The Autonomic Nervous System Differentiates between Levels of Motor Intent and End Effector
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.1.1. Participants
2.1.2. Sensor Devices
2.1.3. Experimental Procedure
2.2. Statistical Analysis Overview
2.2.1. Preprocessing
2.2.2. Data Analysis Structure
2.2.3. Challenges of Multilayered Data with Non-Linear Dynamics and Non-Normally Distributed Parameters
2.2.4. Some Solutions to the Challenges
2.2.5. Choice of Kinematics Parameter
2.3. Data Analysis on Kinematics Network Connectivity
- : set of all nodes (composed of 10 body parts)
- : cluster coefficient for node
- : geometric mean of triangles links formed around node
- : number of degrees (links) formed around node
2.4. Data Analysis on Kinematics-Heart Network Connectivity
3. Results
3.1. Higher Motor Intent Results in Higher NSR in Spatial Parameters
3.2. Higher Motor Intent Results in Higher Cross-Correlations and Clustering of Temporal Parameters
3.3. Kinematics and EKG (Heart) Signals Show Larger Stochastic Differences for Higher Motor Intent and Control
3.4. EKG Leads Kinematics under Higher Motor Intent, but Opposite Pattern Emerges in Spontaneous Motions Requiring Less Motor Intent
4. Discussion
4.1. The Autonomic Nervous System Differentiates across Levels of Motor Intent: Implications for Computational Models and Basic Cognitive Neuroscience
4.2. Distinguishing Performing vs. Non-Performing End Effector
4.3. Implications of the Results for Translational Cognitive Science
Author Contributions
Funding
Conflicts of Interest
Appendix A
Cluster Coefficient | Cross-Correlation | ||||||||
---|---|---|---|---|---|---|---|---|---|
Subject ID | F vs. B | P vs. NP | Subject ID | F vs. B | P vs. NP | ||||
KS-stat | p | KS-stat | p | KS-stat | p | KS-stat | p | ||
P01 | 0.29 | <0.01 ** | 0.16 | <0.01 ** | P01 | 0.14 | <0.01 ** | 0.40 | <0.01 ** |
P02 | 0.55 | <0.01 ** | 0.57 | <0.01 ** | P02 | 0.55 | <0.01 ** | 0.57 | <0.01 ** |
P03 | 0.38 | <0.01 ** | 0.16 | <0.01 ** | P03 | 0.38 | <0.01 ** | 0.16 | <0.01 ** |
P04 | 0.09 | <0.01 ** | 0.09 | <0.01 ** | P04 | 0.09 | <0.01 ** | 0.09 | <0.01 ** |
P05 | 0.14 | <0.01 ** | 0.26 | <0.01 ** | P05 | 0.14 | <0.01 ** | 0.26 | <0.01 ** |
P06 | 0.17 | <0.01 ** | 0.28 | <0.01 ** | P06 | 0.17 | <0.01 ** | 0.28 | <0.01 ** |
P07 | 0.35 | <0.01 ** | 0.41 | <0.01 ** | P07 | 0.35 | <0.01 ** | 0.41 | <0.01 ** |
P08 | 0.13 | <0.01 ** | 0.35 | <0.01 ** | P08 | 0.13 | <0.01 ** | 0.35 | <0.01 ** |
References
- Abrahamson, D.; Sánchez-García, R. Learning Is Moving in New Ways: The Ecological Dynamics of Mathematics Education. J. Learn. Sci. 2016, 25, 203–239. [Google Scholar] [CrossRef]
- Maturana, H.R.; Varela, F.J. Autopoiesis and Cognition: The Realization of the Living; Boston studies in the philosophy of science; D. Reidel Publishing Company: Boston, MA, USA, 1980; p. 141. [Google Scholar]
- Newen, A. The Embodied Self, the Pattern Theory of Self, and the Predictive Mind. Front. Psychol. 2018, 9, 2270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- David, N.; Newen, A.; Vogeley, K. The “sense of agency” and its underlying cognitive and neural mechanisms. Conscious. Cogn. 2008, 17, 523–534. [Google Scholar] [CrossRef] [PubMed]
- Frith, C.D. Action, agency and responsibility. Neuropsychologia 2014, 55, 137–142. [Google Scholar] [CrossRef]
- Synofzik, M.; Vosgerau, G.; Newen, A. I move, therefore I am: A new theoretical framework to investigate agency and ownership. Conscious Cogn. 2008, 17, 411–424. [Google Scholar] [CrossRef] [Green Version]
- Tsakiris, M.; Hesse, M.D.; Boy, C.; Haggard, P.; Fink, G.R. Neural Signatures of Body Ownership: A Sensory Network for Bodily Self-Consciousness. Cereb. Cortex 2007, 17, 2235–2244. [Google Scholar] [CrossRef]
- Tsakiris, M.; Prabhu, G.; Haggard, P. Having a body versus moving your body: How agency structures body-ownership. Conscious. Cogn. 2006, 15, 423–432. [Google Scholar] [CrossRef]
- Haggard, P.; Wing, A. On the Hand Transport Component of Prehensile Movements. J. Mot. Behav. 1997, 29, 282–287. [Google Scholar] [CrossRef]
- Toni, I.; Thoenissen, D.; Zilles, K. Movement Preparation and Motor Intention. NeuroImage 2001, 14, S110–S117. [Google Scholar] [CrossRef]
- Burin, D.; Livelli, A.; Garbarini, F.; Fossataro, C.; Folegatti, A.; Gindri, P.; Pia, L. Are Movements Necessary for the Sense of Body Ownership? Evidence from the Rubber Hand Illusion in Pure Hemiplegic Patients. PLoS ONE 2015, 10, e0117155. [Google Scholar] [CrossRef]
- Della Gatta, F.; Garbarini, F.; Puglisi, G.; Leonetti, A.; Berti, A.; Borroni, P.A. Decreased motor cortex excitability mirrors own hand disembodiment during the rubber hand illusion. eLife 2016, 5, e14972. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.B. Two classes of movements in motor control. Exp. Brain Res. 2011, 215, 269–283. [Google Scholar] [CrossRef] [PubMed]
- Torres, E.B. Signatures of movement variability anticipate hand speed according to levels of intent. Behav. Brain Funct. 2013, 9, 10. [Google Scholar] [CrossRef] [Green Version]
- Torres, E.B.; Brincker, M.; Isenhower, R.W.I.; Yanovich, P.; Stigler, K.A.; Nurnberger, J.I.J.; Metaxas, D.N.; José, J.V. Autism: The micro-movement perspective. Front. Integr. Neurosci. 2013, 7, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, J.; Torres, E.B. Characterization of Sensory-Motor Behavior Under Cognitive Load Using a New Statistical Platform for Studies of Embodied Cognition. Front. Hum. Neurosci. 2018, 12, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, N.A. The Coordination and Regulation of Movements; Pergamon Press: London, UK, 1967. [Google Scholar]
- Torres, E.B.; Lande, B. Objective and personalized longitudinal assessment of a pregnant patient with post severe brain trauma. Front. Hum. Neurosci. 2015, 9, 128. [Google Scholar] [CrossRef] [Green Version]
- Torres, E.B.; Smith, B.; Mistry, S.; Brincker, M.; Whyatt, C. Neonatal Diagnostics: Toward Dynamic Growth Charts of Neuromotor Control. Front. Pediatr. 2016, 4, 121. [Google Scholar] [CrossRef] [Green Version]
- Kalampratsidou, V.; Torres, E.B. Peripheral Network Connectivity Analyses for the Real-Time Tracking of Coupled Bodies in Motion. Sensors 2018, 18, 3117. [Google Scholar] [CrossRef] [Green Version]
- Torres, E.B.; Zipser, D. Reaching to Grasp with a Multi-Jointed Arm. I. Computational Model. J. Neurophysiol. 2002, 88, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Scholz, J.P.; Schöner, G. The uncontrolled manifold concept: Identifying control variables for a functional task. Exp. Brain Res. 1999, 126, 289–306. [Google Scholar] [CrossRef]
- Latash, M.L.; Scholz, J.P.; Schöner, G. Motor Control Strategies Revealed in the Structure of Motor Variability. Exerc. Sport Sci. Rev. 2002, 30, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Von Holst, E.; Mittelstaedt, H. The principle of reafference: Interactions between the central nervous system and the peripheral organs. In Perceptual Processing: Stimulus Equivalence and Pattern Recognition; Dodwell, P.C., Ed.; Appleton-Century-Crofts: New York, NY, USA, 1950; pp. 41–72. [Google Scholar]
- Kawato, M.; Wolpert, D. Internal models for motor control. Novartis Found. Symp. 1998, 218, 291–304. [Google Scholar]
- Wolpert, D.M.; Miall, R.C.; Kawato, M. Internal models in the cerebellum. Trends Cogn. Sci. 1998, 2, 338–347. [Google Scholar] [CrossRef]
- Torres, E.B.; Heilman, K.M.; Poizner, H. Impaired endogenously evoked automated reaching in Parkinson’s disease. J. Neurosci. 2011, 31, 17848–17863. [Google Scholar] [CrossRef] [Green Version]
- Torres, E.B.; Yanovich, P.; Metaxas, D.N. Give spontaneity and self-discovery a chance in ASD: Spontaneous peripheral limb variability as a proxy to evoke centrally driven intentional acts. Front. Integr. Neurosci. 2013, 7, 46. [Google Scholar] [CrossRef] [Green Version]
- Torres, E.B. Theoretical Framework for the Study of Sensori-motor Integration. Ph.D. Thesis, University of California, San Diego, CA, USA, 2001; p. 115. [Google Scholar]
- Atkeson, C.G.; Hollerbach, J.M. Kinematics Features of unrestrained vertical arm movements. J. Neurosci. 1985, 5, 2318–2330. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, K.C.; Murray, S.T.; Flanders, M. Do arm postures vary with the speed of reaching? J. Neurophysiol. 1999, 81, 2582–2586. [Google Scholar] [CrossRef] [Green Version]
- Torres, E.B.; Zipser, D. Simultaneous control of hand displacements and rotations in orientation-matching experiments. J. Appl. Physiol. 2004, 96, 1978–1987. [Google Scholar] [CrossRef] [Green Version]
- Torres, E.; Andersen, R. Space-time separation during obstacle-avoidance learning in monkeys. J. Neurophysiol. 2006, 96, 2613–2932. [Google Scholar] [CrossRef] [Green Version]
- Torres, E.B. New symmetry of intended curved reaches. Behav. Brain Funct. 2010, 6, 21. [Google Scholar] [CrossRef] [Green Version]
- Kalampratsidou, V.; Torres, E.B. Sonification of heart rate variability can entrain bodies in motion. In Proceedings of the 7th International Symposium on Movement and Computing, Jersey City, NJ, USA, 15–17 July 2020; ACM: New York, NY, USA, 2020. [Google Scholar] [CrossRef]
- Yanovich, P.; Isenhower, R.W.; Sage, J.; Torres, E.B. Spatial-Orientation Priming Impedes Rather than Facilitates the Spontaneous Control of Hand-Retraction Speeds in Patients with Parkinson’s Disease. PLoS ONE 2013, 8, e66757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kathirvel, P.; Sabarimalai Manikandan, M.; Prasanna, S.R.M.; Soman, K.P. An efficient R-peak detection based on new nonlinear transformation and first-order Gaussian differentiator. Cardiovasc. Eng. Technol. 2011, 2, 408–425. [Google Scholar] [CrossRef]
- Torres, E.B.; Isenhower, R.W.; Nguyen, J.; Whyatt, C.; Nurnberger, J.I.; José, J.V.; Silverstein, S.M.; Papathomas, T.V.; Sage, J.; Cole, J. Toward Precision Psychiatry: Statistical Platform for the Personalized Characterization of Natural Behaviors. Front. Neurol. 2016, 7, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, E.B. Atypical signatures of motor variability found in an individual with ASD. Neurocase 2013, 19, 150–165. [Google Scholar] [CrossRef]
- Mosimann, J.E. Size allometry: Size and shape variables with characterizations of the lognormal and generalized gamma distributions. J. Am. Stat. Assoc. 1970, 65, 930–945. [Google Scholar] [CrossRef]
- Lleonart, J.; Salat, J.; Torres, G.J. Removing allometric effects of body size in morphological analysis. J. Theor. Biol. 2000, 205, 85–93. [Google Scholar] [CrossRef]
- Monge, G. Memoire sur la theorie des deblais et des remblais. In Histoire de l’ Academie Royale des Science; Avec les Memoired de Mathematique et de Physique; De L’imprimerie Royale: Paris, France, 1781. [Google Scholar]
- Arjovsky, M.; Chintala, S.; Bottou, L. Wasserstein Generative Adversarial Networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017. [Google Scholar]
- Rubner, Y.; Tomasi, C.; Guibas, L.J. A Metric for Distributions with Applications to Image Databases. In Proceedings of the Sixth International Conference on Computer Vision, Bombay, India, 7 January 1998; p. 59. [Google Scholar]
- McClelland, J.; Koslicki, D. EMDUniFrac: Exact linear time computation of the UniFrac metric and identification of differentially abundant organisms. J. Math. Boil. 2018, 77, 935–949. [Google Scholar] [CrossRef] [Green Version]
- Freedman, D.; Diaconis, P. On the histogram as a density estimator: L 2 theory. Z. Wahrscheinlichkeitstheorie verw Geb. 1981, 57, 453–476. [Google Scholar] [CrossRef] [Green Version]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’networks. Nature 1998, 393, 440. [Google Scholar] [CrossRef]
- Onnela, J.P.; Saramäki, J.; Kertész, J.; Kaski, K. Intensity and coherence of motifs in weighted complex networks. Phys. Rev. E 2005, 71, 065103. [Google Scholar] [CrossRef] [Green Version]
- Rubinov, M.; Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 2010, 52, 1059–1069. [Google Scholar] [CrossRef] [PubMed]
- Todorov, E. Stochastic optimal control and estimation methods adapted to the noise characteristics of the sensorimotor system. Neural Comput. 2005, 17, 1084–1088. [Google Scholar] [CrossRef]
- Torres, E.B. Objective Biometric Methods for the Diagnosis and Treatment of Nervous System Disorder. Elsevier 2018, 580. [Google Scholar]
- Ryu, J.; Vero, J.; Torres, E.B. Methods for Tracking Dynamically Coupled Brain-Body Activities during Natural Movement. In Proceedings of the MOCO ’17 4th International Conference on Movement Computing, London, UK, 28–30 June 2017; ACM: New York, NY, USA, 2017. [Google Scholar]
- Ryu, J.; Vero, J.; Dobkin, R.D.; Torres, E.B. Dynamic Digital Biomarkers of Motor and Cognitive Function in Parkinson’s Disease. J. Vis. Exp. 2019, 149, e59827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, J.; Majmudar, U.; Papathomas, T.V.; Silverstein, S.M.; Torres, E.B. Schizophrenia: The micro-movements perspective. Neuropsychologia 2016, 85, 310–326. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; José, J.V.; Nurnberger, J.I.; Torres, E.B. A Biomarker Characterizing Neurodevelopment with applications in Autism. Sci. Rep. 2018, 8, 614. [Google Scholar] [CrossRef] [Green Version]
Kinematics (AA) Network | |||||
Forward | Backward | Performing | Non-Performing | ||
Spatial | NSR AA | o | o | ||
NSR AA Diff | o | ||||
Temporal | Cross-Correlation | Δ | o | ||
Cluster Coefficient | o | Δ | |||
Kinematics (LS)-Heart Network | |||||
Forward | Backward | Performing | Non-Performing | ||
Spatial | EMD | Δ (P) 2 | - | Δ (F) 3 | o (B) 4 |
Temporal | Cross-Correlation | Δ | o | ||
Lead *,5 | EKG | LS | EKG | LS |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryu, J.; Torres, E. The Autonomic Nervous System Differentiates between Levels of Motor Intent and End Effector. J. Pers. Med. 2020, 10, 76. https://doi.org/10.3390/jpm10030076
Ryu J, Torres E. The Autonomic Nervous System Differentiates between Levels of Motor Intent and End Effector. Journal of Personalized Medicine. 2020; 10(3):76. https://doi.org/10.3390/jpm10030076
Chicago/Turabian StyleRyu, Jihye, and Elizabeth Torres. 2020. "The Autonomic Nervous System Differentiates between Levels of Motor Intent and End Effector" Journal of Personalized Medicine 10, no. 3: 76. https://doi.org/10.3390/jpm10030076
APA StyleRyu, J., & Torres, E. (2020). The Autonomic Nervous System Differentiates between Levels of Motor Intent and End Effector. Journal of Personalized Medicine, 10(3), 76. https://doi.org/10.3390/jpm10030076