False Alarms in Consumer Genomics Add to Public Fear and Potential Health Care Burden
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Regalado, A. More than 26 million people have taken an at-home ancestry test. MIT Technol. Rev. 2019. Available online: https://www.technologyreview.com/2019/02/11/103446/more-than-26-million-people-have-taken-an-at-home-ancestry-test/ (accessed on 25 June 2019).
- Nelson, S.C.; Bowen, D.J.; Fullerton, S.M. Third-Party Genetic Interpretation Tools: A Mixed-Methods Study of Consumer Motivation and Behavior. Am. J. Hum. Genet. 2019, 105, 122–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moscarello, T.; Murray, B.; Reuter, C.M.; Demo, E. Direct-to-consumer raw genetic data and third-party interpretation services: More burden than bargain? Genet. Med. 2018, 21, 539–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoltick, E.S.; Linderman, M.D.; McGinniss, M.A.; Ramos, E.; Ball, M.P.; Church, G.M.; Leonard, D.G.B.; Pereira, S.; McGuire, A.L.; Thomas Caskey, C.; et al. Predispositional genome sequencing in healthy adults: Design, participant characteristics, and early outcomes of the PeopleSeq Consortium. Genome Med. 2019, 11, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MTandy-Connor, S.; Guiltinan, J.; Krempely, K.; LaDuca, H.; Reineke, P.; Gutierrez, S.; Gray, P.; Tippin Davis, B. False-positive results released by direct-to-consumer genetic tests highlight the importance of clinical confirmation testing for appropriate patient care. Genet. Med. 2018, 20, 1515–1521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esplin, E.; Haverfield, E.; Yang, S.; Herrera, B.; Anderson, M.; Nussbaum, R. Abstract P4-03-06: Limitations of direct-to-consumer genetic screening for HBOC: False negatives, false positives and everything in between. Cancer Res. 2019, 79. [Google Scholar] [CrossRef]
- Weedon, M.N.; Jackson, L.; Harrison, J.W.; Ruth, K.S.; Tyrrell, J.; Hattersley, A.T.; Wright, C.F. Very rare pathogenic genetic variants detected by SNP-chips are usually false positives: Implications for direct-to-consumer genetic testing. bioRxiv 2019, 696799. [Google Scholar] [CrossRef] [Green Version]
- The Harvard Personal Genome Project (PGP)—Enabling Participant-Driven Science. Available online: https://pgp.med.harvard.edu/ (accessed on 25 June 2019).
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenson, P.D.; Mort, M.; Ball, E.V.; Shaw, K.; Phillips, A.; Cooper, D.N. The Human Gene Mutation Database: Building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Hum. Genet. 2014, 133, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; White, S.; Peng, B.; Johnson, A.D.; Brody, J.A.; Li, A.H.; Huang, Z.; Carroll, A.; Wei, P.; Gibbs, R.; et al. WGSA: An annotation pipeline for human genome sequencing studies. J. Med. Genet. 2016, 53, 111–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Gao, Y.; Ning, Z.; Lu, Y.; Zhang, X.; Liu, J.; Xie, B.; Xue, Z.; Wang, X.; Yuan, K.; et al. PGG.SNV: Understanding the evolutionary and medical implications of human single nucleotide variations in diverse populations. Genome. Biol. 2019, 20, 215. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tennessen, J.A.; Bigham, A.W.; O’Connor, T.D.; Fu, W.; Kenny, E.E.; Gravel, S.; McGee, S.; Do, R.; Liu, X.; Jun, G.; et al. Evolution and Functional Impact of Rare Coding Variation from Deep Sequencing of Human Exomes. Science 2012, 337, 64–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Wang, K. Clinical interpretation of genetic variants by ACMG-AMP 2015 guideline. Am. J. Hum. Genet. 2017, 100, 267–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.S.; Gornick, M.C.; Carere, D.A.; Uhlmann, W.R.; Ruffin, M.T.; Green, R.C. Direct-to-Consumer Genetic Testing: User Motivations, Decision Making, and Perceived Utility of Results. Public Health Genom. 2017, 20, 36–45. [Google Scholar] [CrossRef] [PubMed]
- NSGC Executive Office. NSGC Encourages Consumers to Contact a Genetic Counselor when Considering DTC Testing. Available online: https://www.nsgc.org/p/bl/et/blogid=45&blogaid=5 (accessed on 25 June 2019).
- NSGC Headquarters. At-Home Genetic Testing Position Statement. Available online: https://www.nsgc.org/p/bl/et/blogaid=1119 (accessed on 25 June 2019).
Individual ID | Number of Microarray SNVs | Expected Total Wrong Alleles Due to Error | Expected Pathogenic Alleles Due to Error | Observed Pathogenic Alleles Due to Error | Total Observed Pathogenic Alleles |
---|---|---|---|---|---|
hu85ADFB 1 | 577,585 | 1674.1 | 11.4 | 12 | 20 |
hu9AF7CC 1 | 581,079 | 652.2 | 5.0 | 5 | 13 |
huC58DAE 1 | 933,148 | 1084.3 | 3.8 | 5 | 12 |
huD3FFCB 1 | 930,438 | 750.3 | 2.6 | 8 | 15 |
huCDD5EE 2 | 688,413 | 2269.7 | 0.2 | 1 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Cragun, D.; Pang, J.; Adapa, S.R.; Fonseca, R.; Jiang, R.H.Y. False Alarms in Consumer Genomics Add to Public Fear and Potential Health Care Burden. J. Pers. Med. 2020, 10, 187. https://doi.org/10.3390/jpm10040187
Liu X, Cragun D, Pang J, Adapa SR, Fonseca R, Jiang RHY. False Alarms in Consumer Genomics Add to Public Fear and Potential Health Care Burden. Journal of Personalized Medicine. 2020; 10(4):187. https://doi.org/10.3390/jpm10040187
Chicago/Turabian StyleLiu, Xiaoming, Deborah Cragun, Jinyong Pang, Swamy R. Adapa, Renee Fonseca, and Rays H. Y. Jiang. 2020. "False Alarms in Consumer Genomics Add to Public Fear and Potential Health Care Burden" Journal of Personalized Medicine 10, no. 4: 187. https://doi.org/10.3390/jpm10040187
APA StyleLiu, X., Cragun, D., Pang, J., Adapa, S. R., Fonseca, R., & Jiang, R. H. Y. (2020). False Alarms in Consumer Genomics Add to Public Fear and Potential Health Care Burden. Journal of Personalized Medicine, 10(4), 187. https://doi.org/10.3390/jpm10040187