The Synergistic Effect of Plasminogen Activator Inhibitor-1 (PAI-1) Polymorphisms and Metabolic Syndrome on Coronary Artery Disease in the Korean Population
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics of the Study Participants
2.2. Genotype Frequencies Comparison Analysis
2.3. Haplotype and Genotype Combination Analysis
2.4. Synergistic Effect of PAI-1 Polymorphisms with Clinical Parameter
3. Discussion
4. Materials and Methods
4.1. Study Participants
4.2. Blood Biochemical Analyses
4.3. Genetic Analyses
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Naghavi, M.; Wang, H.; Lozano, R.; Davis, A.; Liang, X.; Zhou, M. GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015, 385, 117–171. [Google Scholar]
- Breslow, J.L. Cardiovascular disease burden increases, NIH funding decreases. Nat. Med. 1997, 3, 600–601. [Google Scholar] [CrossRef] [PubMed]
- Park, H.S.; Kim, I.J.; Kim, E.G.; Ryu, C.S.; Lee, J.Y.; Ko, E.J.; Park, H.W.; Sung, J.H.; Kim, N.K. A study of associations between CUBN, HNF1A, and LIPC gene polymorphisms and coronary artery disease. Sci. Rep. 2020, 10, 16294. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, A. National Cholesterol Education Program, second report of the Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults. Circulation 1995, 91, 908–909. [Google Scholar] [PubMed]
- Won, H.H.; Natarajan, P.; Dobbyn, A.; Jordan, D.M.; Roussos, P.; Lage, K.; Raychaudhuri, S.; Stahl, E.; Do, R. Disproportionate Contributions of Select Genomic Compartments and Cell Types to Genetic Risk for Coronary Artery Disease. PLoS Genet. 2015, 11, e1005622. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.J.; Kim, S.H.; Cha, D.H.; Lim, S.W.; Moon, J.Y.; Kim, J.O.; Ryu, C.S.; Park, H.S.; Sung, J.H.; Kim, N.K. Association of COX2 −765G > C promoter polymorphism and coronary artery disease in Korean population. Genes Genom. 2019, 41, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Bouzidi, N.; Hassine, M.; Fodha, H.; Ben Messaoud, M.; Maatouk, F.; Gamra, H.; Ferchichi, S. Association of the methylene-tetrahydrofolate reductase gene rs1801133 C677T variant with serum homocysteine levels, and the severity of coronary artery disease. Sci. Rep. 2020, 10, 10064. [Google Scholar] [CrossRef]
- Jung, R.G.; Motazedian, P.; Ramirez, F.D.; Simard, T.; Di Santo, P.; Visintini, S.; Faraz, M.A.; Labinaz, A.; Jung, Y.; Hibbert, B. Association between plasminogen activator inhibitor-1 and cardiovascular events: A systematic review and meta-analysis. Thromb. J. 2018, 16, 12. [Google Scholar] [CrossRef] [Green Version]
- Clowes, A.W.; Clowes, M.M.; Au, Y.P.; Reidy, M.A.; Belin, D. Smooth muscle cells express urokinase during mitogenesis and tissue-type plasminogen activator during migration in injured rat carotid artery. Circ. Res. 1990, 67, 61–67. [Google Scholar] [CrossRef] [Green Version]
- Libby, P. Molecular bases of the acute coronary syndromes. Circulation 1995, 91, 2844–2850. [Google Scholar] [CrossRef]
- He, C.S.; Wilhelm, S.M.; Pentland, A.P.; Marmer, B.L.; Grant, G.A.; Eisen, A.Z.; Goldberg, G.I. Tissue cooperation in a proteolytic cascade activating human interstitial collagenase. Proc. Natl. Acad. Sci. USA 1989, 86, 2632–2636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Dong, P.; Yang, X.; Liu, Z. Plasminogen activator inhibitor-1 4G/5G polymorphism is associated with coronary artery disease risk: A meta-analysis. Int. J. Clin. Exp. Med. 2014, 7, 3777–3788. [Google Scholar] [PubMed]
- Cortellaro, M.; Cofrancesco, E.; Boschetti, C.; Mussoni, L.; Donati, M.B.; Cardillo, M.; Catalano, M.; Gabrielli, L.; Lombardi, B.; Specchia, G.; et al. Increased fibrin turnover and high PAI-1 activity as predictors of ischemic events in atherosclerotic patients. A case-control study. The PLAT Group. Arter. Thromb. 1993, 13, 1412–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morange, P.E.; Saut, N.; Alessi, M.C.; Yudkin, J.S.; Margaglione, M.; Di Minno, G.; Hamsten, A.; Humphries, S.E.; Tregouet, D.A.; Juhan-Vague, I. Association of plasminogen activator inhibitor (PAI)-1 (SERPINE1) SNPs with myocardial infarction, plasma PAI-1, and metabolic parameters: The HIFMECH study. Arter. Thromb. Vasc. Biol. 2007, 27, 2250–2257. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.; Li, H.; Qin, Y.; Li, L.; Chen, L.; Zhang, L.; Lv, Y.; Liang, D.; Liang, Y.; Long, T.; et al. Association of SERPINE1 rs6092 with type 2 diabetes and related metabolic traits in a Chinese population. Gene 2018, 661, 176–181. [Google Scholar] [CrossRef]
- Li, Y.; Liu, F.X.; Yuan, C.; Meng, L. Association between plasminogen activator inhibitor gene polymorphisms and osteonecrosis of the femoral head susceptibility: A case-control study. Medicine 2017, 96, e7047. [Google Scholar] [CrossRef]
- Kim, J.O.; Han, S.H.; Lee, Y.H.; Ahn, T.K.; Lim, J.J.; Chung, Y.S.; Shin, D.E.; Lee, W.S.; Han, I.B.; Kim, N.K. Association of Plasminogen Activator Inhibitor-1 (PAI-1) Gene Polymorphisms with Osteoporotic Vertebral Compression Fractures (OVCFs) in Postmenopausal Women. Int. J. Mol. Sci. 2016, 17, 2062. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Gonzalez, I.J.; Valle, Y.; Sandoval-Pinto, E.; Valdes-Alvarado, E.; Valdez-Haro, A.; Munoz-Valle, J.F.; Flores-Salinas, H.E.; Figuera-Villanueva, L.E.; Davalos-Rodriguez, N.O.; Padilla-Gutierrez, J.R. The −844 G > A PAI-1 polymorphism is associated with acute coronary syndrome in Mexican population. Dis. Markers 2015, 2015, 460974. [Google Scholar] [CrossRef]
- Su, S.; Chen, S.; Zhao, J.; Huang, J.; Wang, X.; Chen, R.; Gu, D. Plasminogen activator inhibitor-1 gene: Selection of tagging single nucleotide polymorphisms and association with coronary heart disease. Arter. Thromb. Vasc. Biol. 2006, 26, 948–954. [Google Scholar] [CrossRef]
- Zhang, Q.; Jin, Y.; Li, X.; Peng, X.; Peng, N.; Song, J.; Xu, M. Plasminogen activator inhibitor-1 (PAI-1) 4G/5G promoter polymorphisms and risk of venous thromboembolism—A meta-analysis and systematic review. Vasa 2020, 49, 141–146. [Google Scholar] [CrossRef]
- Akhter, M.S.; Biswas, A.; Abdullah, S.M.; Behari, M.; Saxena, R. The Role of PAI-1 4G/5G Promoter Polymorphism and Its Levels in the Development of Ischemic Stroke in Young Indian Population. Clin. Appl. Thromb. Hemost. 2017, 23, 1071–1076. [Google Scholar] [CrossRef]
- Kuliha, M.; Roubec, M.; Goldirova, A.; Hurtikova, E.; Jonszta, T.; Prochazka, V.; Gumulec, J.; Herzig, R.; Skoloudik, D. Laboratory-Based Markers as Predictors of Brain Infarction During Carotid Stenting: A Prospective Study. J. Atheroscler. Thromb. 2016, 23, 839–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, K.A.; Onal, B.; Gonen, S.; Arinsoy, T.; Erten, Y.; Ilgit, E.; Soylemezoglu, O.; Derici, U.; Guz, G.; Bali, M.; et al. Angiotensinogen and plasminogen activator inhibitor-1 gene polymorphism in relation to renovascular disease. Cardiovasc. Interv. Radiol. 2006, 29, 59–63. [Google Scholar] [CrossRef]
- Liang, Z.; Jiang, W.; Ouyang, M.; Yang, K. PAI-1 4G/5G polymorphism and coronary artery disease risk: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 2097–2107. [Google Scholar]
- Ozolina, A.; Strike, E.; Nikitina-Zake, L.; Jaunalksne, I.; Krumina, A.; Lacis, R.; Bjertnaes, L.J.; Vanags, I. Polymorphisms on PAI-1 and ACE genes in association with fibrinolytic bleeding after on-pump cardiac surgery. BMC Anesthesiol. 2015, 15, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Long, J.; Wang, X.; Sun, Y. Association of the plasminogen activator inhibitor-1 (PAI-1) Gene −675 4G/5G and −844 A/G promoter polymorphism with risk of keloid in a Chinese Han population. Med. Sci. Monit. 2014, 20, 2069–2073. [Google Scholar] [CrossRef] [Green Version]
- Stringer, H.A.; van Swieten, P.; Heijnen, H.F.; Sixma, J.J.; Pannekoek, H. Plasminogen activator inhibitor-1 released from activated platelets plays a key role in thrombolysis resistance. Studies with thrombi generated in the Chandler loop. Arterioscler. Thromb. 1994, 14, 1452–1458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Handt, S.; Jerome, W.; Braaten, J.; Lewis, J.; Kirkpatrick, C.; Hantgan, R. PAI-1 released from cultured human endothelial cells delays fibrinolysis and is incorporated into the developing fibrin clot. Fibrinolysis 1994, 8, 104–112. [Google Scholar] [CrossRef]
- Olave, N.C.; Grenett, M.H.; Cadeiras, M.; Grenett, H.E.; Higgins, P.J. Upstream stimulatory factor-2 mediates quercetin-induced suppression of PAI-1 gene expression in human endothelial cells. J. Cell Biochem. 2010, 111, 720–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, L.M.; Carvalho, M.; Fonseca Neto, C.P.; Garcia, J.C.; Sousa, M.O. PAI-1 4G/5G polymorphism and plasma levels association in patients with coronary artery disease. Arq. Bras. Cardiol. 2011, 97, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Liu, X.; Yang, F.; Cui, D.; Shi, Y.; Shen, C.; Tang, W.; Yang, T. PAI-1 −675 4G/5G polymorphism in association with diabetes and diabetic complications susceptibility: A meta-analysis study. PLoS ONE 2013, 8, e79150. [Google Scholar] [CrossRef]
- Xu, X.; Xie, Y.; Lin, Y.; Xu, X.; Zhu, Y.; Mao, Y.; Hu, Z.; Wu, J.; Chen, H.; Zheng, X.; et al. PAI-1 promoter 4G/5G polymorphism (rs1799768) contributes to tumor susceptibility: Evidence from meta-analysis. Exp. Ther. Med. 2012, 4, 1127–1133. [Google Scholar] [CrossRef]
- Li, Y.Y. Plasminogen activator inhibitor-1 4g/5g gene polymorphism and coronary artery disease in the chinese han population: A meta-analysis. PLoS ONE 2012, 7, e33511. [Google Scholar] [CrossRef] [Green Version]
- Fiuza, M. Metabolic syndrome and coronary artery disease. Rev. Port. Cardiol. 2012, 31, 779–782. [Google Scholar] [CrossRef]
- Neeb, Z.P.; Edwards, J.M.; Alloosh, M.; Long, X.; Mokelke, E.A.; Sturek, M. Metabolic syndrome and coronary artery disease in Ossabaw compared with Yucatan swine. Comp. Med. 2010, 60, 300–315. [Google Scholar]
- Zidi, W.; Allal-Elasmi, M.; Zayani, Y.; Zaroui, A.; Guizani, I.; Feki, M.; Mourali, M.S.; Mechmeche, R.; Kaabachi, N. Metabolic Syndrome, Independent Predictor for Coronary Artery Disease. Clin. Lab. 2015, 61, 1545–1552. [Google Scholar] [CrossRef]
- Won, K.B.; Chang, H.J.; Sung, J.; Shin, S.; Cho, I.J.; Shim, C.Y.; Hong, G.R.; Kim, Y.J.; Choi, B.W.; Chung, N. Differential association between metabolic syndrome and coronary artery disease evaluated with cardiac computed tomography according to the presence of diabetes in a symptomatic Korean population. BMC Cardiovasc. Disord. 2014, 14, 105. [Google Scholar] [CrossRef] [Green Version]
- National Cholesterol Education Program Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar] [CrossRef]
- Jeon, Y.J.; Kim, Y.R.; Lee, B.E.; Choi, Y.S.; Kim, J.H.; Shin, J.E.; Rah, H.; Cha, S.H.; Lee, W.S.; Kim, N.K. Genetic association of five plasminogen activator inhibitor-1 (PAI-1) polymorphisms and idiopathic recurrent pregnancy loss in Korean women. Thromb. Haemost. 2013, 110, 742–750. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Controls (n = 401) | CAD Patients (n = 463) | p |
---|---|---|---|
Age (years, mean ± SD) | 60.02 ± 11.46 | 60.40 ± 11.68 | 0.703 |
Male (%) | 171 (42.6) | 202 (43.6) | 0.771 |
BMI (kg/m2, mean ± SD) | 24.19 ± 3.31 | 25.09 ± 3.59 | 0.001 |
Hypertension (n, %) | 149 (37.2) | 248 (53.6) | <0.0001 |
Diabetes mellitus (n, %) | 48 (12.0) | 118 (25.5) | <0.0001 |
Hyperlipidemia (n, %) | 88 (21.9) | 119 (25.7) | 0.174 |
Smoking (n, %) | 141 (35.2) | 148 (32.0) | 0.403 |
Metabolic syndrome (n, %) | 62 (15.5) | 209 (45.1) | <0.0001 |
Total cholesterol (mg/dL, mean ± SD) | 191.76 ± 37.43 | 185.65 ± 45.97 | 0.004 |
Triglyceride (mg/dL, mean ± SD) | 143.25 ± 88.91 | 155.03 ± 92.46 | 0.061 |
HDL-cholesterol (mg/dL, mean ± SD) | 46.01 ± 14.00 | 43.71 ± 11.35 | 0.086 |
LDL-cholesterol (mg/dL, mean ± SD) | 116.16 ± 40.84 | 111.42 ± 39.17 | 0.184 |
Homocysteine (μmol/L, mean ± SD) | 9.79 ± 4.18 | 9.65 ± 4.85 | 0.142 |
Vitamin B12 (pg/mL, mean ± SD) | 675.99 ± 259.21 | 710.04 ± 346.17 | 0.833 |
Folate (nmol/L, mean ± SD) | 8.88 ± 7.99 | 8.27 ± 7.58 | 0.264 |
Creatinine (mg/dL, mean ± SD) | 0.94 ± 0.23 | 1.48 ± 6.65 | 0.0004 |
Genotypes | Controls (n = 401) | CAD (n = 463) | COR (95% CI) | p | FDR-p | AOR (95% CI) | p | FDR-p |
---|---|---|---|---|---|---|---|---|
PAI-1 −844 G > A | ||||||||
GG | 135 (33.7) | 167 (36.1) | ||||||
GA | 196 (48.9) | 214 (46.2) | 0.883 (0.655–1.189) | 0.412 | 0.525 | 0.820 (0.601–1.119) | 0.211 | 0.352 |
AA | 70 (17.5) | 82 (17.7) | 0.947 (0.640–1.401) | 0.785 | 0.785 | 0.960 (0.633–1.455) | 0.847 | 0.847 |
Dominant (GG vs. GA + AA) | 0.900 (0.679–1.191) | 0.460 | 0.690 | 0.853 (0.637–1.143) | 0.287 | 0.478 | ||
Recessive (GG + GA vs. AA) | 1.018 (0.716–1.446) | 0.922 | 0.922 | 1.085 (0.755–1.558) | 0.661 | 0.826 | ||
HWE-P | 0.937 | 0.351 | ||||||
PAI-1-675 4G > 5G | ||||||||
4G4G | 162 (40.4) | 151 (32.6) | ||||||
4G5G | 178 (44.4) | 231 (49.9) | 1.392 (1.036–1.871) | 0.028 | 0.084 | 1.342 (0.987–1.824) | 0.060 | 0.151 |
5G5G | 61 (15.2) | 81 (17.5) | 1.425 (0.956–2.124) | 0.083 | 0.124 | 1.503 (0.992–2.276) | 0.054 | 0.272 |
Dominant (4G4G vs. 4G5G + 5G5G) | 1.401 (1.060–1.850) | 0.018 | 0.054 | 1.371 (1.027–1.831) | 0.032 | 0.127 | ||
Recessive (4G4G + 4G5G vs. 5G5G) | 1.182 (0.822–1.699) | 0.367 | 0.5505 | 1.259 (0.866–1.830) | 0.227 | 0.568 | ||
HWE-P | 0.297 | 0.649 | ||||||
PAI-1 + 43 G > A | ||||||||
GG | 333 (83.0) | 382 (82.5) | ||||||
GA | 62 (15.5) | 80 (17.3) | 1.125 (0.783–1.617) | 0.525 | 0.525 | 1.229 (0.843–1.791) | 0.283 | 0.354 |
GG | 6 (1.5) | 1 (0.2) | 0.145 (0.017–1.213) | 0.075 | 0.125 | 0.191 (0.022–1.633) | 0.131 | 0.326 |
Dominant (GG vs. GA + GG) | 1.038 (0.729–1.480) | 0.835 | 0.835 | 1.145 (0.792–1.654) | 0.472 | 0.589 | ||
Recessive (GG + GA vs. GG) | 0.143 (0.017–1.189) | 0.072 | 0.216 | 0.185 (0.022–1.589) | 0.124 | 0.568 | ||
HWE-P | 0.123 | 0.13 |
Genotypes | Non-MetS Controls (n = 296) | MetS Control (n = 105) | AOR (95% CI) | p | Non-MetS CAD (n = 189) | AOR (95% CI) | p | MetS CAD (n = 274) | AOR (95% CI) | p |
---|---|---|---|---|---|---|---|---|---|---|
PAI-1 −844 G > A | ||||||||||
GG | 103 (34.8) | 32 (30.5) | 1.000 (reference) | 68 (36.0) | 1.000 (reference) | 99 (36.1) | 1.000 (reference) | |||
GA | 137 (46.3) | 59 (56.2) | 1.003 (0.553–1.820) | 0.991 | 86 (45.5) | 0.907 (0.590–1.395) | 0.658 | 128 (46.7) | 0.872 (0.562–1.351) | 0.539 |
AA | 56 (18.9) | 14 (13.3) | 0.786 (0.366–1.687) | 0.537 | 35 (18.5) | 0.923 (0.533–1.596) | 0.773 | 47 (17.2) | 0.800 (0.448–1.429) | 0.451 |
Dominant (GG vs. GA + AA) | 0.939 (0.541–1.630) | 0.824 | 0.914 (0.613–1.362) | 0.658 | 0.854 (0.569–1.281) | 0.445 | ||||
Recessive (GG + GA vs. AA) | 0.750 (0.372–1.515) | 0.423 | 1.024 (0.631–1.661) | 0.925 | 0.848 (0.510–1.413) | 0.528 | ||||
PAI-1 −675 4G > 5G | ||||||||||
4G4G | 124 (41.9) | 38 (36.2) | 1.000 (reference) | 68 (36.0) | 1.000 (reference) | 83 (30.3) | 1.000 (reference) | |||
4G5G | 130 (43.9) | 48 (45.7) | 1.103 (0.626–1.945) | 0.735 | 87 (46.0) | 1.121 (0.735–1.712) | 0.596 | 144 (52.6) | 1.487 (0.967–2.288) | 0.071 |
5G5G | 42 (14.2) | 19 (18.1) | 1.739 (0.815–3.710) | 0.152 | 34 (18.0) | 1.588 (0.906–2.785) | 0.107 | 47 (17.2) | 1.694 (0.937–3.063) | 0.081 |
Dominant (4G4G vs. 4G5G + 5G5G) | 1.233 (0.730–2.083) | 0.434 | 1.233 (0.832–1.827) | 0.296 | 1.519 (1.010–2.285) | 0.045 | ||||
Recessive (4G4G + 4G5G vs. 5G5G) | 1.617 (0.822–3.181) | 0.164 | 1.495 (0.899–2.484) | 0.121 | 1.347 (0.794–2.283) | 0.269 | ||||
PAI-1 +43 G > A | ||||||||||
GG | 241 (81.4) | 92 (87.6) | 1.000 (reference) | 157 (83.1) | 1.000 (reference) | 225 (82.1) | 1.000 (reference) | |||
GA | 51 (17.2) | 11 (10.5) | 0.552 (0.252–1.211) | 0.138 | 31 (16.4) | 0.930 (0.560–1.545) | 0.780 | 49 (17.9) | 1.181 (0.711–1.962) | 0.521 |
GG | 4 (1.4) | 2 (1.9) | 2.008 (0.262–5.406) | 0.503 | 1 (0.5) | 0.502 (0.055–4.590) | 0.542 | 0 (0.0) | N/A | 0.998 |
Dominant (GG vs. GA + GG) | 0.629 (0.301–1.314) | 0.217 | 0.906 (0.551–1.489) | 0.696 | 1.106 (0.670–1.824) | 0.695 | ||||
Recessive (GG + GA vs. GG) | 2.083 (0.280–5.476) | 0.473 | 0.541 (0.059–4.931) | 0.586 | N/A | 0.998 |
Haplotype | Controls (2n = 802) | CAD (2n = 926) | OR (95% CI) | p | FDR-p |
---|---|---|---|---|---|
PAI-1 −844 G > A/PAI-1 −675 4G > 5G/PAI-1 +43 G > A | |||||
G-4G-G | 148 (18.5) | 180 (19.4) | 1.000 (reference) | ||
G-4G-A | 21 (2.7) | 3 (0.3) | 0.118 (0.034–0.402) | <0.0001 | 0.0004 |
G-5G-G | 265 (33.0) | 291 (31.4) | 0.903 (0.687–1.187) | 0.486 | 0.567 |
G-5G-A | 31 (3.9) | 75 (8.1) | 1.989 (1.241–3.188) | 0.005 | 0.009 |
A-4G-G | 311 (38.8) | 350 (37.9) | 0.925 (0.709–1.207) | 0.588 | 0.588 |
A-4G-A | 21 (2.7) | 0 (0.0) | 0.019 (0.001–0.319) | <0.0001 | 0.0004 |
A-5G-G | 4 (0.5) | 23 (2.5) | 4.728 (1.599–13.980) | 0.002 | 0.005 |
A-5G-A | 0 (0.0) | 4 (0.5) | 7.404 (0.395–138.700) | 0.132 | 0.185 |
PAI-1 −844 G > A/PAI-1 −675 G > A4G > 5G | |||||
G-4G | 170 (21.2) | 183 (19.7) | 1.000 (reference) | ||
G-5G | 296 (36.9) | 365 (39.5) | 1.146 (0.884–1.484) | 0.321 | 0.482 |
A-4G | 332 (41.4) | 350 (37.8) | 0.979 (0.757–1.267) | 0.896 | 0.896 |
A-5G | 4 (0.5) | 28 (3.0) | 6.503 (2.234–18.930) | <0.0001 | 0.0003 |
PAI-1 −844 G > A/PAI-1 +43 G > A | |||||
G-G | 413 (51.6) | 472 (50.9) | 1.000 (reference) | ||
G-A | 53 (6.6) | 76 (8.2) | 1.255 (0.863–1.825) | 0.257 | 0.386 |
A-G | 315 (39.2) | 372 (40.2) | 1.033 (0.846–1.262) | 0.760 | 0.760 |
A-A | 21 (2.7) | 6 (0.6) | 0.250 (0.100–0.626) | 0.002 | 0.006 |
PAI-1 −675 4G > 5G/PAI-1 +43 G > A | |||||
4G-G | 458 (57.1) | 530 (57.2) | 1.000 (reference) | ||
4G-A | 44 (5.5) | 3 (0.3) | 0.059 (0.018–0.191) | <0.0001 | 0.0003 |
5G-G | 270 (33.6) | 314 (33.9) | 1.005 (0.819–1.234) | 0.962 | 0.962 |
5G-A | 30 (3.8) | 79 (8.5) | 2.276 (1.468–3.529) | 0.0002 | 0.0003 |
Combination | Controls (n = 401) | CAD Patients (n = 463) | AOR (95% CI) | p |
---|---|---|---|---|
PAI-1 −844 G > A/PAI-1 −675 4G > 5G | ||||
GG/4G4G | 24 (6.0) | 23 (5.0) | 1.000 (reference) | |
GG/4G5G | 52 (13.0) | 71 (15.3) | 1.566 (0.740–3.312) | 0.241 |
GG/5G5G | 59 (14.7) | 73 (15.8) | 1.429 (0.687–2.974) | 0.339 |
GA/4G4G | 69 (17.2) | 60 (13.0) | 0.886 (0.434–1.808) | 0.739 |
GA/4G5G | 125 (31.2) | 147 (31.7) | 1.223 (0.633–2.362) | 0.549 |
GA/5G5G | 2 (0.5) | 7 (1.5) | 3.052 (0.486–19.172) | 0.234 |
AA/4G4G | 69 (17.2) | 68 (14.7) | 1.102 (0.533–2.279) | 0.793 |
AA/4G5G | 1 (0.2) | 13 (2.8) | 13.157 (1.463–118.330) | 0.022 |
AA/5G5G | 0 (0.0) | 1 (0.2) | N/A | N/A |
PAI-1 −844 G > A/PAI-1 +43 G > A | ||||
GG/GG | 106 (26.4) | 120 (25.9) | 1.000 (reference) | |
GG/GA | 25 (6.2) | 46 (9.9) | 2.215 (1.213–4.042) | 0.010 |
GG/AA | 4 (1.0) | 1 (0.2) | 0.269 (0.028–2.556) | 0.253 |
GA/GG | 167 (41.6) | 183 (39.5) | 0.942 (0.665–1.335) | 0.737 |
GA/GA | 27 (6.7) | 31 (6.7) | 1.001 (0.542–1.850) | 0.997 |
GA/AA | 2 (0.5) | 0 (0.0) | N/A | N/A |
AA/GG | 60 (15.0) | 79 (17.1) | 1.291 (0.819–2.036) | 0.271 |
AA/GA | 10 (2.5) | 3 (0.6) | 0.273 (0.069–1.088) | 0.066 |
AA/AA | 0 (0.0) | 0 (0.0) | N/A | N/A |
PAI-1 −675 4G > 5G/PAI-1 +43 G > A | ||||
4G4G/GG | 131 (32.7) | 149 (32.2) | 1.000 (reference) | |
4G4G/GA | 30 (7.5) | 2 (0.4) | 0.062 (0.014–0.269) | 0.0001 |
4G4G/AA | 1 (0.2) | 0 (0.0) | N/A | N/A |
4G5G/GG | 156 (38.9) | 185 (40.0) | 1.003 (0.722–1.394) | 0.985 |
4G5G/GA | 19 (4.7) | 46 (9.9) | 2.089 (1.142–3.824) | 0.017 |
4G5G/AA | 3 (0.7) | 0 (0.0) | N/A | N/A |
5G5G/GG | 46 (11.5) | 48 (10.4) | 0.867 (0.531–1.416) | 0.568 |
5G5G/GA | 13 (3.2) | 32 (6.9) | 2.558 (1.252–5.224) | 0.010 |
5G5G/AA | 2 (0.5) | 1 (0.2) | 0.630 (0.054–7.330) | 0.712 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.S.; Sung, J.-H.; Ryu, C.S.; Lee, J.Y.; Ko, E.J.; Kim, I.J.; Kim, N.K. The Synergistic Effect of Plasminogen Activator Inhibitor-1 (PAI-1) Polymorphisms and Metabolic Syndrome on Coronary Artery Disease in the Korean Population. J. Pers. Med. 2020, 10, 257. https://doi.org/10.3390/jpm10040257
Park HS, Sung J-H, Ryu CS, Lee JY, Ko EJ, Kim IJ, Kim NK. The Synergistic Effect of Plasminogen Activator Inhibitor-1 (PAI-1) Polymorphisms and Metabolic Syndrome on Coronary Artery Disease in the Korean Population. Journal of Personalized Medicine. 2020; 10(4):257. https://doi.org/10.3390/jpm10040257
Chicago/Turabian StylePark, Han Sung, Jung-Hoon Sung, Chang Soo Ryu, Jeong Yong Lee, Eun Ju Ko, In Jai Kim, and Nam Keun Kim. 2020. "The Synergistic Effect of Plasminogen Activator Inhibitor-1 (PAI-1) Polymorphisms and Metabolic Syndrome on Coronary Artery Disease in the Korean Population" Journal of Personalized Medicine 10, no. 4: 257. https://doi.org/10.3390/jpm10040257
APA StylePark, H. S., Sung, J. -H., Ryu, C. S., Lee, J. Y., Ko, E. J., Kim, I. J., & Kim, N. K. (2020). The Synergistic Effect of Plasminogen Activator Inhibitor-1 (PAI-1) Polymorphisms and Metabolic Syndrome on Coronary Artery Disease in the Korean Population. Journal of Personalized Medicine, 10(4), 257. https://doi.org/10.3390/jpm10040257