhardness as Phenotypes
2.4. Measurements of the Enamel Structures
2.5. Phenotype Definitions and Statistical Analysis
3. Results
3.1. Association Analyses
3.2. Correlation Analyses
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Bayram, M.; Deeley, K.; Reis, M.F.; Trombetta, V.M.; Ruff, T.D.; Sencak, R.C.; Hummel, M.; Dizak, P.M.; Washam, K.; Romanos, H.F.; et al. Genetic influences on dental enamel that impact caries differ between the primary and permanent dentitions. Eur. J. Oral Sci. 2015, 123, 327–334. [Google Scholar] [CrossRef]
- Shimizu, T.; Ho, B.; Deeley, K.; Briseño-Ruiz, J.; Faraco, I.M.; Schupack, B.I.; Brancher, J.A.; Pecharki, G.D.; Küchler, E.C.; Tannure, P.N.; et al. Enamel Formation Genes Influence Enamel Microhardness Before and After Cariogenic Challenge. PLoS ONE 2012, 7, e45022. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Smith, C.E.; Richardson, A.S.; Bartlett, J.D.; Hu, J.; Simmer, J.P. MMP20, KLK4, and MMP20/KLK4 double null mice define roles for matrix proteases during dental enamel formation. Mol. Genet. Genom. Med. 2016, 4, 178–196. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S.K.; Gibson, C.W.; Wright, J.T.; Boyd, C.; Cormier, T.; Sierra, R.; Li, Y.; Abrams, W.R.; Aragon, M.A.; Yuan, Z.A.; et al. Tooth Enamel Defects in Mice with a Deletion at the Arhgap6/AmelX Locus. Calcif. Tissue Int. 2005, 77, 23–29. [Google Scholar] [CrossRef]
- Vieira, A.R.; Modesto, A.; Marazita, M.L. Caries: Review of human genetics research. Caries Res. 2014, 48, 491–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhlen, M.-M.; Stenhagen, K.R.; Dizak, P.M.; Holme, B.; Mulic, A.; Tveit, A.B.; Vieira, A.R. Genetic variation may explain why females are less susceptible to dental erosion. Eur. J. Oral Sci. 2016, 124, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.R.; Gibson, C.W.; Deeley, K.; Xue, H.; Li, Y. Weaker Dental Enamel Explains Dental Decay. PLoS ONE 2015, 10, e0124236. [Google Scholar] [CrossRef] [Green Version]
- Nibali, L.; Di Iorio, A.; Vieira, A.R.; Tu, Y.-K. Host genetics role in the pathogenesis of periodontal disease and caries. J. Clin. Periodontol. 2017, 44, S52–S78. [Google Scholar] [CrossRef] [Green Version]
- Cui, F.-Z.; Ge, J. New observations of the hierarchical structure of human enamel, from nanoscale to microscale. J. Tissue Eng. Regen. Med. 2007, 1, 185–191. [Google Scholar] [CrossRef]
- Ter Pelkwijk, A.; Helderman, W.V.P.; Van Dijk, J. Caries Experience in the Deciduous Dentition as Predictor for Caries in the Permanent Dentition. Caries Res. 1990, 24, 65–71. [Google Scholar] [CrossRef]
- Klein, H.; Palmer, C.E. Studies on dental caries: A procedure for the recording and statistical processing of dental examination findings. J. Dent. Res. 1940, 19, 14. [Google Scholar] [CrossRef]
- Küchler, E.C.; Tannure, P.N.; Falagan-Lotsch, P.; Lopes, T.S.; Granjeiro, J.M.; Amorim, L.M.F. Buccal cells DNA extraction to obtain high quality human genomic DNA suitable for polymorphism genotyping by PCR-RFLP and Real-Time PCR. J. Appl. Oral Sci. 2012, 20, 467–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anjomshoaa, I.; Briseño-Ruiz, J.; Deeley, K.; Poletta, F.A.; Mereb, J.C.; Leite, A.L.; Barreta, P.A.T.M.; Silva, T.L.; Dizak, P.; Ruff, T.; et al. Aquaporin 5 Interacts with Fluoride and Possibly Protects against Caries. PLoS ONE 2015, 10, e0143068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, M.L.; Hsin, H.-Y.; Kalay, E.; Brožková, D.Š.; Shimizu, T.; Bayram, M.; Deeley, K.; Küchler, E.C.; Forella, J.; Ruff, T.D.; et al. Role of estrogen related receptor beta (ESRRB) in DFN35B hearing impairment and dental decay. BMC Med. Genet. 2014, 15, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felszeghy, S.; Módis, L.; Nemeth, P.; Nagy, G.; Zelles, T.; Agre, P.; Laurikkala, J.; Fejerskov, O.; Thesleff, I.; Nielsen, S. Expression of aquaporin isoforms during human and mouse tooth development. Arch. Oral Boil. 2004, 49, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Deeley, K.; Briseño-Ruiz, J.; Faraco, I.; Poletta, F.; Brancher, J.; Pecharki, G.; Küchler, E.; Tannure, P.; Lips, A.; et al. Fine-mapping of 5q12.1-13.3 unveils new genetic contributors to caries. Caries Res. 2013, 47, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, T.; Rasband, W. ImageJ User Guide—IJ 1.46r. National Institutes of Health. 2012. Available online: https://imagej.nih.gov/ij/docs/guide/146.html (accessed on 31 January 2020).
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Haworth, S.; Shungin, D.; Van Der Tas, J.T.; Vucić, S.; Medina-Gómez, C.; Yakimov, V.; Feenstra, B.; Shaffer, J.R.; Lee, M.K.; Standl, M.; et al. Consortium-based genome-wide meta-analysis for childhood dental caries traits. Hum. Mol. Genet. 2018, 27, 3113–3127. [Google Scholar] [CrossRef] [Green Version]
- E Tabangin, M.; Woo, J.G.; Martin, L.J. The effect of minor allele frequency on the likelihood of obtaining false positives. BMC Proc. 2009, 3, S41. [Google Scholar] [CrossRef] [Green Version]
- Shellis, R. Relationship between human enamel structure and the formation of caries-like lesions in vitro. Arch. Oral Boil. 1984, 29, 975–981. [Google Scholar] [CrossRef]
- Shellis, R. A scanning electron-microscopic study of solubility variations in human enamel and dentine. Arch. Oral Boil. 1996, 41, 473–484. [Google Scholar] [CrossRef]
- Shellis, R.; Poole, D. Modified procedure for the quantitative estimation of pore volumes in carious dental enamel by polarizing microscopy. Arch. Oral Boil. 1985, 30, 865–868. [Google Scholar] [CrossRef]
- Yeni, Y.N.; Yerramshetty, J.; Akkus, O.; Pechey, C.; Les, C.M. Effect of Fixation and Embedding on Raman Spectroscopic Analysis of Bone Tissue. Calcif. Tissue Int. 2006, 78, 363–371. [Google Scholar] [CrossRef] [PubMed]
- He, L.H.; Swain, M.V. Influence of environment on the mechanical behavior of mature human enamel. Biomater. 2007, 28, 4512–4520. [Google Scholar] [CrossRef] [PubMed]
- Koch, G.; Poulsen, S.; Espelid, I.; Haubek, D. Pediatric Dentistry: A Clinical Approach, 3rd ed.; John Wiley & Sons: New York, NY, USA, 2017. [Google Scholar]
- Lussi, A.; Kohler, N.; Zero, D.; Schaffner, M.; Megert, B. A comparison of the erosive potential of different beverages in primary and permanent teeth using an in vitro model. Eur. J. Oral Sci. 2000, 108, 110–114. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, G.; Lo Giudicea, R.; Mataresea, G.; Isolaa, G.; Cicciùb, M.; Terranovaa, A.; Palaiac, G.; Romeo, U. Valutazione dei sistemi di ingrandimento in odontoiatria conservative e restaurativa. Studio in vitro. Dent. Cadmos 2015, 83, 296–305. [Google Scholar] [CrossRef]
Characteristic | N (28 Donors of Primary Molar Occlusal Surfaces) |
---|---|
Mean age in years (standard deviation) | 10.46 (4.65) |
Sex | |
Male | 15 |
Female | 13 |
Caries status of the individuals studied Mean dmft (standard deviation) | 2.82 (2.67) |
Enamel Microhardness (knoop) * Baseline (mean and standard deviation) After artificial caries creation (mean and standard deviation) After fluoride exposure (mean and standard deviation) | 220.21 (55.07) 149.86 (58.97) 156.66 (63.80) |
SNP | Closest Gene Symbol |
---|---|
rs2748729 | - |
rs4829728 | - |
rs4830231 | FIRRE |
rs5907830 | - |
rs5908778 | - |
rs5930702 | - |
rs5977872 | GPC4 |
rs6637822 | - |
rs6638230 | PHF6 |
rs6574293; rs10132091; rs745011; rs1077430; rs4903399 | ESRRB |
rs4903419 | - |
rs2860216 | - |
rs1676303 | - |
rs1997532 | - |
rs7150049 | - |
rs1997533 | - |
rs8011979 | - |
rs27565 | PART1 |
rs4800418 | - |
rs6862039 | BTF3 |
rs2287798 | AQP8 |
rs1996315 | AQP6 |
rs2878771 | AQP2 |
rs461872 | AQP2 |
rs2741559 | PIGT |
rs467323 | AQP2 |
rs17159702 | AQP1 |
rs4694075, rs34538475 | AMBN |
rs17878486; rs946252 | AMELX; ARHGAP6 |
rs12640848; rs3796704 | ENAM |
rs7526319; rs3828054; rs2337360; rs3790506 | TUFT1 |
rs5997096; rs134136 | TFIP11 |
rs4970957 | MIR554; TUFT1 |
rs11362 | DEFB1 |
rs2619112; rs7217186 | ALOX15 |
rs2235091; rs198968 | KLK4 |
rs12156770 | SLITRK4 |
rs1982 | PLAC1 |
rs2097778 | - |
rs875459 | CCNB1 |
rs1784418 | MMP20 |
rs10875989 | AQP2 |
rs3741559 | AQP2 |
rs9466252 | CASC15 |
rs4700418 | ZSWIM6 |
rs3736309; rs296763 | AQP5 |
Marker | A1 | F_A | F_U | A2 | p-Value | Data Category and Phenotype |
---|---|---|---|---|---|---|
rs461872 | A | 0.5 | 0.2083 | G | 0.037 | All P1 |
rs10132091 | C | 0.42 | 0.1786 | T | 0.049 | |
rs5930702 | C | 0.25 | 0.5714 | G | 0.05 | |
rs5908778 | T | 0.28 | 0.6842 | C | 0.01 | |
rs875459 | T | 0.8 | 0.4091 | G | 0.02 | All P2 including outliers |
rs3736309 | C | 0.2 | 0.55 | G | 0.05 | |
rs8011979 | T | 0 | 0.3889 | C | 0.03 | |
rs4800418 | C | 0.2 | 0.55 | G | 0.05 | |
rs6638230 | A | 0.57 | 0.1852 | G | 0.04 | |
rs3790506 | G | 0.33 | 0.04545 | A | 0.02 | |
rs467323 | T | 0.61 | 0.2308 | C | 0.01 | |
rs1997532 | T | 0.5 | 0.1667 | C | 0.01 | All P2 excluding outliers |
rs1997533 | G | 0.5 | 0.2188 | C | 0.04 | |
rs5977872 | G | 0.25 | 0.5789 | A | 0.05 | |
rs11362 | T | 0.5 | 0.2143 | C | 0.03 | All P3 |
rs1997532 | T | 0.17 | 0.4286 | C | 0.04 | |
rs1997533 | G | 0.19 | 0.5 | C | 0.02 | |
rs2619112 | G | 0.67 | 0.3333 | A | 0.01 | |
rs7217186 | T | 0.56 | 0.1667 | C | 0.01 | |
rs4694075 | T | 0.83 | 0.25 | C | 0.03 | 1ST MU P1 |
rs5908778 | T | 0.5 | 0 | C | 0.04 | |
rs34538475 | T | 1 | 0.2 | G | 0.03 | 1ST MU P2 |
rs2287798 | C | 1 | 0.08333 | G | 0.003 | |
rs6637822 | G | 1 | 0.25 | C | 0.05 | |
rs4830231 | T | 1 | 0.2222 | C | 0.04 | |
rs6638230 | A | 0.5 | 0 | G | 0.03 | |
rs2097778 | A | 0.5 | 0 | G | 0.03 | |
rs12640848 | G | 0.75 | 0.1 | A | 0.01 | 1ST MU P3 |
rs17159702 | T | 1 | 0.125 | C | 0.004 | |
rs12156770 | T | 1 | 0.25 | C | 0.03 | |
rs5908778 | T | 0.67 | 0 | C | 0.01 | |
rs27565 | C | 0.62 | 0.2 | T | 0.03 | 2ND MU P1 |
rs9466252 | T | 0.5 | 0.15 | C | 0.05 | |
rs1784418 | T | 0.67 | 0.25 | C | 0.05 | |
rs1997532 | T | 0.62 | 0.2 | C | 0.03 | |
rs5977872 | G | 0 | 0.47 | A | 0.04 | |
rs3790506 | G | 0.5 | 0.07 | A | 0.04 | 2ND MU P2 |
rs11362 | T | 1 | 0.23 | C | 0.003 | |
rs7150049 | G | 0 | 0.57 | A | 0.04 | |
rs5930702 | C | 1 | 0.29 | G | 0.02 | |
rs4830231 | C | 0.22 | 0.7 | T | 0.04 | 2ND MU P3 |
rs5977872 | G | 0.54 | 0.1 | A | 0.03 | |
rs461872 | A | 0.5 | 0 | G | 0.03 | 1ST ML P1 |
rs5907830 | G | 1 | 0.25 | C | 0.05 | |
rs4903399 | T | 0.5 | 0 | C | 0.05 | 1ST ML P2 |
rs6637822 | G | 0 | 0.83 | C | 0.01 | |
rs5907830 | G | 0 | 0.67 | C | 0.03 | |
NONE | 1ST ML P3 | |||||
rs11362 | T | 0.62 | 0.17 | C | 0.03 | 2ND ML P1 |
rs7150049 | G | 0.12 | 0.58 | A | 0.04 | |
rs10132091 | C | 0.67 | 0.17 | T | 0.03 | |
rs4829728 | T | 0.67 | 0.14 | A | 0.05 | |
rs5908778 | T | 0.17 | 0.71 | C | 0.05 | |
rs4830231 | T | 0.75 | 0.19 | C | 0.03 | 2ND ML P2 |
rs5997096 | T | 1 | 0.37 | C | 0.02 | |
rs1784418 | T | 0.2 | 0.7 | C | 0.02 | 2ND ML P3 |
rs5977872 | A | 0.14 | 0.8 | G | 0.02 | |
rs6638230 | A | 0.67 | 0 | G | 0.03 | |
rs2097778 | A | 0.57 | 0 | G | 0.04 | |
rs5907830 | G | 0.14 | 0.83 | C | 0.01 |
Phenotype 1 (r) | Phenotype 2 (r) | Phenotype 3 (r) | |
---|---|---|---|
2nd MU | |||
LCE | 0.11 | −0.38 | 0.24 |
HCE | −0.71 | NC | NC |
All Data | |||
Baseline | NC | −0.63 | NC |
Lesion | NC | NC | NC |
Fluoride | NC | NC | NC |
2nd MU | |||
Baseline | N/A | N/A | N/A |
Lesion | N/A | N/A | −0.7 |
Fluoride | N/A | N/A | −0.81 |
All Data | |||
Phenotype 1 | NC | NC | −0.45 |
1st MU | |||
Phenotype 2 | NC | NC | −0.45 |
2nd MU | |||
Phenotype 2 | NC | NC | −0.46 |
Number of SNPs Total | 87 |
---|---|
Number of SNPS with no results matching our hypothesis | 5 |
Number of SNPs with matching results | 82 |
Number of SNPs with 1–4 individuals | 49 |
Number of SNPs with 5–8 individuals | 28 |
Number of SNPs with 9–12 individuals | 5 |
Percentage of individuals that match the hypothesis | 94.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelly, A.M.; Kallistova, A.; Küchler, E.C.; Romanos, H.F.; Lips, A.; Costa, M.C.; Modesto, A.; Vieira, A.R. Measuring the Microscopic Structures of Human Dental Enamel Can Predict Caries Experience. J. Pers. Med. 2020, 10, 5. https://doi.org/10.3390/jpm10010005
Kelly AM, Kallistova A, Küchler EC, Romanos HF, Lips A, Costa MC, Modesto A, Vieira AR. Measuring the Microscopic Structures of Human Dental Enamel Can Predict Caries Experience. Journal of Personalized Medicine. 2020; 10(1):5. https://doi.org/10.3390/jpm10010005
Chicago/Turabian StyleKelly, Ariana M., Anna Kallistova, Erika C. Küchler, Helena F. Romanos, Andrea Lips, Marcelo C. Costa, Adriana Modesto, and Alexandre R. Vieira. 2020. "Measuring the Microscopic Structures of Human Dental Enamel Can Predict Caries Experience" Journal of Personalized Medicine 10, no. 1: 5. https://doi.org/10.3390/jpm10010005
APA StyleKelly, A. M., Kallistova, A., Küchler, E. C., Romanos, H. F., Lips, A., Costa, M. C., Modesto, A., & Vieira, A. R. (2020). Measuring the Microscopic Structures of Human Dental Enamel Can Predict Caries Experience. Journal of Personalized Medicine, 10(1), 5. https://doi.org/10.3390/jpm10010005