Prediction of Coronary Artery Calcium Score Using Machine Learning in a Healthy Population
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Data Collection
2.3. Coronary Artery Calcium Score
2.4. Machine Learning
2.5. Statistical Methods
3. Results
3.1. Predictors of High Coronary Artery Calcium Score
3.2. Performance of Machine Learning Classifier of High Coronary Artery Calcium Score
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kunutsor, S.K.; Apekey, T.A.; Khan, H. Liver enzymes and risk of cardiovascular disease in the general population: A meta-analysis of prospective cohort studies. Atherosclerosis 2014, 236, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Cini, K.; Dong, B.; Ma, Y.; Ma, J.; Burgner, D.P.; Patton, G.C. Time trends in cardiovascular disease mortality across the BRICS. Circulation 2020, 141, 790–799. [Google Scholar] [CrossRef] [PubMed]
- Lo-Kioeng-Shioe, M.S.; Rijlaarsdam-Hermsen, D.; van Domburg, R.T.; Hadamitzky, M.; Lima, J.A.; Hoeks, S.E.; Deckers, J.W. Prognostic value of coronary artery calcium score in symptomatic individuals: A meta-analysis of 34,000 subjects. Int. J. Cardiol. 2020, 299, 56–62. [Google Scholar] [CrossRef]
- Polonsky, T.S.; McClelland, R.L.; Jorgensen, N.W.; Bild, D.E.; Burke, G.L.; Guerci, A.D.; Greenland, P. Coronary artery calcium score and risk classification for coronary heart disease prediction. JAMA 2010, 303, 1610. [Google Scholar] [CrossRef]
- LaMonte, M.J.; Fitzgerald, S.J.; Church, T.S.; Barlow, C.E.; Radford, N.B.; Levine, B.D.; Pippin, J.J.; Gibbons, L.W.; Blair, S.N.; Nichaman, M.Z. Coronary artery calcium score and coronary heart disease events in a large cohort of asymptomatic men and women. Am. J. Epidemiol. 2005, 162, 421–429. [Google Scholar] [CrossRef]
- Greenland, P.; LaBree, L.; Azen, S.P.; Doherty, T.M.; Detrano, R. Coronary artery calcium score combined with framingham score for risk prediction in asymptomatic individuals. JAMA 2004, 291, 210–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madhavan, M.V.; Tarigopula, M.; Mintz, G.S.; Maehara, A.; Stone, G.W.; Généreux, P. Coronary artery calcification. J. Am. Coll. Cardiol. 2014, 63, 1703–1714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muniasamy, V.; Tabassam, S.; Hussain, M.A.; Sultana, H.; Muniasamy, V.; Bhatnagar, R. Deep learning for predictive analytics in healthcare. In Proceedings of the International Conference on Advanced Machine Learning Technologies and Applications, Cairo, Egypt, 28–30 March 2019; pp. 32–42. [Google Scholar]
- Lessmann, N.; Van Ginneken, B.; Zreik, M.; De Jong, P.A.; De Vos, B.D.; Viergever, M.A.; Išgum, I. Automatic calcium scoring in low-dose chest ct using deep neural networks with dilated convolutions. IEEE Trans. Med. Imaging 2018, 37, 615–625. [Google Scholar] [CrossRef] [Green Version]
- Wolterink, J.M.; Leiner, T.; Viergever, M.A.; Isgum, I. Automatic coronary calcium scoring in cardiac ct angiography using convolutional neural networks. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; Volume 9349, pp. 589–596. [Google Scholar]
- Al’Aref, S.J.; Maliakal, G.; Singh, G.; Van Rosendael, A.R.; Ma, X.; Xu, Z.; Alawamlh, O.A.H.; Lee, B.; Pandey, M.; Achenbach, S.; et al. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: Analysis from the CONFIRM registry. Eur. Heart J. 2019, 41, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Alaa, A.M.; Bolton, T.; Di Angelantonio, E.; Rudd, J.H.F.; Van Der Schaar, M. Cardiovascular disease risk prediction using automated machine learning: A prospective study of 423,604 UK Biobank participants. PLoS ONE 2019, 14, e0213653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quesada, J.A.; López-Pineda, A.; Gil-Guillén, V.F.; Durazo-Arvizu, R.; Orozco-Beltrán, D.; Domenech, A.L.; Carratalá-Munuera, C. Machine learning to predict cardiovascular risk. Int. J. Clin. Pract. 2019, 73, e13389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyon, I.; Sun-Hosoya, L.; Boullé, M.; Escalante, H.J.; Escalera, S.; Liu, Z.; Jajetic, D.; Ray, B.; Saeed, M.; Sebag, M.; et al. Automated Machine Learning; Analysis of the AutoML Challenge Series 2015–2018; Springer: Cham, Switzerland, 2019; p. 177. [Google Scholar]
- Agatston, A.S.; Janowitz, W.R.; Hildner, F.J.; Zusmer, N.R.; Viamonte, M.; Detrano, R. Quantification of coronary artery calcium using ultrafast computed tomography. J. Am. Coll. Cardiol. 1990, 15, 827–832. [Google Scholar] [CrossRef] [Green Version]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. Catboost: Unbiased boosting with categorical features. In Advances in Neural Information Processing Systems; Neural Information Processing Systems (NIPS), Inc.: San Diego, CA, USA, 2018; pp. 6638–6648. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 2016, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Al Daoud, E. Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset. Int. J. Comput. Inform. Eng. 2019, 13, 6–10. [Google Scholar]
- Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Merz, C.N.B.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults. Circulation 2013, 129, S1–S45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, P.W.F.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B.; D’Agostino, R.B. Prediction of coronary heart disease using risk factor categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClelland, R.L.; Jorgensen, N.W.; Budoff, M.; Blaha, M.J.; Post, W.S.; Kronmal, R.A.; Bild, D.E.; Shea, S.; Liu, K.; Watson, K.E.; et al. 10-year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: Derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Study). J. Am. Coll. Cardiol. 2015, 66, 1643–1653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diamond, G.A.; Forrester, J.S. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N. Engl. J. Med. 1979, 300, 1350–1358. [Google Scholar] [CrossRef]
- Genders, T.S.S.; Steyerberg, E.; Hunink, M.G.M.; Nieman, K.; Galema, T.W.; Mollet, N.R.; De Feyter, P.J.; Krestin, G.P.; Alkadhi, H.; Leschka, S.; et al. Prediction model to estimate presence of coronary artery disease: Retrospective pooled analysis of existing cohorts. BMJ 2012, 344, e3485. [Google Scholar] [CrossRef] [Green Version]
- Hadamitzky, M.; Achenbach, S.; Al-Mallah, M.H.; Berman, D.; Budoff, M.; Cademartiri, F.; Callister, T.; Chang, H.-J.; Cheng, V.; Chinnaiyan, K.; et al. Optimized prognostic score for coronary computed tomographic angiography. J. Am. Coll. Cardiol. 2013, 62, 468–476. [Google Scholar] [CrossRef] [Green Version]
- Baskaran, L.; Danad, I.; Gransar, H.; Hartaigh, B.Ó.; Schulman-Marcus, J.; Lin, F.Y.; Peña, J.M.; Hunter, A.; Newby, D.E.; Adamson, P.D.; et al. A comparison of the updated diamond-forrester, CAD Consortium, and CONFIRM history-based risk scores for predicting obstructive coronary artery disease in patients with stable chest pain. JACC Cardiovasc. Imaging 2019, 12, 1392–1400. [Google Scholar] [CrossRef]
- Cho, I.; Chang, H.-J.; Hartaigh, B.Ó.; Shin, S.; Sung, J.M.; Lin, F.Y.; Achenbach, S.; Heo, R.; Berman, D.S.; Budoff, M.J.; et al. Incremental prognostic utility of coronary CT angiography for asymptomatic patients based upon extent and severity of coronary artery calcium: Results from the COronary CT Angiography EvaluatioN for Clinical Outcomes InteRnational Multicenter (CONFIRM) Study. Eur. Heart J. 2014, 36, 501–508. [Google Scholar] [CrossRef] [Green Version]
- Nogueira, A.A.; Mc Strunz, C.; Takada, J.Y.; Mansur, A.P. Biochemical markers of muscle damage and high serum concentration of creatine kinase in patients on statin therapy. Biomark. Med. 2019, 13, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Wu, Q.; Guo, J.; Ares, I.; Rodríguez, J.-L.; Martínez-Larrañaga, M.-R.; Yuan, Z.; Anadón, A.; Wang, X.; Martínez, M.-A. Statins: Adverse reactions, oxidative stress and metabolic interactions. Pharmacol. Ther. 2019, 195, 54–84. [Google Scholar] [CrossRef]
- Zhang, Z. Model building strategy for logistic regression: Purposeful selection. Ann. Transl. Med. 2016, 4, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caruana, R.; Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. In Proceedings of the 23rd International Conference on Intelligent User Interfaces Companion, Pittsburgh, PA, USA, 25–29 June 2006; Association for Computing Machinery (ACM): New York, NY, USA, 2006; pp. 161–168. [Google Scholar]
- Torlay, L.; Perrone-Bertolotti, M.; Thomas, E.; Baciu, M. Machine learning-XGBoost analysis of language networks to classify patients with epilepsy. Brain Inform. 2017, 4, 159–169. [Google Scholar] [CrossRef] [PubMed]
Low CACS (n = 1896) | High CACS (n = 237) | Total (n = 2133) | p Value | |
---|---|---|---|---|
Age, years | 54.0 ± 10.8 | 66.2 ± 9.5 | 55.4 ± 11.3 | <0.001 |
Male | 1300 (68.6) | 183 (77.2) | 1483 (69.5) | 0.008 |
Height, cm | 166.3 ± 8.8 | 164.6 ± 9.0 | 166.1 ± 8.8 | 0.007 |
Weight, Kg | 69.2 ± 11.9 | 68.1 ± 11.0 | 69.1 ± 11.8 | 0.187 |
Abdominal circumference, cm | 85.2 ± 9.2 | 87.0 ± 8.8 | 85.4 ± 9.2 | 0.004 |
BMI, Kg/m2 | 24.9 ± 3.0 | 25.0 ± 2.9 | 24.9 ± 3.0 | 0.514 |
BP systolic, mmHg | 120.8 ± 14.3 | 128.0 ± 15.5 | 121.6 ± 14.6 | <0.001 |
BP diastolic, mmHg | 73.3 ± 11.2 | 74.8 ± 10.9 | 73.4 ± 11.1 | 0.047 |
hsCRP, IU/L | 1.3 ± 2.4 | 1.2 ± 2.3 | 1.3 ± 2.4 | 0.764 |
FBS, mg/dL | 102.0 ± 24.0 | 111.4 ± 30.5 | 103.1 ± 25.0 | <0.001 |
A1c, % | 5.6 ± 0.8 | 5.9 ± 0.9 | 5.7 ± 0.8 | <0.001 |
Bilirubin (total), mg/dL | 0.9 ± 0.3 | 0.8 ± 0.3 | 0.9 ± 0.4 | 0.014 |
Bilirubin (direct), mg/dL | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.2 ± 0.1 | 0.023 |
gamma-GT, IU/L | 44.4 ± 59.3 | 48.1 ± 66.0 | 44.8 ± 60.1 | 0.408 |
ALP, IU/L | 72.4 ± 25.1 | 73.3 ± 25.4 | 72.5 ± 25.2 | 0.572 |
LDH, IU/L | 217.1 ± 83.2 | 233.7 ± 81.6 | 219.0 ± 83.2 | 0.004 |
AST, IU/L | 28.7 ± 29.6 | 31.1 ± 15.4 | 28.9 ± 28.4 | 0.041 |
ALT, IU/L | 31.0 ± 43.0 | 29.9 ± 22.0 | 30.9 ± 41.3 | 0.523 |
BUN, mg/dL | 13.5 ± 3.3 | 14.8 ± 3.8 | 13.6 ± 3.3 | <0.001 |
Creatinine, mg/dL | 0.9 ± 0.3 | 0.9 ± 0.2 | 0.9 ± 0.3 | 0.015 |
eGFR, mL/min | 85.8 ± 27.3 | 77.9 ± 25.6 | 84.9 ± 27.2 | <0.001 |
Total cholesterol, mg/dL | 195.5 ± 38.1 | 184.1 ± 42.5 | 194.2 ± 38.8 | <0.001 |
TG, mg/dL | 145.0 ± 100.3 | 135.3 ± 86.7 | 144.0 ± 100.0 | 0.112 |
HDL, mg/dL | 52.5 ± 13.1 | 52.1 ± 12.2 | 52.5 ± 13.0 | 0.610 |
LDL, mg/dL | 110.4 ± 51.4 | 85.5 ± 58.1 | 107.6 ± 52.7 | <0.001 |
WBC, 103/μL | 5.7 ± 1.5 | 5.7 ± 1.6 | 5.7 ± 1.5 | 0.918 |
Hemoglobin, g/dL | 14.7 ± 1.4 | 14.6 ± 1.5 | 14.7 ± 1.5 | 0.122 |
MCV, fL | 91.6 ± 4.3 | 92.5 ± 4.2 | 91.7 ± 4.3 | 0.001 |
Platelet count, 103/μL | 243.3 ± 49.4 | 233.5 ± 44.6 | 242.2 ± 49.0 | 0.002 |
CACS * | <0.001 |
Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|
OR (95%CI) | p Value | OR (95%CI) | p Value | |
Age, years | 1.12 (1.10–1.13) | <0.001 | 1.12 (1.10–1.15) | <0.001 |
Male | 1.55 (1.13–2.14) | 0.007 | 2.93 (1.59–5.40) | <0.001 |
Height, cm | 0.98 (0.96–0.99) | 0.007 | 0.95 (0.82–1.10) | 0.488 |
Weight, Kg | 0.99 (0.98–1.00) | 0.188 | 1.06 (0.89–1.27) | 0.507 |
Abdominal circumference, cm | 1.02 (1.01–1.04) | 0.004 | 1.02 (0.99–1.06) | 0.168 |
BMI, Kg/m2 | 1.01 (0.97–1.06) | 0.514 | 0.80 (0.49–1.30) | 0.367 |
BP systolic, mmHg | 1.03 (1.02–1.04) | <0.001 | 1.02 (1.00–1.03) | 0.022 |
BP diastolic, mmHg | 1.01 (1.00–1.02) | 0.047 | 1.01 (0.99–1.03) | 0.475 |
hsCRP, IU/L | 0.99 (0.93–1.05) | 0.758 | 0.95 (0.88–1.03) | 0.193 |
FBS, mg/dL | 1.01 (1.01–1.02) | <0.001 | 1.01 (1.00–1.01) | 0.070 |
A1c, % | 1.41 (1.23–1.61) | <0.001 | 1.06 (0.82–1.36) | 0.676 |
Bilirubin (total), mg/dL | 0.63 (0.41–0.97) | 0.036 | 0.84 (0.35–2.03) | 0.705 |
Bilirubin (direct), mg/dL | 0.24 (0.06–0.99) | 0.049 | 0.68 (0.04–10.92) | 0.787 |
gamma-GT, IU/L | 1.00 (1.00–1.00) | 0.370 | 1.00 (1.00–1.00) | 0.254 |
ALP, IU/L | 1.00 (1.00–1.01) | 0.572 | 1.00 (0.99–1.00) | 0.182 |
LDH, IU/L | 1.00 (1.00–1.00) | 0.004 | 1.00 (1.00–1.00) | 0.812 |
AST, IU/L | 1.00 (1.00–1.01) | 0.260 | 1.01 (0.99–1.02) | 0.308 |
ALT, IU/L | 1.00 (0.99–1.00) | 0.697 | 0.99 (0.98–1.00) | 0.298 |
BUN, mg/dL | 1.12 (1.08–1.16) | <0.001 | 1.05 (1.00–1.10) | 0.067 |
Creatinine, mg/dL | 1.39 (0.93–2.09) | 0.105 | 1.17 (0.71–1.91) | 0.538 |
eGFR, mL/min | 0.99 (0.99–0.99) | <0.001 | 1.00 (1.00–1.01) | 0.268 |
Total cholesterol, mg/dL | 0.99 (0.99–1.00) | <0.001 | 1.00 (1.00–1.01) | 0.882 |
TG, mg/dL | 1.00 (1.00–1.00) | 0.155 | 1.00 (1.00–1.00) | 0.438 |
HDL, mg/dL | 1.00 (0.99–1.01) | 0.676 | 0.99 (0.97–1.00) | 0.094 |
LDL, mg/dL | 0.00 (0.99–0.99) | <0.001 | 1.00 (0.99–1.00) | 0.047 |
WBC, 103/μL | 1.00 (0.92–1.10) | 0.918 | 1.04 (0.94–1.15) | 0.444 |
Hemoglobin, g/dL | 0.93 (0.85–1.02) | 0.122 | 0.94 (0.81–1.10) | 0.446 |
MCV, fL | 1.06 (1.02–1.09) | 0.001 | 1.01 (0.97–1.05) | 0.627 |
Platelet count, 103/μL | 1.00 (0.99–1.00) | 0.004 | 1.00 (1.00–1.00) | 0.478 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Lim, J.-S.; Chu, Y.; Lee, C.H.; Ryu, O.-H.; Choi, H.H.; Park, Y.S.; Kim, C. Prediction of Coronary Artery Calcium Score Using Machine Learning in a Healthy Population. J. Pers. Med. 2020, 10, 96. https://doi.org/10.3390/jpm10030096
Lee J, Lim J-S, Chu Y, Lee CH, Ryu O-H, Choi HH, Park YS, Kim C. Prediction of Coronary Artery Calcium Score Using Machine Learning in a Healthy Population. Journal of Personalized Medicine. 2020; 10(3):96. https://doi.org/10.3390/jpm10030096
Chicago/Turabian StyleLee, Jongseok, Jae-Sung Lim, Younggi Chu, Chang Hee Lee, Ohk-Hyun Ryu, Hyun Hee Choi, Yong Soon Park, and Chulho Kim. 2020. "Prediction of Coronary Artery Calcium Score Using Machine Learning in a Healthy Population" Journal of Personalized Medicine 10, no. 3: 96. https://doi.org/10.3390/jpm10030096
APA StyleLee, J., Lim, J. -S., Chu, Y., Lee, C. H., Ryu, O. -H., Choi, H. H., Park, Y. S., & Kim, C. (2020). Prediction of Coronary Artery Calcium Score Using Machine Learning in a Healthy Population. Journal of Personalized Medicine, 10(3), 96. https://doi.org/10.3390/jpm10030096