Future Trends in Nebulized Therapies for Pulmonary Disease
Abstract
:1. Introduction
2. Development of Nebulizers
3. Vibrating Mesh Nebulizers
3.1. Advantages of Vibrating Mesh Nebulizers in Mechanical Ventilation
3.2. Factors Affecting Aerosol Delivery
4. Drug Therapy in Critically Ill Patients
4.1. Pulmonary Drug Formulations
4.2. Personalized Medicine
4.3. Acute Respiratory Distress Syndrome
5. Aerosolized Therapies
5.1. Antibiotics
5.2. Vaccines and Gene Therapy
5.3. Heparin and Mucolytics
5.4. Mesenchymal Stem Cells
5.5. Antibodies
5.6. Short- and Long-Acting Adrenergic and Muscarinic Agonists
5.7. Alpha (α)-1 Antitrypsin
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pritchard, J.N.; Hatley, R.H.M.; Denyer, J.; von Hollen, D. Mesh nebulizers have become the first choice for new nebulized pharmaceutical drug developments. Ther. Deliv. 2018, 9, 121–136. [Google Scholar] [CrossRef] [Green Version]
- Artigas, A.; Camprubi-Rimblas, M.; Tantinya, N.; Bringue, J.; Guillamat-Prats, R.; Matthay, M.A. Inhalation therapies in acute respiratory distress syndrome. Ann. Transl. Med. 2017, 5, 293. [Google Scholar] [CrossRef] [Green Version]
- Camprubi-Rimblas, M.; Tantinya, N.; Bringue, J.; Guillamat-Prats, R.; Artigas, A. Anticoagulant therapy in acute respiratory distress syndrome. Ann. Transl. Med. 2018, 6, 36. [Google Scholar] [CrossRef] [PubMed]
- Rogliani, P.; Calzetta, L.; Coppola, A.; Cavalli, F.; Ora, J.; Puxeddu, E.; Matera, M.G.; Cazzola, M. Optimizing drug delivery in COPD: The role of inhaler devices. Respir. Med. 2017, 124, 6–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Geffen, W.H.; Douma, W.R.; Slebos, D.J.; Kerstjens, H.A. Bronchodilators delivered by nebuliser versus pMDI with spacer or DPI for exacerbations of COPD. Cochrane Database Syst. Rev. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sala, V.; Murabito, A.; Ghigo, A. Inhaled Biologicals for the Treatment of Cystic Fibrosis. Recent Pat. Inflamm. Allergy Drug Discov. 2019, 13, 19–26. [Google Scholar] [CrossRef]
- Wark, P.; McDonald, V.M. Nebulised hypertonic saline for cystic fibrosis. Cochrane Database Syst. Rev. 2018, 9, CD001506. [Google Scholar] [CrossRef]
- Wood, G.C.; Swanson, J.M. An Update on Aerosolized Antibiotics for Treating Hospital-Acquired and Ventilator-Associated Pneumonia in Adults. Ann. Pharmacother. 2017, 51, 1112–1121. [Google Scholar] [CrossRef]
- Zampieri, F.G.; Nassar, A.P., Jr.; Gusmao-Flores, D.; Taniguchi, L.U.; Torres, A.; Ranzani, O.T. Nebulized antibiotics for ventilator-associated pneumonia: A systematic review and meta-analysis. Crit. Care 2015, 19, 150. [Google Scholar] [CrossRef] [Green Version]
- Afolabi, T.M.; Nahata, M.C.; Pai, V. Nebulized opioids for the palliation of dyspnea in terminally ill patients. Am. J. Health Syst. Pharm. 2017, 74, 1053–1061. [Google Scholar] [CrossRef]
- Knightly, R.; Milan, S.J.; Hughes, R.; Knopp-Sihota, J.A.; Rowe, B.H.; Normansell, R.; Powell, C. Inhaled magnesium sulfate in the treatment of acute asthma. Cochrane Database Syst. Rev. 2017, 11, CD003898. [Google Scholar] [CrossRef] [PubMed]
- Dhanani, J.; Fraser, J.F.; Chan, H.K.; Rello, J.; Cohen, J.; Roberts, J.A. Fundamentals of aerosol therapy in critical care. Crit. Care 2016, 20, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lexmond, A.; Forbes, B. Drug Delivery Devices for Inhaled Medicines. Handb. Exp. Pharmacol. 2017, 237, 265–280. [Google Scholar] [CrossRef] [PubMed]
- Dhupkar, P.; Gordon, N. Interleukin-2: Old and New Approaches to Enhance Immune-Therapeutic Efficacy. Adv. Exp. Med. Biol. 2017, 995, 33–51. [Google Scholar] [CrossRef]
- Schmid, V.; Kullmann, S.; Gfrorer, W.; Hund, V.; Hallschmid, M.; Lipp, H.P.; Haring, H.U.; Preissl, H.; Fritsche, A.; Heni, M. Safety of intranasal human insulin: A review. Diabetes Obes. Metab. 2018, 20, 1563–1577. [Google Scholar] [CrossRef]
- Anderson, S.D. Repurposing drugs as inhaled therapies in asthma. Adv. Drug Deliv. Rev. 2018, 133, 19–33. [Google Scholar] [CrossRef]
- Alizadeh, A.; Moshiri, M.; Alizadeh, J.; Balali-Mood, M. Black henbane and its toxicity—A descriptive review. Avicenna J. Phytomed. 2014, 4, 297–311. [Google Scholar]
- Grossman, J. The evolution of inhaler technology. J. Asthma 1994, 31, 55–64. [Google Scholar] [CrossRef]
- Carvalho, T.C.; McConville, J.T. The function and performance of aqueous aerosol devices for inhalation therapy. J. Pharm. Pharmacol. 2016, 68, 556–578. [Google Scholar] [CrossRef]
- Longest, W.; Spence, B.; Hindle, M. Devices for Improved Delivery of Nebulized Pharmaceutical Aerosols to the Lungs. J. Aerosol Med. Pulm. Drug Deliv. 2019, 32, 317–339. [Google Scholar] [CrossRef]
- Martin, A.R.; Finlay, W.H. Nebulizers for drug delivery to the lungs. Expert Opin. Drug Deliv. 2015, 12, 889–900. [Google Scholar] [CrossRef] [PubMed]
- Ari, A. Jet, Ultrasonic, and Mesh Nebulizers: An Evaluation of Nebulizers for Better Clinical Outcomes. Eurasian J. Pulmon. 2014, 16, 1–7. [Google Scholar] [CrossRef]
- Melani, A.S.; Zanchetta, D.; Barbato, N.; Sestini, P.; Cinti, C.; Canessa, P.A.; Aiolfi, S.; Neri, M.; Associazione Italiana Pneumologi Ospedalieri Educational Group. Inhalation technique and variables associated with misuse of conventional metered-dose inhalers and newer dry powder inhalers in experienced adults. Ann. Allergy Asthma Immunol. 2004, 93, 439–446. [Google Scholar] [CrossRef]
- Rubin, B.K. Pediatric aerosol therapy: New devices and new drugs. Respir. Care 2011, 56, 1411–1421; discussion 1421–1423. [Google Scholar] [CrossRef]
- Sarkar, S.; Peri, S.P.; Chaudhuri, B. Investigation of multiphase multicomponent aerosol flow dictating pMDI-spacer interactions. Int. J. Pharm. 2017, 529, 264–274. [Google Scholar] [CrossRef]
- Dhand, R. Aerosol delivery during mechanical ventilation: From basic techniques to new devices. J. Aerosol Med. Pulm. Drug Deliv. 2008, 21, 45–60. [Google Scholar] [CrossRef] [Green Version]
- Fink, J.; Ari, A. Aerosol delivery to intubated patients. Expert Opin. Drug Deliv. 2013, 10, 1077–1093. [Google Scholar] [CrossRef]
- Fink, J.B. Aerosol delivery to ventilated infant and pediatric patients. Respir. Care 2004, 49, 653–665. [Google Scholar]
- Davis, P.; Stutchfield, C.; Evans, T.A.; Draper, E. Increasing admissions to paediatric intensive care units in England and Wales: More than just rising a birth rate. Arch. Dis. Child. 2018, 103, 341–345. [Google Scholar] [CrossRef]
- Boeddha, N.P.; Schlapbach, L.J.; Driessen, G.J.; Herberg, J.A.; Rivero-Calle, I.; Cebey-Lopez, M.; Klobassa, D.S.; Philipsen, R.; de Groot, R.; Inwald, D.P.; et al. Mortality and morbidity in community-acquired sepsis in European pediatric intensive care units: A prospective cohort study from the European Childhood Life-threatening Infectious Disease Study (EUCLIDS). Crit. Care 2018, 22, 143. [Google Scholar] [CrossRef] [Green Version]
- Haas, L.E.; Karakus, A.; Holman, R.; Cihangir, S.; Reidinga, A.C.; de Keizer, N.F. Trends in hospital and intensive care admissions in the Netherlands attributable to the very elderly in an ageing population. Crit. Care 2015, 19, 353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laporte, L.; Hermetet, C.; Jouan, Y.; Gaborit, C.; Rouve, E.; Shea, K.M.; Si-Tahar, M.; Dequin, P.F.; Grammatico-Guillon, L.; Guillon, A. Ten-year trends in intensive care admissions for respiratory infections in the elderly. Ann. Intensive Care 2018, 8, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjoding, M.W.; Prescott, H.C.; Wunsch, H.; Iwashyna, T.J.; Cooke, C.R. Longitudinal Changes in ICU Admissions Among Elderly Patients in the United States. Crit. Care Med. 2016, 44, 1353–1360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juschten, J.; Tuinman, P.R.; Juffermans, N.P.; Dixon, B.; Levi, M.; Schultz, M.J. Nebulized anticoagulants in lung injury in critically ill patients-an updated systematic review of preclinical and clinical studies. Ann. Transl. Med. 2017, 5, 444. [Google Scholar] [CrossRef] [Green Version]
- Niederman, M.S. Adjunctive Nebulized Antibiotics: What Is Their Place in ICU Infections? Front. Med. 2019, 6, 99. [Google Scholar] [CrossRef]
- Tashkin, D.P. A review of nebulized drug delivery in COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 2016, 11, 2585–2596. [Google Scholar] [CrossRef] [Green Version]
- Langton Hewer, S.C.; Smyth, A.R. Antibiotic strategies for eradicating Pseudomonas aeruginosa in people with cystic fibrosis. Cochrane Database Syst. Rev. 2017, 4, CD004197. [Google Scholar] [CrossRef]
- Maselli, D.J.; Keyt, H.; Restrepo, M.I. Inhaled Antibiotic Therapy in Chronic Respiratory Diseases. Int. J. Mol. Sci. 2017, 18, 1062. [Google Scholar] [CrossRef] [Green Version]
- Al-Subu, A.M.; Hagen, S.; Eldridge, M.; Boriosi, J. Aerosol therapy through high flow nasal cannula in pediatric patients. Expert Rev. Respir. Med. 2017, 11, 945–953. [Google Scholar] [CrossRef]
- Kopsaftis, Z.A.; Sulaiman, N.S.; Mountain, O.D.; Carson-Chahhoud, K.V.; Phillips, P.A.; Smith, B.J. Short-acting bronchodilators for the management of acute exacerbations of chronic obstructive pulmonary disease in the hospital setting: Systematic review. Syst. Rev. 2018, 7, 213. [Google Scholar] [CrossRef]
- Pleasants, R.A.; Wang, T.; Xu, X.; Beiko, T.; Bei, H.; Zhai, S.; Drummond, M.B. Nebulized Corticosteroids in the Treatment of COPD Exacerbations: Systematic Review, Meta-Analysis, and Clinical Perspective. Respir. Care 2018, 63, 1302–1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalby, R.N.; Eicher, J.; Zierenberg, B. Development of Respimat((R)) Soft Mist Inhaler and its clinical utility in respiratory disorders. Med. Devices Auckl. 2011, 4, 145–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwanaga, T.; Kozuka, T.; Nakanishi, J.; Yamada, K.; Nishiyama, O.; Sano, H.; Murakami, T.; Tohda, Y. Aerosol Deposition of Inhaled Corticosteroids/Long-Acting β2-Agonists in the Peripheral Airways of Patients with Asthma Using Functional Respiratory Imaging, a Novel Imaging Technology. Pulm. Ther. 2017, 3, 219–231. [Google Scholar] [CrossRef]
- Dellweg, D.; Wachtel, H.; Hohn, E.; Pieper, M.P.; Barchfeld, T.; Kohler, D.; Glaab, T. In vitro validation of a Respimat(R) adapter for delivery of inhaled bronchodilators during mechanical ventilation. J. Aerosol Med. Pulm. Drug Deliv. 2011, 24, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Rezk, A.R.; Khara, J.S.; Yeo, L.Y.; Ee, P.L. Stability and efficacy of synthetic cationic antimicrobial peptides nebulized using high frequency acoustic waves. Biomicrofluidics 2016, 10, 034115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortez-Jugo, C.; Qi, A.; Rajapaksa, A.; Friend, J.R.; Yeo, L.Y. Pulmonary monoclonal antibody delivery via a portable microfluidic nebulization platform. Biomicrofluidics 2015, 9, 052603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edge, R.; Butcher, R. Vibrating Mesh Nebulizers for Patients with Respiratory Conditions: Clinical Effectiveness, Cost-Effectiveness, and Guidelines; Canadian Agency for Drugs and Technologies in Health: Ottawa, ON, Canada, 2019. [Google Scholar]
- Gowda, A.A.; Cuccia, A.D.; Smaldone, G.C. Reliability of Vibrating Mesh Technology. Respir. Care 2017, 62, 65–69. [Google Scholar] [CrossRef]
- Dolovich, M.B.; Ahrens, R.C.; Hess, D.R.; Anderson, P.; Dhand, R.; Rau, J.L.; Smaldone, G.C.; Guyatt, G.; American College of Chest Physicians; American College of Asthma, Allergy, and Immunology. Device selection and outcomes of aerosol therapy: Evidence-based guidelines: American College of Chest Physicians/American College of Asthma, Allergy, and Immunology. Chest 2005, 127, 335–371. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, L.; McCloskey, A.P.; Higgins, G.; Ramsey, J.M.; Cryan, S.A.; MacLoughlin, R. Effective nebulization of interferon-gamma using a novel vibrating mesh. Respir. Res. 2019, 20, 66. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.Y.; Ko, H.K.; Fink, J.B.; Wan, G.H.; Huang, C.C.; Chen, Y.C.; Lin, H.L. Size Distribution of Colistin Delivery by Different Type Nebulizers and Concentrations During Mechanical Ventilation. Pharmaceutics 2019, 11, 459. [Google Scholar] [CrossRef] [Green Version]
- Ari, A.; Atalay, O.T.; Harwood, R.; Sheard, M.M.; Aljamhan, E.A.; Fink, J.B. Influence of nebulizer type, position, and bias flow on aerosol drug delivery in simulated pediatric and adult lung models during mechanical ventilation. Respir. Care 2010, 55, 845–851. [Google Scholar] [PubMed]
- Ari, A.; Fink, J.B.; Dhand, R. Inhalation therapy in patients receiving mechanical ventilation: An update. J. Aerosol Med. Pulm. Drug Deliv. 2012, 25, 319–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLoughlin, R.J.; Higgins, B.D.; Devaney, J.; O’Toole, D.; Laffey, J.G.; O’Brien, T. Aerosol-mediated delivery of AAV2/6-IkappaBalpha attenuates lipopolysaccharide-induced acute lung injury in rats. Hum. Gene Ther. 2015, 26, 36–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Swart, R.L.; de Vries, R.D.; Rennick, L.J.; van Amerongen, G.; McQuaid, S.; Verburgh, R.J.; Yuksel, S.; de Jong, A.; Lemon, K.; Nguyen, D.T.; et al. Needle-free delivery of measles virus vaccine to the lower respiratory tract of non-human primates elicits optimal immunity and protection. NPJ Vaccines 2017, 2, 22. [Google Scholar] [CrossRef] [PubMed]
- Forde, E.; Kelly, G.; Sweeney, L.; Fitzgerald-Hughes, D.; MacLoughlin, R.; Devocelle, M. Vibrating Mesh Nebulisation of Pro-Antimicrobial Peptides for Use in Cystic Fibrosis. Pharmaceutics 2019, 11, 239. [Google Scholar] [CrossRef] [Green Version]
- Dixon, B.; Santamaria, J.D.; Campbell, D.J. A phase 1 trial of nebulised heparin in acute lung injury. Crit. Care 2008, 12, R64. [Google Scholar] [CrossRef] [Green Version]
- Moustafa, I.O.F.; ElHansy, M.H.E.; Al Hallag, M.; Fink, J.B.; Dailey, P.; Rabea, H.; Abdelrahim, M.E.A. Clinical outcome associated with the use of different inhalation method with and without humidification in asthmatic mechanically ventilated patients. Pulm. Pharm. Ther. 2017, 45, 40–46. [Google Scholar] [CrossRef]
- ElHansy, M.H.E.; Boules, M.E.; Farid, H.; Chrystyn, H.; El-Maraghi, S.K.; Al-Kholy, M.B.; El-Essawy, A.F.M.; Abdelrahman, M.M.; Said, A.S.A.; Hussein, R.R.S.; et al. In vitro aerodynamic characteristics of aerosol delivered from different inhalation methods in mechanical ventilation. Pharm. Dev. Technol. 2017, 22, 844–849. [Google Scholar] [CrossRef]
- Respiratory Care Committee of Chinese Thoracic Society. Expert consensus on preventing nosocomial transmission during respiratory care for critically ill patients infected by 2019 novel coronavirus pneumonia. Zhonghua Jie He He Hu Xi Za Zhi 2020, 17, E020. [Google Scholar] [CrossRef]
- Dugernier, J.; Ehrmann, S.; Sottiaux, T.; Roeseler, J.; Wittebole, X.; Dugernier, T.; Jamar, F.; Laterre, P.F.; Reychler, G. Aerosol delivery during invasive mechanical ventilation: A systematic review. Crit. Care 2017, 21, 264. [Google Scholar] [CrossRef] [Green Version]
- Hardaker, L.E.; Hatley, R.H. In vitro characterization of the I-neb Adaptive Aerosol Delivery (AAD) system. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23 (Suppl. 1), S11–S20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coates, A.L.; Green, M.; Leung, K.; Chan, J.; Ribeiro, N.; Ratjen, F.; Charron, M. A comparison of amount and speed of deposition between the PARI LC STAR(R) jet nebulizer and an investigational eFlow(R) nebulizer. J. Aerosol Med. Pulm. Drug Deliv. 2011, 24, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Kesser, K.C.; Geller, D.E. New aerosol delivery devices for cystic fibrosis. Respir. Care 2009, 54, 754–767; discussion 767–768. [Google Scholar] [CrossRef] [PubMed]
- Denyer, J.; Dyche, T. The Adaptive Aerosol Delivery (AAD) technology: Past, present, and future. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23, S1–S10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolovich, M.B.; Dhand, R. Aerosol drug delivery: Developments in device design and clinical use. Lancet 2011, 377, 1032–1045. [Google Scholar] [CrossRef]
- Gardenhire, D.S.; Burnett, D.; Strickland, S.; Myers, T.R. A Guide to Aerosol Delivery Devices for Respiratory Therapists, American Association for Respiratory Care, 4th ed.; American Association for Respiratory Care: Irving, TX, USA, 2017. [Google Scholar]
- Greulich, T.; Hohlfeld, J.M.; Neuser, P.; Lueer, K.; Klemmer, A.; Schade-Brittinger, C.; Harnisch, S.; Garn, H.; Renz, H.; Homburg, U.; et al. A GATA3-specific DNAzyme attenuates sputum eosinophilia in eosinophilic COPD patients: A feasibility randomized clinical trial. Respir. Res. 2018, 19, 55. [Google Scholar] [CrossRef]
- Kesten, S.; Israel, E.; Li, G.; Mitchell, J.; Wise, R.; Stern, T. Development of a novel digital breath-activated inhaler: Initial particle size characterization and clinical testing. Pulm. Pharmacol. Ther. 2018, 53, 27–32. [Google Scholar] [CrossRef]
- Dhand, R. Intelligent nebulizers in the age of the Internet: The I-neb Adaptive Aerosol Delivery (AAD) system. J. Aerosol Med. Pulm. Drug Deliv. 2010, 23, iii–v. [Google Scholar] [CrossRef] [Green Version]
- Dhand, R.; Sohal, H. Pulmonary Drug Delivery System for inhalation therapy in mechanically ventilated patients. Expert Rev. Med. Devices 2008, 5, 9–18. [Google Scholar] [CrossRef]
- Bohr, A.; Beck-Broichsitter, M. Generation of tailored aerosols for inhalative drug delivery employing recent vibrating-mesh nebulizer systems. Ther. Deliv. 2015, 6, 621–636. [Google Scholar] [CrossRef]
- Wan, G.H.; Lin, H.L.; Fink, J.B.; Chen, Y.H.; Wang, W.J.; Chiu, Y.C.; Kao, Y.Y.; Liu, C.J. In vitro evaluation of aerosol delivery by different nebulization modes in pediatric and adult mechanical ventilators. Respir. Care 2014, 59, 1494–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darquenne, C. Aerosol deposition in health and disease. J. Aerosol Med. Pulm. Drug Deliv. 2012, 25, 140–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darquenne, C.; Fleming, J.S.; Katz, I.; Martin, A.R.; Schroeter, J.; Usmani, O.S.; Venegas, J.; Schmid, O. Bridging the Gap Between Science and Clinical Efficacy: Physiology, Imaging, and Modeling of Aerosols in the Lung. J. Aerosol Med. Pulm. Drug Deliv. 2016, 29, 107–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koushik, K.; Dhanda, D.S.; Cheruvu, N.P.; Kompella, U.B. Pulmonary delivery of deslorelin: Large-porous PLGA particles and HPbetaCD complexes. Pharm. Res. 2004, 21, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Ari, A.; Fink, J.B. Inhalation therapy in patients with tracheostomy: A guide to clinicians. Expert Rev. Respir. Med. 2017, 11, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Ari, A.; Harwood, R.J.; Sheard, M.M.; Fink, J.B. An in vitro evaluation of aerosol delivery through tracheostomy and endotracheal tubes using different interfaces. Respir. Care 2012, 57, 1066–1070. [Google Scholar] [CrossRef] [Green Version]
- Ari, A. Aerosol Therapy in Pulmonary Critical Care. Respir. Care 2015, 60, 858–874; discussion 874–879. [Google Scholar] [CrossRef] [Green Version]
- Bailey, M.M.; Berkland, C.J. Nanoparticle formulations in pulmonary drug delivery. Med. Res. Rev. 2009, 29, 196–212. [Google Scholar] [CrossRef]
- Thakur, A.K.; Chellappan, D.K.; Dua, K.; Mehta, M.; Satija, S.; Singh, I. Patented therapeutic drug delivery strategies for targeting pulmonary diseases. Expert Opin. Ther. Pat. 2020. [Google Scholar] [CrossRef]
- Carvalho, T.C.; McCook, J.P.; Narain, N.R.; McConville, J.T. Development and characterization of phospholipid-stabilized submicron aqueous dispersions of coenzyme Q(1)(0) presenting continuous vibrating-mesh nebulization performance. J. Liposome Res. 2013, 23, 276–290. [Google Scholar] [CrossRef]
- Gaspar, M.M.; Gobbo, O.; Ehrhardt, C. Generation of liposome aerosols with the Aeroneb Pro and the AeroProbe nebulizers. J. Liposome Res. 2010, 20, 55–61. [Google Scholar] [CrossRef]
- Beck-Broichsitter, M.; Kleimann, P.; Gessler, T.; Seeger, W.; Kissel, T.; Schmehl, T. Nebulization performance of biodegradable sildenafil-loaded nanoparticles using the Aeroneb Pro: Formulation aspects and nanoparticle stability to nebulization. Int. J. Pharm. 2012, 422, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Hibbitts, A.; O’Mahony, A.M.; Forde, E.; Nolan, L.; Ogier, J.; Desgranges, S.; Darcy, R.; MacLoughlin, R.; O’Driscoll, C.M.; Cryan, S.A. Early-stage development of novel cyclodextrin-siRNA nanocomplexes allows for successful postnebulization transfection of bronchial epithelial cells. J. Aerosol Med. Pulm. Drug Deliv. 2014, 27, 466–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cipolla, D.; Shekunov, B.; Blanchard, J.; Hickey, A. Lipid-based carriers for pulmonary products: Preclinical development and case studies in humans. Adv. Drug Deliv. Rev. 2014, 75, 53–80. [Google Scholar] [CrossRef] [PubMed]
- Davies, L.A.; Nunez-Alonso, G.A.; McLachlan, G.; Hyde, S.C.; Gill, D.R. Aerosol delivery of DNA/liposomes to the lung for cystic fibrosis gene therapy. Hum. Gene Ther. Clin. Dev. 2014, 25, 97–107. [Google Scholar] [CrossRef]
- Chellappan, D.K.; Yee, L.W.; Xuan, K.Y.; Kunalan, K.; Rou, L.C.; Jean, L.S.; Ying, L.Y.; Wie, L.X.; Chellian, J.; Mehta, M.; et al. Targeting neutrophils using novel drug delivery systems in chronic respiratory diseases. Drug Dev. Res. 2020. [Google Scholar] [CrossRef]
- Yhee, J.Y.; Im, J.; Nho, R.S. Advanced Therapeutic Strategies for Chronic Lung Disease Using Nanoparticle-Based Drug Delivery. J. Clin. Med. 2016, 5, 82. [Google Scholar] [CrossRef]
- Pison, U.; Welte, T.; Giersig, M.; Groneberg, D.A. Nanomedicine for respiratory diseases. Eur. J. Pharmacol. 2006, 533, 341–350. [Google Scholar] [CrossRef]
- Sung, J.C.; Pulliam, B.L.; Edwards, D.A. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007, 25, 563–570. [Google Scholar] [CrossRef]
- Nasr, M.; Najlah, M.; D’Emanuele, A.; Elhissi, A. PAMAM dendrimers as aerosol drug nanocarriers for pulmonary delivery via nebulization. Int. J. Pharm. 2014, 461, 242–250. [Google Scholar] [CrossRef]
- Tran, T.T.; Yu, H.; Vidaillac, C.; Lim, A.Y.H.; Abisheganaden, J.A.; Chotirmall, S.H.; Hadinoto, K. An evaluation of inhaled antibiotic liposome versus antibiotic nanoplex in controlling infection in bronchiectasis. Int. J. Pharm. 2019, 559, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Brittain, H.K.; Scott, R.; Thomas, E. The rise of the genome and personalised medicine. Clin. Med. 2017, 17, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Suwinski, P.; Ong, C.; Ling, M.H.T.; Poh, Y.M.; Khan, A.M.; Ong, H.S. Advancing Personalized Medicine Through the Application of Whole Exome Sequencing and Big Data Analytics. Front. Genet. 2019, 10, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, K.R.; Chorostowska-Wynimko, J.; Koczulla, A.R.; Ferrarotti, I.; McElvaney, N.G. Alpha 1 antitrypsin to treat lung disease in alpha 1 antitrypsin deficiency: Recent developments and clinical implications. Int. J. Chron. Obstruct. Pulmon. Dis. 2018, 13, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Maca, J.; Jor, O.; Holub, M.; Sklienka, P.; Bursa, F.; Burda, M.; Janout, V.; Sevcik, P. Past and Present ARDS Mortality Rates: A Systematic Review. Respir. Care 2017, 62, 113–122. [Google Scholar] [CrossRef] [Green Version]
- Ware, L.B.; Matthay, M.A. The acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1334–1349. [Google Scholar] [CrossRef]
- Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; van Haren, F.; Larsson, A.; McAuley, D.F.; et al. Epidemiology, Patterns of Care, and Mortality for Patients with Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016, 315, 788–800. [Google Scholar] [CrossRef]
- McNicholas, B.A.; Rooney, G.M.; Laffey, J.G. Lessons to learn from epidemiologic studies in ARDS. Curr. Opin. Crit. Care 2018, 24, 41–48. [Google Scholar] [CrossRef]
- Girbes, A.R.; Beishuizen, A.; Strack van Schijndel, R.J. Pharmacological treatment of sepsis. Fundam. Clin. Pharmacol. 2008, 22, 355–361. [Google Scholar] [CrossRef]
- Folkesson, H.G.; Matthay, M.A. Alveolar epithelial ion and fluid transport: Recent progress. Am. J. Respir. Cell Mol. Biol. 2006, 35, 10–19. [Google Scholar] [CrossRef] [Green Version]
- McAuley, D.F.; Frank, J.A.; Fang, X.; Matthay, M.A. Clinically relevant concentrations of beta2-adrenergic agonists stimulate maximal cyclic adenosine monophosphate-dependent airspace fluid clearance and decrease pulmonary edema in experimental acid-induced lung injury. Crit. Care Med. 2004, 32, 1470–1476. [Google Scholar] [CrossRef] [PubMed]
- Perkins, G.D.; Gates, S.; Park, D.; Gao, F.; Knox, C.; Holloway, B.; McAuley, D.F.; Ryan, J.; Marzouk, J.; Cooke, M.W.; et al. The beta agonist lung injury trial prevention. A randomized controlled trial. Am. J. Respir. Crit. Care Med. 2014, 189, 674–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walther, S.; Jansson, I.; Berg, S.; Lennquist, S. Pulmonary granulocyte accumulation is reduced by nebulized corticosteroid in septic pigs. Acta Anaesthesiol. Scand. 1992, 36, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.S.; Meguid, M.M. Effect of nebulized budesonide on respiratory mechanics and oxygenation in acute lung injury/acute respiratory distress syndrome: Randomized controlled study. Saudi J. Anaesth. 2017, 11, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Chimenti, L.; Camprubi-Rimblas, M.; Guillamat-Prats, R.; Gomez, M.N.; Tijero, J.; Blanch, L.; Artigas, A. Nebulized Heparin Attenuates Pulmonary Coagulopathy and Inflammation through Alveolar Macrophages in a Rat Model of Acute Lung Injury. Thromb. Haemost. 2017, 117, 2125–2134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGinn, K.A.; Weigartz, K.; Lintner, A.; Scalese, M.J.; Kahn, S.A. Nebulized Heparin with N-Acetylcysteine and Albuterol Reduces Duration of Mechanical Ventilation in Patients with Inhalation Injury. J. Pharm. Pract. 2019, 32, 163–166. [Google Scholar] [CrossRef]
- Cuschieri, J.; Gourlay, D.; Garcia, I.; Jelacic, S.; Maier, R.V. Hypertonic preconditioning inhibits macrophage responsiveness to endotoxin. J. Immunol. 2002, 168, 1389–1396. [Google Scholar] [CrossRef]
- Hamm, H.; Fabel, H.; Bartsch, W. The surfactant system of the adult lung: Physiology and clinical perspectives. Clin. Investig. 1992, 70, 637–657. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, R.; Zhong, J.G.; Fang, F.; Jiang, J.J.; Liu, M.Y.; Lu, J. Aerosolised surfactant generated by a novel noninvasive apparatus reduced acute lung injury in rats. Crit. Care 2009, 13, R31. [Google Scholar] [CrossRef] [Green Version]
- McAuley, D.F.; Laffey, J.G.; O’Kane, C.M.; Perkins, G.D.; Mullan, B.; Trinder, T.J.; Johnston, P.; Hopkins, P.A.; Johnston, A.J.; McDowell, C.; et al. Simvastatin in the acute respiratory distress syndrome. N. Engl. J. Med. 2014, 371, 1695–1703. [Google Scholar] [CrossRef] [Green Version]
- Grimaldi, D.; Durand, A.; Gleeson, J.; Taccone, F.S. Failure of statins in ARDS: The quest for the Holy Grail continues. Minerva Anestesiol. 2016, 82, 1230–1234. [Google Scholar] [PubMed]
- Nagendran, M.; McAuley, D.F.; Kruger, P.S.; Papazian, L.; Truwit, J.D.; Laffey, J.G.; Thompson, B.T.; Clarke, M.; Gordon, A.C. Statin therapy for acute respiratory distress syndrome: An individual patient data meta-analysis of randomised clinical trials. Intensive Care Med. 2017, 43, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Calfee, C.S.; Delucchi, K.L.; Sinha, P.; Matthay, M.A.; Hackett, J.; Shankar-Hari, M.; McDowell, C.; Laffey, J.G.; O’Kane, C.M.; McAuley, D.F.; et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: Secondary analysis of a randomised controlled trial. Lancet Respir. Med. 2018, 6, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Lorenzoni, R.; Cordenonsi, L.M.; Davies, S.; Antonow, M.B.; Medina Diedrich, A.S.; Santos, C.G.; Vitalis, G.S.; Garrastazu, G.; Buttini, F.; Sonvico, F.; et al. Lipid-core nanocapsules are an alternative to the pulmonary delivery and to increase the stability of statins. J. Microencapsul. 2019, 36, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Tulbah, A.S.; Ong, H.X.; Colombo, P.; Young, P.M.; Traini, D. Could simvastatin be considered as a potential therapy for chronic lung diseases? A debate on the pros and cons. Expert Opin. Drug Deliv. 2016, 13, 1407–1420. [Google Scholar] [CrossRef] [PubMed]
- Tulbah, A.S.; Ong, H.X.; Lee, W.H.; Colombo, P.; Young, P.M.; Traini, D. Biological Effects of Simvastatin Formulated as pMDI on Pulmonary Epithelial Cells. Pharm. Res. 2016, 33, 92–101. [Google Scholar] [CrossRef]
- Castellani, C.; Duff, A.J.A.; Bell, S.C.; Heijerman, H.G.M.; Munck, A.; Ratjen, F.; Sermet-Gaudelus, I.; Southern, K.W.; Barben, J.; Flume, P.A.; et al. ECFS best practice guidelines: The 2018 revision. J. Cyst. Fibros. 2018, 17, 153–178. [Google Scholar] [CrossRef] [Green Version]
- Tiddens, H.A.; Bos, A.C.; Mouton, J.W.; Devadason, S.; Janssens, H.M. Inhaled antibiotics: Dry or wet? Eur Respir. J. 2014, 44, 1308–1318. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.T.; Sullivan, A.L.; Chalmers, J.D.; De Soyza, A.; Elborn, J.S.; Floto, R.A.; Grillo, L.; Gruffydd-Jones, K.; Harvey, A.; Haworth, C.S.; et al. British Thoracic Society guideline for bronchiectasis in adults. BMJ Open Respir. Res. 2018, 5, e000348. [Google Scholar] [CrossRef] [Green Version]
- Quon, B.S.; Goss, C.H.; Ramsey, B.W. Inhaled antibiotics for lower airway infections. Ann. Am. Thorac. Soc. 2014, 11, 425–434. [Google Scholar] [CrossRef]
- Abdellatif, S.; Trifi, A.; Daly, F.; Mahjoub, K.; Nasri, R.; Ben Lakhal, S. Efficacy and toxicity of aerosolised colistin in ventilator-associated pneumonia: A prospective, randomised trial. Ann. Intensive Care 2016, 6, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leache, L.; Aquerreta, I.; Aldaz, A.; Monedero, P.; Idoate, A.; Ortega, A. Effectiveness of adjunctive nebulized antibiotics in critically ill patients with respiratory tract infections. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.Y.; Kim, H.S.; Yang, H.J.; Lee, Y.J.; Park, J.S.; Yoon, H.I.; Kim, H.B.; Yim, J.J.; Lee, J.H.; Lee, C.T.; et al. Pilot Study of Aerosolised Plus Intravenous Vancomycin in Mechanically Ventilated Patients with Methicillin-Resistant Staphylococcus Aureus Pneumonia. J. Clin. Med. 2020, 9, 476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rijnders, B.J.; Cornelissen, J.J.; Slobbe, L.; Becker, M.J.; Doorduijn, J.K.; Hop, W.C.; Ruijgrok, E.J.; Lowenberg, B.; Vulto, A.; Lugtenburg, P.J.; et al. Aerosolized liposomal amphotericin B for the prevention of invasive pulmonary aspergillosis during prolonged neutropenia: A randomized, placebo-controlled trial. Clin. Infect. Dis. 2008, 46, 1401–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biller, J.A. Inhaled antibiotics: The new era of personalized medicine? Curr. Opin. Pulm. Med. 2015, 21, 596–601. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-de Castro, J.; Kumate-Rodriguez, J.; Sepulveda, J.; Ramirez-Isunza, J.M.; Valdespino-Gomez, J.L. Measles vaccination by the aerosol method in Mexico. Salud Pública México 1997, 39, 53–60. [Google Scholar]
- Bennett, J.V.; Fernandez de Castro, J.; Valdespino-Gomez, J.L.; Garcia-Garcia Mde, L.; Islas-Romero, R.; Echaniz-Aviles, G.; Jimenez-Corona, A.; Sepulveda-Amor, J. Aerosolized measles and measles-rubella vaccines induce better measles antibody booster responses than injected vaccines: Randomized trials in Mexican schoolchildren. Bull. World Health Organ. 2002, 80, 806–812. [Google Scholar]
- Low, N.; Bavdekar, A.; Jeyaseelan, L.; Hirve, S.; Ramanathan, K.; Andrews, N.J.; Shaikh, N.; Jadi, R.S.; Rajagopal, A.; Brown, K.E.; et al. A randomized, controlled trial of an aerosolized vaccine against measles. N. Engl. J. Med. 2015, 372, 1519–1529. [Google Scholar] [CrossRef] [Green Version]
- Coughlin, M.M.; Beck, A.S.; Bankamp, B.; Rota, P.A. Perspective on Global Measles Epidemiology and Control and the Role of Novel Vaccination Strategies. Viruses 2017, 9, 11. [Google Scholar] [CrossRef] [Green Version]
- Smith, J.H.; Papania, M.; Knaus, D.; Brooks, P.; Haas, D.L.; Mair, R.; Barry, J.; Tompkins, S.M.; Tripp, R.A. Nebulized live-attenuated influenza vaccine provides protection in ferrets at a reduced dose. Vaccine 2012, 30, 3026–3033. [Google Scholar] [CrossRef] [Green Version]
- Hobernik, D.; Bros, M. DNA Vaccines-How Far from Clinical Use? Int. J. Mol. Sci. 2018, 19, 3605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajapaksa, A.E.; Ho, J.J.; Qi, A.; Bischof, R.; Nguyen, T.H.; Tate, M.; Piedrafita, D.; McIntosh, M.P.; Yeo, L.Y.; Meeusen, E.; et al. Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization. Respir. Res. 2014, 15, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birchall, J.C.; Kellaway, I.W.; Gumbleton, M. Physical stability and in-vitro gene expression efficiency of nebulised lipid-peptide-DNA complexes. Int. J. Pharm. 2000, 197, 221–231. [Google Scholar] [CrossRef]
- Nguyen, J.; Reul, R.; Betz, T.; Dayyoub, E.; Schmehl, T.; Gessler, T.; Bakowsky, U.; Seeger, W.; Kissel, T. Nanocomposites of lung surfactant and biodegradable cationic nanoparticles improve transfection efficiency to lung cells. J. Control. Release 2009, 140, 47–54. [Google Scholar] [CrossRef]
- Alton, E.W.F.W.; Armstrong, D.K.; Ashby, D.; Bayfield, K.J.; Bilton, D.; Bloomfield, E.V.; Boyd, A.C.; Brand, J.; Buchan, R.; Calcedo, R.; et al. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: A randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Respir. Med. 2015, 3, 684–691. [Google Scholar] [CrossRef] [Green Version]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.L.; Maruggi, G.; Shan, H.; Li, J.W. Advances in mRNA Vaccines for Infectious Diseases. Front. Immunol. 2019, 10, 594. [Google Scholar] [CrossRef] [Green Version]
- Feldman, R.A.; Fuhr, R.; Smolenov, I.; Mick Ribeiro, A.; Panther, L.; Watson, M.; Senn, J.J.; Smith, M.; Almarsson, Ö.; Pujar, H.S.; et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 2019, 37, 3326–3334. [Google Scholar] [CrossRef]
- Idorn, M.; Thor Straten, P.; Svane, I.M.; Met, O. Transfection of Tumor-Infiltrating T Cells with mRNA Encoding CXCR2. Methods Mol. Biol. 2016, 1428, 261–276. [Google Scholar] [CrossRef]
- Johler, S.M.; Rejman, J.; Guan, S.; Rosenecker, J. Nebulisation of IVT mRNA Complexes for Intrapulmonary Administration. PLoS ONE 2015, 10, e0137504. [Google Scholar] [CrossRef]
- Vencken, S.; Foged, C.; Ramsey, J.M.; Sweeney, L.; Cryan, S.A.; MacLoughlin, R.J.; Greene, C.M. Nebulised lipid-polymer hybrid nanoparticles for the delivery of a therapeutic anti-inflammatory microRNA to bronchial epithelial cells. ERJ Open. Res. 2019, 5. [Google Scholar] [CrossRef] [PubMed]
- Griebel, T.; Zacher, B.; Ribeca, P.; Raineri, E.; Lacroix, V.; Guigo, R.; Sammeth, M. Modelling and simulating generic RNA-Seq experiments with the flux simulator. Nucleic Acids Res. 2012, 40, 10073–10083. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.P.; Weber, K.L.; Carr, K.; Wilkerson, C.; Ohlrogge, J.B. Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing. Plant. Physiol. 2007, 144, 32–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kummarapurugu, A.B.; Afosah, D.K.; Sankaranarayanan, N.V.; Navaz Gangji, R.; Zheng, S.; Kennedy, T.; Rubin, B.K.; Voynow, J.A.; Desai, U.R. Molecular principles for heparin oligosaccharide-based inhibition of neutrophil elastase in cystic fibrosis. J. Biol. Chem. 2018, 293, 12480–12490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, A.C.; Rivero, A.; Ziad, S.; Smith, D.J.; Elamin, E.M. Influence of nebulized unfractionated heparin and N-acetylcysteine in acute lung injury after smoke inhalation injury. J. Burn. Care Res. 2009, 30, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Glas, G.J.; Muller, J.; Binnekade, J.M.; Cleffken, B.; Colpaert, K.; Dixon, B.; Juffermans, N.P.; Knape, P.; Levi, M.M.; Loef, B.G.; et al. HEPBURN—Investigating the efficacy and safety of nebulized heparin versus placebo in burn patients with inhalation trauma: Study protocol for a multi-center randomized controlled trial. Trials 2014, 15, 91. [Google Scholar] [CrossRef] [Green Version]
- Glas, G.J.; Serpa Neto, A.; Horn, J.; Cochran, A.; Dixon, B.; Elamin, E.M.; Faraklas, I.; Dissanaike, S.; Miller, A.C.; Schultz, M.J. Nebulized heparin for patients under mechanical ventilation: An individual patient data meta-analysis. Ann. Intensive Care 2016, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, U.; Bajantri, B.; Roa-Gomez, G.; Cantin, A.; Venkatram, S.K.; Diaz-Fuentes, G. Nebulized Heparin and N-Acetylcysteine for Smoke Inhalational Injury. Am. J. Resp. Crit. Care 2018, 197, e0638. [Google Scholar] [CrossRef]
- Brodier, E.A.; Raithatha, M.; Kannan, S.; Karunasekara, N. Use of nebulised N-acetylcysteine as a life-saving mucolytic in intensive care: A case report. J. Intensive Care Soc. 2019. [Google Scholar] [CrossRef] [Green Version]
- Otu, A.; Langridge, P.; Denning, D.W. Nebulised N-Acetylcysteine for Unresponsive Bronchial Obstruction in Allergic Brochopulmonary Aspergillosis: A Case Series and Review of the Literature. J. Fungi 2018, 4, 117. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Zhu, R.; Shen, J.; Wu, J.; Lu, W.; Zhang, J.; Zhang, J.; Liu, K. Human Bone Marrow Mesenchymal Stem Cells Rescue Endothelial Cells Experiencing Chemotherapy Stress by Mitochondrial Transfer Via Tunneling Nanotubes. Stem Cells Dev. 2019, 28, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.K.; Shen, S.J.; Zheng, J.; Ivy, D.D.; Crotwell, D.N.; Hotz, J.C.; DiBlasi, R.M. Inhaled Treprostinil Drug Delivery During Mechanical Ventilation and Spontaneous Breathing Using Two Different Nebulizers. Ped. Crit. Care Med. 2017, 18, E253–E260. [Google Scholar] [CrossRef] [PubMed]
- Devaney, J.; Horie, S.; Masterson, C.; Elliman, S.; Barry, F.; O’Brien, T.; Curley, G.F.; O’Toole, D.; Laffey, J.G. Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax 2015, 70, 625–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, N.; Krasnodembskaya, A.; Kapetanaki, M.; Mouded, M.; Tan, X.; Serikov, V.; Matthay, M.A. Mesenchymal stem cells enhance survival and bacterial clearance in murine Escherichia coli pneumonia. Thorax 2012, 67, 533–539. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.L.; Kitoko, J.Z.; Xisto, D.G.; Olsen, P.C.; Guedes, H.L.M.; Morales, M.M.; Lopes-Pacheco, M.; Cruz, F.F.; Rocco, P.R.M. Multiple doses of adipose tissue-derived mesenchymal stromal cells induce immunosuppression in experimental asthma. Stem Cells Transl. Med. 2020, 9, 250–260. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.W.; Park, K.S.; Bae, J.Y. Effects of Wharton’s jelly-derived mesenchymal stem cells on chronic obstructive pulmonary disease. Regen. Ther. 2019, 11, 207–211. [Google Scholar] [CrossRef]
- Radwan, S.M.; Ghoneim, D.; Salem, M.; Saeed, M.; Saleh, Y.; Elhamy, M.; Wael, K.; Shokair, O.; Wahdan, S.A. Adipose Tissue-Derived Mesenchymal Stem Cells Protect Against Amiodarone-Induced Lung Injury in Rats. Appl. Biochem. Biotechnol. 2020, 1–15. [Google Scholar] [CrossRef]
- Weiss, D.J.; Casaburi, R.; Flannery, R.; LeRoux-Williams, M.; Tashkin, D.P. A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest 2013, 143, 1590–1598. [Google Scholar] [CrossRef] [Green Version]
- Stessuk, T.; Ruiz, M.A.; Greco, O.T.; Bilaqui, A.; Ribeiro-Paes, M.J.; Ribeiro-Paes, J.T. Phase I clinical trial of cell therapy in patients with advanced chronic obstructive pulmonary disease: Follow-up of up to 3 years. Rev. Bras. Hematol. Hemoter. 2013, 35, 352–357. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.G.; Liu, K.D.; Zhuo, H.; Caballero, L.; McMillan, M.; Fang, X.; Cosgrove, K.; Vojnik, R.; Calfee, C.S.; Lee, J.W.; et al. Mesenchymal stem (stromal) cells for treatment of ARDS: A phase 1 clinical trial. Lancet Respir. Med. 2015, 3, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Huang, L.; Tong, H.; Shu, Q.; Hu, Y.; Ge, M.; Deng, K.; Zhang, L.; Zou, B.; Cheng, B.; et al. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: A randomized, placebo-controlled pilot study. Respir. Res. 2014, 15, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.; Kim, S.; Lim, H.; Liu, A.; Hu, S.; Lee, J.; Zhuo, H.; Hao, Q.; Matthay, M.A.; Lee, J.W. Therapeutic effects of human mesenchymal stem cell microvesicles in an ex vivo perfused human lung injured with severe E. coli pneumonia. Thorax 2019, 74, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Su, V.Y.; Lin, C.S.; Hung, S.C.; Yang, K.Y. Mesenchymal Stem Cell-Conditioned Medium Induces Neutrophil Apoptosis Associated with Inhibition of the NF-kappaB Pathway in Endotoxin-Induced Acute Lung Injury. Int. J. Mol. Sci. 2019, 20, 2208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.; Chang, W.; Meng, S.; Xu, X.; Xie, J.; Guo, F.; Yang, Y.; Qiu, H.; Liu, L. Mesenchymal stem cells induce dendritic cell immune tolerance via paracrine hepatocyte growth factor to alleviate acute lung injury. Stem Cell Res. Ther. 2019, 10, 372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhang, J.; Zhao, L.; Xin, Y.; Liu, S.; Cui, W. Differential roles of microtubules in the two formation stages of membrane nanotubes between human mesenchymal stem cells and neonatal mouse cardiomyocytes. Biochem. Biophys. Res. Commun. 2019, 512, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Matthay, M.A.; Calfee, C.S.; Zhuo, H.; Thompson, B.T.; Wilson, J.G.; Levitt, J.E.; Rogers, A.J.; Gotts, J.E.; Wiener-Kronish, J.P.; Bajwa, E.K.; et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): A randomised phase 2a safety trial. Lancet Respir Med. 2019, 7, 154–162. [Google Scholar] [CrossRef]
- Kim, S.Y.; Burgess, J.K.; Wang, Y.; Kable, E.P.; Weiss, D.J.; Chan, H.K.; Chrzanowski, W. Atomized Human Amniotic Mesenchymal Stromal Cells for Direct Delivery to the Airway for Treatment of Lung Injury. J. Aerosol Med. Pulm. Drug Deliv. 2016, 29, 514–524. [Google Scholar] [CrossRef]
- McCarthy, S.D.; Horgan, E.; Ali, A.; Masterson, C.; Laffey, J.G.; MacLoughlin, R.; O’Toole, D. Nebulized Mesenchymal Stem Cell Derived Conditioned Medium Retains Antibacterial Properties Against Clinical Pathogen Isolates. J. Aerosol Med. Pulm. Drug Deliv. 2019. [Google Scholar] [CrossRef]
- Casciaro, B.; D’Angelo, I.; Zhang, X.; Loffredo, M.R.; Conte, G.; Cappiello, F.; Quaglia, F.; Di, Y.P.; Ungaro, F.; Mangoni, M.L. Poly(lactide-co-glycolide) Nanoparticles for Prolonged Therapeutic Efficacy of Esculentin-1a-Derived Antimicrobial Peptides against Pseudomonas aeruginosa Lung Infection: In Vitro and in Vivo Studies. Biomacromolecules 2019, 20, 1876–1888. [Google Scholar] [CrossRef]
- Vonarburg, C.; Loetscher, M.; Spycher, M.O.; Kropf, A.; Illi, M.; Salmon, S.; Roberts, S.; Steinfuehrer, K.; Campbell, I.; Koernig, S.; et al. Topical application of nebulized human IgG, IgA and IgAM in the lungs of rats and non-human primates. Respir. Res. 2019, 20, 99. [Google Scholar] [CrossRef] [Green Version]
- Skaria, S.D.; Yang, J.; Condos, R.; Smaldone, G.C. Inhaled Interferon and Diffusion Capacity in Idiopathic Pulmonary Fibrosis (IPF). Sarcoidosis Vasc. Diffuse Lung Dis. 2015, 32, 37–42. [Google Scholar] [PubMed]
- Fusiak, T.; Smaldone, G.C.; Condos, R. Pulmonary Fibrosis Treated with Inhaled Interferon-gamma (IFN-gamma). J. Aerosol Med. Pulm. Drug Deliv. 2015, 28, 406–410. [Google Scholar] [CrossRef]
- Lightwood, D.; O’Dowd, V.; Carrington, B.; Veverka, V.; Carr, M.D.; Tservistas, M.; Henry, A.J.; Smith, B.; Tyson, K.; Lamour, S.; et al. The Discovery, Engineering and Characterisation of a Highly Potent Anti-Human IL-13 Fab Fragment Designed for Administration by Inhalation. J. Mol. Biol. 2013, 425, 577–593. [Google Scholar] [CrossRef] [PubMed]
- Maillet, A.; Congy-Jolivet, N.; Le Guellec, S.; Vecellio, L.; Hamard, S.; Courty, Y.; Courtois, A.; Gauthier, F.; Diot, P.; Thibault, G.; et al. Aerodynamical, immunological and pharmacological properties of the anticancer antibody cetuximab. Pharm. Res. 2008, 25, 1318–1326. [Google Scholar] [CrossRef] [PubMed]
- Respaud, R.; Marchand, D.; Parent, C.; Pelat, T.; Thullier, P.; Tournamille, J.F.; Viaud-Massuard, M.C.; Diot, P.; Si-Tahar, M.; Vecellio, L.; et al. Effect of formulation on the stability and aerosol performance of a nebulized antibody. Mabs 2014, 6, 1347–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Respaud, R.; Vecellio, L.; Diot, P.; Heuze-Vourc’h, N. Nebulization as a delivery method for mAbs in respiratory diseases. Expert Opin. Drug Deliv. 2015, 12, 1027–1039. [Google Scholar] [CrossRef] [PubMed]
- Proudfoot, A.; Bayliffe, A.; O’Kane, C.M.; Wright, T.; Serone, A.; Bareille, P.J.; Brown, V.; Hamid, U.I.; Chen, Y.N.; Wilson, R.; et al. Novel anti-tumour necrosis factor receptor-1 (TNFR1) domain antibody prevents pulmonary inflammation in experimental acute lung injury. Thorax 2018, 73, 723–730. [Google Scholar] [CrossRef] [Green Version]
- Dhand, R.; Dolovich, M.; Chipps, B.; Myers, T.R.; Restrepo, R.; Farrar, J.R. The role of nebulized therapy in the management of COPD: Evidence and recommendations. COPD 2012, 9, 58–72. [Google Scholar] [CrossRef]
- Hess, M.W. The 2017 Global Initiative for Chronic Obstructive Lung Disease Report and Practice Implications for the Respiratory Therapist. Respir. Care 2017, 62, 1492–1500. [Google Scholar] [CrossRef]
- Wang, F.; Zheng, H.; Zhang, Y.; Zhu, H.; Shi, J.; Luo, Y.; Zhang, X.; Mao, H.; Herth, F.J.F.; Luo, F. Nebulized Ipratropium bromide protects against tracheal and bronchial secretion during bronchoscopy: A randomized controlled trial. Medicine 2019, 98, e17942. [Google Scholar] [CrossRef]
- Singh, D.; Abbott-Banner, K.; Bengtsson, T.; Newman, K. The short-term bronchodilator effects of the dual phosphodiesterase 3 and 4 inhibitor RPL554 in COPD. Eur. Respir. J. 2018, 52, 1801074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar-Aluma, B.E.; Efrati, O.; Kaufmann, H.; Palma, J.A.; Norcliffe-Kaufmann, L. A Controlled Trial of Inhaled Bronchodilators in Familial Dysautonomia. Lung 2018, 196, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Pham, S.; Ferguson, G.T.; Kerwin, E.; Goodin, T.; Wheeler, A.; Bauer, A. In Vitro Characterization of the eFlow Closed System Nebulizer with Glycopyrrolate Inhalation Solution. J. Aerosol Med. Pulm. Drug. Deliv. 2018, 31, 162–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leaker, B.R.; Singh, D.; Nicholson, G.C.; Hezelova, B.; Goodin, T.; Ozol-Godfrey, A.; Galluppi, G.; Barnes, P.J. Evaluation of systemic absorption and bronchodilator effect of glycopyrronium bromide delivered by nebulizer or a dry powder inhaler in subjects with chronic obstructive pulmonary disease. Respir. Res. 2019, 20, 132. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, G.T.; Goodin, T.; Tosiello, R.; Wheeler, A.; Kerwin, E. Long-term safety of glycopyrrolate/eFlow((R)) CS in moderate-to-very-severe COPD: Results from the Glycopyrrolate for Obstructive Lung Disease via Electronic Nebulizer (GOLDEN) 5 randomized study. Respir. Med. 2017, 132, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, G.T.; Kerwin, E.M.; Donohue, J.F.; Ganapathy, V.; Tosiello, R.L.; Bollu, V.K.; Rajagopalan, K. Health-Related Quality of Life Improvements in Moderate to Very Severe Chronic Obstructive Pulmonary Disease Patients on Nebulized Glycopyrrolate: Evidence from the GOLDEN Studies. Chronic Obstr. Pulm. Dis. 2018, 5, 193–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerwin, E.; Donohue, J.F.; Goodin, T.; Tosiello, R.; Wheeler, A.; Ferguson, G.T. Efficacy and safety of glycopyrrolate/eFlow((R)) CS (nebulized glycopyrrolate) in moderate-to-very-severe COPD: Results from the glycopyrrolate for obstructive lung disease via electronic nebulizer (GOLDEN) 3 and 4 randomized controlled trials. Respir. Med. 2017, 132, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Kerwin, E.M.; Ferguson, G.T.; Mo, M.; DeAngelis, K.; Dorinsky, P. Bone and ocular safety of budesonide/glycopyrrolate/formoterol fumarate metered dose inhaler in COPD: A 52-week randomized study. Respir. Res. 2019, 20, 167. [Google Scholar] [CrossRef] [Green Version]
- Hegde, S.S.; Pulido-Rios, M.T.; Luttmann, M.A.; Foley, J.J.; Hunsberger, G.E.; Steinfeld, T.; Lee, T.; Ji, Y.; Mammen, M.M.; Jasper, J.R. Pharmacological properties of revefenacin (TD-4208), a novel, nebulized long-acting, and lung selective muscarinic antagonist, at human recombinant muscarinic receptors and in rat, guinea pig, and human isolated airway tissues. Pharmacol. Res. Perspect. 2018, 6, e00400. [Google Scholar] [CrossRef]
- Pudi, K.K.; Barnes, C.N.; Moran, E.J.; Haumann, B.; Kerwin, E. A 28-day, randomized, double-blind, placebo-controlled, parallel group study of nebulized revefenacin in patients with chronic obstructive pulmonary disease. Respir. Res. 2017, 18, 182. [Google Scholar] [CrossRef] [Green Version]
- Ishiura, Y.; Fujimura, M.; Ohkura, N.; Hara, J.; Kasahara, K.; Ishii, N.; Sawai, Y.; Shimizu, T.; Tamaki, T.; Nomura, S. Triple Therapy with Budesonide/Glycopyrrolate/Formoterol Fumarate Improves Inspiratory Capacity in Patients with Asthma-Chronic Obstructive Pulmonary Disease Overlap. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 269–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galindo-Filho, V.C.; Alcoforado, L.; Rattes, C.; Paiva, D.N.; Brandao, S.C.S.; Fink, J.B.; De Andrade, A.D. A mesh nebulizer is more effective than jet nebulizer to nebulize bronchodilators during non-invasive ventilation of subjects with COPD: A randomized controlled trial with radiolabeled aerosols. Respir. Med. 2019, 153, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M. Why aren’t we doing better in asthma: Time for personalised medicine? NPJ Prim. Care Respir. Med. 2015, 25, 15004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, P.; Sridhar, S.; Peng, R.; Phillips, J.E.; Cohn, R.G.; Burns, L.; Woods, J.; Ramanujam, M.; Loubeau, M.; Tyagi, G.; et al. Double-stranded RNA induces molecular and inflammatory signatures that are directly relevant to COPD. Mucosal Immunol. 2013, 6, 474–484. [Google Scholar] [CrossRef] [Green Version]
- Franciosi, A.N.; McCarthy, C.; McElvaney, N.G. The efficacy and safety of inhaled human alpha-1 antitrypsin in people with alpha-1 antitrypsin deficiency-related emphysema. Expert Rev. Respir. Med. 2015, 9, 143–151. [Google Scholar] [CrossRef]
- Monk, R.; Graves, M.; Williams, P.; Strange, C. Inhaled alpha 1-antitrypsin: Gauging patient interest in a new treatment. COPD 2013, 10, 411–415. [Google Scholar] [CrossRef]
- Stolk, J.; Tov, N.; Chapman, K.R.; Fernandez, P.; MacNee, W.; Hopkinson, N.S.; Piitulainen, E.; Seersholm, N.; Vogelmeier, C.F.; Bals, R.; et al. Efficacy and safety of inhaled alpha1-antitrypsin in patients with severe alpha1-antitrypsin deficiency and frequent exacerbations of COPD. Eur. Respir. J. 2019, 54, 1900673. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCarthy, S.D.; González, H.E.; Higgins, B.D. Future Trends in Nebulized Therapies for Pulmonary Disease. J. Pers. Med. 2020, 10, 37. https://doi.org/10.3390/jpm10020037
McCarthy SD, González HE, Higgins BD. Future Trends in Nebulized Therapies for Pulmonary Disease. Journal of Personalized Medicine. 2020; 10(2):37. https://doi.org/10.3390/jpm10020037
Chicago/Turabian StyleMcCarthy, Sean D., Héctor E. González, and Brendan D. Higgins. 2020. "Future Trends in Nebulized Therapies for Pulmonary Disease" Journal of Personalized Medicine 10, no. 2: 37. https://doi.org/10.3390/jpm10020037
APA StyleMcCarthy, S. D., González, H. E., & Higgins, B. D. (2020). Future Trends in Nebulized Therapies for Pulmonary Disease. Journal of Personalized Medicine, 10(2), 37. https://doi.org/10.3390/jpm10020037