Evaluation of Male Fertility-Associated Loci in a European Population of Patients with Severe Spermatogenic Impairment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. SNP Selection and Genotyping
2.3. Statistical Analysis
2.4. In Silico Characterization of Associated Variants
3. Results
3.1. Susceptibility to Non-Obstructive Azoospermia and Specific Histological Manifestations
3.2. Susceptibility to Severe Oligospermia
3.3. Evaluation of Functional Annotations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cervan-Martin, M.; Castilla, J.A.; Palomino-Morales, R.J.; Carmona, F.D. Genetic Landscape of Nonobstructive Azoospermia and New Perspectives for the Clinic. J. Clin. Med. 2020, 9, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tournaye, H.; Krausz, C.; Oates, R.D. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol. 2017, 5, 544–553. [Google Scholar] [CrossRef]
- Krausz, C.; Riera-Escamilla, A. Genetics of male infertility. Nat. Rev. Urol. 2018, 15, 369–384. [Google Scholar] [CrossRef] [PubMed]
- Hofker, M.H.; Fu, J.; Wijmenga, C. The genome revolution and its role in understanding complex diseases. Biochim. Biophys. Acta 2014, 1842, 1889–1895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosova, G.; Scott, N.M.; Niederberger, C.; Prins, G.S.; Ober, C. Genome-wide association study identifies candidate genes for male fertility traits in humans. Am. J. Hum. Genet. 2012, 90, 950–961. [Google Scholar] [CrossRef] [Green Version]
- Cerván-Martín, M.; Suazo-Sánchez, I.; Rivera-Egea, R.; Garrido, N.; Lujan, S.; Romeu, G.; Santos-Ribeiro, S.; Castilla, J.A.; Gonzalvo, M.C.; Clavero, A.; et al. Intronic variation of the SOHLH2 gene confers risk to male reproductive impairment. Fertil. Steril. 2020, 114, 398–406. [Google Scholar] [CrossRef]
- Cooper, T.G.; Noonan, E.; von Eckardstein, S.; Auger, J.; Baker, H.W.; Behre, H.M.; Haugen, T.B.; Kruger, T.; Wang, C.; Mbizvo, M.T.; et al. World Health Organization reference values for human semen characteristics. Hum. Reprod. Update 2010, 16, 231–245. [Google Scholar] [CrossRef]
- Skol, A.D.; Scott, L.J.; Abecasis, G.R.; Boehnke, M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat. Genet. 2006, 38, 209–213. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 2015, 4, 7. [Google Scholar] [CrossRef]
- Machiela, M.J.; Chanock, S.J. LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics 2015, 31, 3555–3557. [Google Scholar] [CrossRef]
- Lonsdale, J.; Thomas, J.; Salvatore, M.; Phillips, R.; Lo, E.; Shad, S.; Hasz, R.; Walters, G.; Garcia, F.; Young, N.; et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013, 45, 580–585. [Google Scholar] [CrossRef] [PubMed]
- Papatheodorou, I.; Moreno, P.; Manning, J.; Fuentes, A.M.; George, N.; Fexova, S.; Fonseca, N.A.; Fullgrabe, A.; Green, M.; Huang, N.; et al. Expression Atlas update: From tissues to single cells. Nucleic Acids Res. 2020, 48, D77–D83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sloan, C.A.; Chan, E.T.; Davidson, J.M.; Malladi, V.S.; Strattan, J.S.; Hitz, B.C.; Gabdank, I.; Narayanan, A.K.; Ho, M.; Lee, B.T.; et al. ENCODE data at the ENCODE portal. Nucleic Acids Res. 2016, 44, D726–D732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, L.D.; Kellis, M. HaploReg v4: Systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016, 44, D877–D881. [Google Scholar] [CrossRef] [PubMed]
- Oscanoa, J.; Sivapalan, L.; Gadaleta, E.; Dayem Ullah, A.Z.; Lemoine, N.R.; Chelala, C. SNPnexus: A web server for functional annotation of human genome sequence variation (2020 update). Nucleic Acids Res. 2020, 48, W185–W192. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.P.; Hong, E.L.; Hariharan, M.; Cheng, Y.; Schaub, M.A.; Kasowski, M.; Karczewski, K.J.; Park, J.; Hitz, B.C.; Weng, S.; et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012, 22, 1790–1797. [Google Scholar] [CrossRef] [Green Version]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef]
- Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; Abecasis, G.R. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Uhlen, M.; Fagerberg, L.; Hallstrom, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, A.; Kampf, C.; Sjostedt, E.; Asplund, A.; et al. Proteomics. Tissue-based map of the human proteome. Science 2015, 347, 1260419. [Google Scholar] [CrossRef]
- Guo, J.; Nie, X.; Giebler, M.; Mlcochova, H.; Wang, Y.; Grow, E.J.; Kim, R.; Tharmalingam, M.; Matilionyte, G.; Lindskog, C.; et al. The Dynamic Transcriptional Cell Atlas of Testis Development during Human Puberty. Cell Stem Cell 2020, 26, 262–276 e264. [Google Scholar] [CrossRef] [Green Version]
- Kundaje, A.; Meuleman, W.; Ernst, J.; Bilenky, M.; Yen, A.; Heravi-Moussavi, A.; Kheradpour, P.; Zhang, Z.; Wang, J.; Ziller, M.J.; et al. Integrative analysis of 111 reference human epigenomes. Nature 2015, 518, 317–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerbino, D.R.; Wilder, S.P.; Johnson, N.; Juettemann, T.; Flicek, P.R. The ensembl regulatory build. Genome Biol. 2015, 16, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinform. 2016, 54, 1.30.31–31.30.33. [Google Scholar] [CrossRef] [PubMed]
- Beckers, A.; Adis, C.; Schuster-Gossler, K.; Tveriakhina, L.; Ott, T.; Fuhl, F.; Hegermann, J.; Boldt, K.; Serth, K.; Rachev, E.; et al. The FOXJ1 target Cfap206 is required for sperm motility, mucociliary clearance of the airways and brain development. Development 2020, 147. [Google Scholar] [CrossRef]
- Widlak, W.; Vydra, N. The Role of Heat Shock Factors in Mammalian Spermatogenesis. Adv. Anat. Embryol. Cell Biol. 2017, 222, 45–65. [Google Scholar] [CrossRef]
- Fang, F.; Angulo, B.; Xia, N.; Sukhwani, M.; Wang, Z.; Carey, C.C.; Mazurie, A.; Cui, J.; Wilkinson, R.; Wiedenheft, B.; et al. A PAX5-OCT4-PRDM1 developmental switch specifies human primordial germ cells. Nat. Cell Biol. 2018, 20, 655–665. [Google Scholar] [CrossRef]
- Zhang, T.; Zarkower, D. DMRT proteins and coordination of mammalian spermatogenesis. Stem Cell Res. 2017, 24, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Wen, Y.; Hu, W.; Lu, F.; Qin, Y.; Wang, Y.; Li, S.; Yang, S.; Lin, Y.; Wang, C.; et al. Y chromosome haplogroups based genome-wide association study pinpoints revelation for interactions on non-obstructive azoospermia. Sci. Rep. 2016, 6, 33363. [Google Scholar] [CrossRef] [Green Version]
- Gnessi, L.; Scarselli, F.; Minasi, M.G.; Mariani, S.; Lubrano, C.; Basciani, S.; Greco, P.F.; Watanabe, M.; Franco, G.; Farcomeni, A.; et al. Testicular histopathology, semen analysis and FSH, predictive value of sperm retrieval: Supportive counseling in case of reoperation after testicular sperm extraction (TESE). BMC Urol. 2018, 18, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, Y.; Tajima, A.; Tsunematsu, K.; Nozawa, S.; Yoshiike, M.; Koh, E.; Kanaya, J.; Namiki, M.; Matsumiya, K.; Tsujimura, A.; et al. An association study of four candidate loci for human male fertility traits with male infertility. Hum. Reprod. 2015, 30, 1510–1514. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Tajima, A.; Tsunematsu, K.; Nozawa, S.; Yoshiike, M.; Koh, E.; Kanaya, J.; Namiki, M.; Matsumiya, K.; Tsujimura, A.; et al. Lack of replication of four candidate SNPs implicated in human male fertility traits: A large-scale population-based study. Hum. Reprod. 2015, 30, 1505–1509. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Hasegawa, C.; Tajima, A.; Nozawa, S.; Yoshiike, M.; Koh, E.; Kanaya, J.; Namiki, M.; Matsumiya, K.; Tsujimura, A.; et al. Association of TUSC1 and DPF3 gene polymorphisms with male infertility. J. Assist. Reprod. Genet. 2018, 35, 257–263. [Google Scholar] [CrossRef]
- Kim, J.S.; Chae, J.H.; Cheon, Y.P.; Kim, C.G. Reciprocal localization of transcription factors YY1 and CP2c in spermatogonial stem cells and their putative roles during spermatogenesis. Acta Histochem. 2016, 118, 685–692. [Google Scholar] [CrossRef]
- Bajusz, I.; Henry, S.; Sutus, E.; Kovacs, G.; Pirity, M.K. Evolving Role of RING1 and YY1 Binding Protein in the Regulation of Germ-Cell-Specific Transcription. Genes 2019, 10, 941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kojima, S.; Hatano, M.; Okada, S.; Fukuda, T.; Toyama, Y.; Yuasa, S.; Ito, H.; Tokuhisa, T. Testicular germ cell apoptosis in Bcl6-deficient mice. Development 2001, 128, 57–65. [Google Scholar] [PubMed]
- Lopes, A.M.; Aston, K.I.; Thompson, E.; Carvalho, F.; Goncalves, J.; Huang, N.; Matthiesen, R.; Noordam, M.J.; Quintela, I.; Ramu, A.; et al. Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1. PLoS Genet. 2013, 9, e1003349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tewes, A.C.; Ledig, S.; Tuttelmann, F.; Kliesch, S.; Wieacker, P. DMRT1 mutations are rarely associated with male infertility. Fertil. Steril. 2014, 102, 816–820 e813. [Google Scholar] [CrossRef] [PubMed]
- Araujo, T.F.; Friedrich, C.; Grangeiro, C.H.P.; Martelli, L.R.; Grzesiuk, J.D.; Emich, J.; Wyrwoll, M.J.; Kliesch, S.; Simoes, A.L.; Tuttelmann, F. Sequence analysis of 37 candidate genes for male infertility: Challenges in variant assessment and validating genes. Andrology 2020, 8, 434–441. [Google Scholar] [CrossRef]
- Lima, A.C.; Carvalho, F.; Goncalves, J.; Fernandes, S.; Marques, P.I.; Sousa, M.; Barros, A.; Seixas, S.; Amorim, A.; Conrad, D.F.; et al. Rare double sex and mab-3-related transcription factor 1 regulatory variants in severe spermatogenic failure. Andrology 2015, 3, 825–833. [Google Scholar] [CrossRef] [Green Version]
- Tuttelmann, F.; Ruckert, C.; Ropke, A. Disorders of spermatogenesis: Perspectives for novel genetic diagnostics after 20 years of unchanged routine. Med. Genet. 2018, 30, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Grow, E.J.; Yi, C.; Mlcochova, H.; Maher, G.J.; Lindskog, C.; Murphy, P.J.; Wike, C.L.; Carrell, D.T.; Goriely, A.; et al. Chromatin and Single-Cell RNA-Seq Profiling Reveal Dynamic Signaling and Metabolic Transitions during Human Spermatogonial Stem Cell Development. Cell Stem Cell 2017, 21, 533–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berruti, G.; Ripolone, M.; Ceriani, M. USP8, a regulator of endosomal sorting, is involved in mouse acrosome biogenesis through interaction with the spermatid ESCRT-0 complex and microtubules. Biol. Reprod. 2010, 82, 930–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berruti, G.; Paiardi, C. USP8/UBPy-regulated sorting and the development of sperm acrosome: The recruitment of MET. Reproduction 2015, 149, 633–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, B.; Dorfler, P.; Aguzzi, A.; Kozmik, Z.; Urbanek, P.; Maurer-Fogy, I.; Busslinger, M. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev. 1992, 6, 1589–1607. [Google Scholar] [CrossRef] [Green Version]
- Tessari, A.; Salata, E.; Ferlin, A.; Bartoloni, L.; Slongo, M.L.; Foresta, C. Characterization of HSFY, a novel AZFb gene on the Y chromosome with a possible role in human spermatogenesis. Mol. Hum. Reprod. 2004, 10, 253–258. [Google Scholar] [CrossRef]
- Shinka, T.; Sato, Y.; Chen, G.; Naroda, T.; Kinoshita, K.; Unemi, Y.; Tsuji, K.; Toida, K.; Iwamoto, T.; Nakahori, Y. Molecular characterization of heat shock-like factor encoded on the human Y chromosome, and implications for male infertility. Biol. Reprod. 2004, 71, 297–306. [Google Scholar] [CrossRef]
- Akerfelt, M.; Vihervaara, A.; Laiho, A.; Conter, A.; Christians, E.S.; Sistonen, L.; Henriksson, E. Heat shock transcription factor 1 localizes to sex chromatin during meiotic repression. J. Biol. Chem. 2010, 285, 34469–34476. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, P.S.; Paul, S.; Han, J.; Reddy, S. Six5 is required for spermatogenic cell survival and spermiogenesis. Hum. Mol. Genet. 2004, 13, 1421–1431. [Google Scholar] [CrossRef] [Green Version]
- Vloeberghs, V.; Verheyen, G.; Haentjens, P.; Goossens, A.; Polyzos, N.P.; Tournaye, H. How successful is TESE-ICSI in couples with non-obstructive azoospermia? Hum. Reprod. 2015, 30, 1790–1796. [Google Scholar] [CrossRef] [Green Version]
Variant (locus) | 1/2 | Subgroup (N) | Genotype, N (%) | Additive | Recessive | Dominant | Genotypic | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1/1 | 1/2 | 2/2 | MAF | p-Value | OR [CI 95%] * | p-Value | OR [CI 95%] * | p-Value | OR [CI 95%] * | p-Value | |||
rs10129954 | T/C | Controls (n = 1049) | 220 | 501 | 328 | 0.4485 | NA | NA | NA | NA | NA | NA | NA |
(DPF3) | SpF (n = 709) | 139 | 344 | 226 | 0.4386 | 0.956 | 1.00 [0.87–1.16] | 0.700 | 0.95 [0.74–1.23] | 0.676 | 1.05 [0.84–1.30] | 0.782 | |
SO (n = 222) | 47 | 96 | 79 | 0.4279 | 0.999 | 1.00 [0.80–1.25] | 0.482 | 1.15 [0.77–1.72] | 0.551 | 0.90 [0.64–1.27] | 0.519 | ||
NOA (n = 487) | 92 | 248 | 147 | 0.4435 | 0.873 | 1.01 [0.87–1.19] | 0.588 | 0.93 [0.70–1.22] | 0.476 | 1.09 [0.86–1.39] | 0.550 | ||
SCO (n = 101) | 23 | 51 | 27 | 0.4802 | 0.312 | 1.16 [0.87–1.55] | 0.538 | 1.17 [0.71–1.91] | 0.311 | 1.27 [0.80–2.01] | 0.574 | ||
MA (n = 51) | 11 | 28 | 12 | 0.4902 | 0.265 | 1.26 [0.84–1.89] | 0.625 | 1.19 [0.59–2.38] | 0.207 | 1.54 [0.79–3.00] | 0.450 | ||
HS (n = 48) | 7 | 24 | 17 | 0.3958 | 0.460 | 0.85 [0.56–1.30] | 0.444 | 0.72 [0.32–1.65] | 0.640 | 0.86 [0.47–1.60] | 0.727 | ||
TESE- (n = 140) | 28 | 77 | 35 | 0.475 | 0.464 | 1.10 [0.86–1.40] | 0.698 | 0.92 [0.59–1.43] | 0.140 | 1.36 [0.90–2.03] | 0.215 | ||
rs10966811 | A/G | Controls (n = 1047) | 136 | 520 | 391 | 0.3782 | NA | NA | NA | NA | NA | NA | NA |
(TUSC1) | SpF (n = 707) | 97 | 319 | 291 | 0.3628 | 0.253 | 0.92 [0.79–1.06] | 0.833 | 1.03 [0.77–1.39] | 0.084 | 0.83 [0.68–1.02] | 0.164 | |
SO (n = 220) | 34 | 100 | 86 | 0.3818 | 0.822 | 0.97 [0.76–1.24] | 0.538 | 1.16 [0.73–1.83] | 0.448 | 0.88 [0.63–1.23] | 0.502 | ||
NOA (n = 487) | 63 | 219 | 205 | 0.3542 | 0.191 | 0.90 [0.76–1.06] | 0.955 | 0.99 [0.71–1.38] | 0.078 | 0.82 [0.65–1.02] | 0.185 | ||
SCO (n = 100) | 10 | 50 | 40 | 0.35 | 0.401 | 0.87 [0.64–1.20] | 0.390 | 0.74 [0.38–1.47] | 0.576 | 0.89 [0.58–1.35] | 0.657 | ||
MA (n = 51) | 5 | 27 | 19 | 0.3627 | 0.720 | 0.92 [0.60–1.42] | 0.491 | 0.72 [0.28–1.85] | 0.990 | 1.00 [0.55–1.80] | 0.773 | ||
HS (n = 48) | 10 | 17 | 21 | 0.3854 | 0.930 | 1.02 [0.66–1.58] | 0.132 | 1.76 [0.84–3.66] | 0.340 | 0.75 [0.41–1.36] | 0.110 | ||
TESE- (n = 140) | 13 | 66 | 61 | 0.3286 | 0.101 | 0.80 [0.61–1.05] | 0.220 | 0.69 [0.38–1.25] | 0.161 | 0.77 [0.54–1.11] | 0.262 | ||
rs12870438 | A/G | Controls (n = 1048) | 155 | 502 | 391 | 0.3874 | NA | NA | NA | NA | NA | NA | NA |
(EPSTI1) | SpF (n = 711) | 101 | 324 | 286 | 0.3699 | 0.353 | 0.93 [0.80–1.08] | 0.786 | 0.96 [0.72–1.28] | 0.264 | 0.89 [0.72–1.09] | 0.534 | |
SO (n = 220) | 24 | 100 | 96 | 0.3364 | 2.29 × 10−2 | 0.75 [0.59–0.96] | 0.116 | 0.67 [0.40–1.10] | 3.88 × 10−2 | 0.70 [0.50–0.98] | 0.074 | ||
NOA (n = 491) | 77 | 224 | 190 | 0.3849 | 0.924 | 0.99 [0.85–1.16] | 0.653 | 1.07 [0.79–1.46] | 0.641 | 0.95 [0.75–1.19] | 0.732 | ||
SCO (n = 102) | 16 | 47 | 39 | 0.3873 | 0.964 | 0.99 [0.74–1.34] | 0.831 | 1.06 [0.61–1.87] | 0.824 | 0.95 [0.63–1.45] | 0.932 | ||
MA (n = 51) | 7 | 23 | 21 | 0.3627 | 0.522 | 0.87 [0.57–1.33] | 0.780 | 0.89 [0.39–2.03] | 0.482 | 0.81 [0.45–1.45] | 0.779 | ||
HS (n = 48) | 7 | 26 | 15 | 0.4167 | 0.615 | 1.12 [0.73–1.71] | 0.939 | 0.97 [0.42–2.22] | 0.441 | 1.28 [0.68–2.41] | 0.702 | ||
TESE- (n = 141) | 19 | 64 | 58 | 0.3617 | 0.413 | 0.90 [0.69–1.16] | 0.688 | 0.90 [0.54–1.50] | 0.388 | 0.85 [0.60–1.22] | 0.683 | ||
rs7174015 | A/G | Controls (n = 1048) | 257 | 541 | 250 | 0.5033 | NA | NA | NA | NA | NA | NA | NA |
(USP8) | SpF (n = 706) | 189 | 351 | 166 | 0.5163 | 0.210 | 1.10 [0.95–1.27] | 0.191 | 1.17 [0.93–1.47] | 0.466 | 1.09 [0.86–1.39] | 0.404 | |
SO (n = 221) | 44 | 119 | 58 | 0.4683 | 0.380 | 0.90 [0.71–1.14] | 0.320 | 0.82 [0.55–1.22] | 0.662 | 0.92 [0.63–1.34] | 0.605 | ||
NOA (n = 485) | 145 | 232 | 108 | 0.5381 | 4.02 × 10−2 | 1.18 [1.01–1.38] | 2.26 × 10−2 | 1.33 [1.04–1.71] | 0.296 | 1.15 [0.88–1.50] | 0.071 | ||
SCO (n = 102) | 29 | 53 | 20 | 0.5441 | 0.213 | 1.21 [0.90–1.62] | 0.344 | 1.25 [0.79–1.96] | 0.282 | 1.32 [0.79–2.21] | 0.459 | ||
MA (n = 51) | 16 | 27 | 8 | 0.5784 | 0.113 | 1.40 [0.92–2.13] | 0.226 | 1.46 [0.79–2.71] | 0.177 | 1.70 [0.79–3.70] | 0.288 | ||
HS (n = 47) | 8 | 26 | 13 | 0.4468 | 0.380 | 0.82 [0.54–1.27] | 0.320 | 0.67 [0.31–1.47] | 0.665 | 0.86 [0.44–1.68] | 0.606 | ||
TESE- (n = 141) | 44 | 71 | 26 | 0.5638 | 0.059 | 1.28 [0.99–1.65] | 0.098 | 1.38 [0.94–2.03] | 0.161 | 1.38 [0.88–2.16] | 0.167 | ||
rs7867029 | C/G | Controls (n = 1050) | 15 | 251 | 784 | 0.1338 | NA | NA | NA | NA | NA | NA | NA |
(PSAT1) | SpF (n = 711) | 10 | 155 | 546 | 0.1231 | 0.360 | 0.90 [0.73–1.12] | 0.943 | 1.03 [0.44–2.43] | 0.308 | 0.88 [0.70–1.12] | 0.570 | |
SO (n = 221) | 3 | 37 | 181 | 0.0973 | 0.073 | 0.71 [0.49–1.03] | 0.849 | 0.87 [0.22–3.50] | 0.055 | 0.67 [0.45–1.01] | 0.153 | ||
NOA (n = 490) | 7 | 118 | 365 | 0.1347 | 0.902 | 0.99 [0.78–1.24] | 0.967 | 1.02 [0.40–2.58] | 0.884 | 0.98 [0.76–1.26] | 0.987 | ||
SCO (n = 103) | 2 | 27 | 74 | 0.1505 | 0.542 | 1.14 [0.75–1.71] | 0.727 | 1.31 [0.29–5.84] | 0.569 | 1.14 [0.72–1.79] | 0.828 | ||
MA (n = 50) | 1 | 10 | 39 | 0.12 | 0.673 | 0.87 [0.46–1.64] | 0.767 | 1.37 [0.17–10.97] | 0.586 | 0.83 [0.41–1.65] | 0.789 | ||
HS (n = 48) | 1 | 15 | 32 | 0.1771 | 0.239 | 1.40 [0.80–2.45] | 0.737 | 1.43 [0.18–11.52] | 0.234 | 1.46 [0.78–2.74] | 0.490 | ||
TESE- (n = 141) | 4 | 29 | 108 | 0.1312 | 0.910 | 0.98 [0.67–1.42] | 0.204 | 2.07 [0.67–6.35] | 0.620 | 0.90 [0.59–1.36] | 0.325 |
Variant (locus) | 1/2 | Subgroup (N) | With Manifestation | Without Manifestation | Additive | Recessive | Dominant | Genotypic | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotypes (11/12/22) | MAF | Genotypes (11/12/22) | MAF | p-Value | OR [CI 95%] ** | p-Value | OR [CI 95%] ** | p-Value | OR [CI 95%] ** | p-Value | |||
rs10129954 | T/C | SO/NOA (n = 222/487) | 47/96/79 | 0.4279 | 92/248/147 | 0.4435 | 0.756 | 0.96 [0.76–1.22] | 0.717 | 1.08 [0.71–1.63] | 0.433 | 0.87 [0.61–1.24] | 0.580 |
(DPF3) | SCO/noSCO (n = 101/130) | 23/51/27 | 0.4802 | 25/66/39 | 0.4462 | 0.525 | 1.13 [0.78–1.64] | 0.519 | 1.24 [0.65–2.34] | 0.687 | 1.13 [0.63–2.02] | 0.795 | |
MA/noMA (n = 51/180) | 11/28/12 | 0.4902 | 37/89/54 | 0.4528 | 0.386 | 1.22 [0.78–1.91] | 0.853 | 1.08 [0.50–2.32] | 0.242 | 1.55 [0.74–3.24] | 0.492 | ||
HS/noHS (n = 48/183) | 7/24/17 | 0.3958 | 41/93/49 | 0.4781 | 0.213 | 0.74 [0.46–1.19] | 0.241 | 0.59 [0.24–1.43] | 0.381 | 0.73 [0.37–1.47] | 0.442 | ||
TESE-/TESE+ (n = 140/92) | 28/77/35 | 0.475 | 16/46/30 | 0.4239 | 0.254 | 1.26 [0.85–1.86] | 0.622 | 1.19 [0.60–2.35] | 0.195 | 1.47 [0.82–2.63] | 0.429 | ||
rs10966811 | A/G | SO/NOA (n = 220/487) | 34/100/86 | 0.3818 | 63/219/205 | 0.3542 | 0.427 | 1.10 [0.87–1.40] | 0.466 | 1.19 [0.74–1.92] | 0.548 | 1.11 [0.79–1.56] | 0.714 |
(TUSC1) | SCO/noSCO (n = 100/130) | 10/50/40 | 0.35 | 15/62/53 | 0.3538 | 0.961 | 0.99 [0.66–1.48] | 0.753 | 0.87 [0.37–2.04] | 0.894 | 1.04 [0.61–1.77] | 0.926 | |
MA/noMA (n = 51/179) | 5/27/19 | 0.3627 | 20/85/74 | 0.3492 | 0.844 | 1.05 [0.65–1.70] | 0.705 | 0.82 [0.29–2.33] | 0.614 | 1.18 [0.62–2.26] | 0.757 | ||
HS/noHS (n = 48/182) | 10/17/21 | 0.3854 | 15/95/72 | 0.3434 | 0.470 | 1.20 [0.73–1.96] | 2.05 × 10−2 | 2.88 [1.18–7.07] | 0.571 | 0.83 [0.43–1.59] | 2.95 × 10−2 | ||
TESE-/TESE+ (n = 140/92) | 13/66/61 | 0.3286 | 17/37/38 | 0.3859 | 0.198 | 0.78 [0.53–1.14] | 4.07 × 10−2 | 0.44 [0.20–0.97] | 0.711 | 0.90 [0.53–1.54] | 0.116 | ||
rs12870438 | A/G | SO/NOA (n = 220/491) | 24/100/96 | 0.3364 | 77/224/190 | 0.3849 | 0.126 | 0.83 [0.65–1.05] | 0.102 | 0.65 [0.39–1.09] | 0.321 | 0.84 [0.60–1.18] | 0.236 |
(EPSTI1) | SCO/noSCO (n = 102/130) | 16/47/39 | 0.3873 | 20/64/46 | 0.4000 | 0.735 | 0.94 [0.64–1.37] | 0.917 | 1.04 [0.51–2.13] | 0.573 | 0.86 [0.50–1.47] | 0.814 | |
MA/noMA (n = 51/181) | 7/23/21 | 0.3627 | 29/88/64 | 0.4033 | 0.519 | 0.86 [0.54–1.36] | 0.636 | 0.80 [0.33–1.98] | 0.567 | 0.83 [0.43–1.58] | 0.812 | ||
HS/noHS (n = 48/184) | 7/26/15 | 0.4167 | 29/85/70 | 0.3886 | 0.533 | 1.16 [0.73–1.84] | 0.774 | 0.88 [0.35–2.17] | 0.265 | 1.49 [0.74–2.98] | 0.419 | ||
TESE-/TESE+ (n = 141/93) | 19/64/58 | 0.3617 | 20/40/33 | 0.4301 | 0.169 | 0.77 [0.53–1.12] | 0.110 | 0.57 [0.28–1.14] | 0.436 | 0.81 [0.47–1.39] | 0.272 | ||
rs7174015 | A/G | * SO/NOA (n = 221/485) | 44/119/58 | 0.4683 | 145/232/108 | 0.5381 | 3.23 × 10−2 | 0.77 [0.61–0.98] | 4.84 × 10−3 | 0.56 [0.38–0.84] | 0.519 | 0.88 [0.60–1.30] | 1.78 × 10−2 |
(USP8) | SCO/noSCO (n = 102/128) | 29/53/20 | 0.5441 | 33/69/26 | 0.5273 | 0.779 | 1.06 [0.72–1.55] | 0.646 | 1.15 [0.64–2.06] | 0.973 | 0.99 [0.51–1.91] | 0.885 | |
MA/noMA (n = 51/179) | 16/27/8 | 0.5784 | 46/95/38 | 0.5223 | 0.230 | 1.33 [0.84–2.11] | 0.423 | 1.32 [0.66–2.64] | 0.245 | 1.66 [0.71–3.90] | 0.459 | ||
HS/noHS (n = 47/183) | 8/26/13 | 0.4468 | 54/96/33 | 0.5574 | 0.073 | 0.64 [0.40–1.04] | 0.082 | 0.48 [0.21–1.10] | 0.253 | 0.64 [0.30–1.37] | 0.184 | ||
TESE-/TESE+ (n = 141/91) | 44/71/26 | 0.5638 | 21/46/24 | 0.4835 | 0.087 | 1.40 [0.95–2.04] | 0.174 | 1.52 [0.83–2.79] | 0.150 | 1.59 [0.85–3.00] | 0.229 | ||
rs7867029 | C/G | SO/NOA (n = 221/490) | 3/37/181 | 0.0973 | 7/118/365 | 0.1347 | 3.51 × 10−2 | 0.66 [0.45–0.97] | 0.820 | 1.18 [0.28–4.97] | 1.87 × 10−2 | 0.61 [0.40–0.92] | 4.87 × 10−2 |
(PSAT1) | SCO/noSCO (n = 103/129) | 2/27/74 | 0.1505 | 2/32/95 | 0.1395 | 0.607 | 1.15 [0.67–1.96] | 0.859 | 1.20 [0.16–8.71] | 0.605 | 1.17 [0.65–2.11] | 0.873 | |
MA/noMA (n = 50/182) | 1/10/39 | 0.12 | 3/49/130 | 0.1511 | 0.262 | 0.67 [0.33–1.35] | 0.784 | 1.38 [0.14–14.05] | 0.192 | 0.60 [0.28–1.29] | 0.366 | ||
HS/noHS (n = 48/184) | 1/15/32 | 0.1771 | 3/44/137 | 0.1359 | 0.486 | 1.25 [0.66–2.37] | 0.737 | 1.49 [0.15–15.29] | 0.505 | 1.27 [0.63–2.57] | 0.785 | ||
TESE-/TESE+ (n = 141/91) | 4/29/108 | 0.1312 | 0/22/69 | 0.1209 | 0.764 | 1.09 [0.62–1.91] | 0.999 | 1.04 × 109 [0.00–Inf] | 0.879 | 0.95 [0.51–1.77] | 0.864 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerván-Martín, M.; Bossini-Castillo, L.; Rivera-Egea, R.; Garrido, N.; Luján, S.; Romeu, G.; Santos-Ribeiro, S.; IVIRMA Group; Lisbon Clinical Group; Castilla, J.A.; et al. Evaluation of Male Fertility-Associated Loci in a European Population of Patients with Severe Spermatogenic Impairment. J. Pers. Med. 2021, 11, 22. https://doi.org/10.3390/jpm11010022
Cerván-Martín M, Bossini-Castillo L, Rivera-Egea R, Garrido N, Luján S, Romeu G, Santos-Ribeiro S, IVIRMA Group, Lisbon Clinical Group, Castilla JA, et al. Evaluation of Male Fertility-Associated Loci in a European Population of Patients with Severe Spermatogenic Impairment. Journal of Personalized Medicine. 2021; 11(1):22. https://doi.org/10.3390/jpm11010022
Chicago/Turabian StyleCerván-Martín, Miriam, Lara Bossini-Castillo, Rocío Rivera-Egea, Nicolás Garrido, Saturnino Luján, Gema Romeu, Samuel Santos-Ribeiro, IVIRMA Group, Lisbon Clinical Group, José A. Castilla, and et al. 2021. "Evaluation of Male Fertility-Associated Loci in a European Population of Patients with Severe Spermatogenic Impairment" Journal of Personalized Medicine 11, no. 1: 22. https://doi.org/10.3390/jpm11010022
APA StyleCerván-Martín, M., Bossini-Castillo, L., Rivera-Egea, R., Garrido, N., Luján, S., Romeu, G., Santos-Ribeiro, S., IVIRMA Group, Lisbon Clinical Group, Castilla, J. A., Gonzalvo, M. C., Clavero, A., Vicente, F. J., Guzmán-Jiménez, A., Costa, C., Llinares-Burguet, I., Khantham, C., Burgos, M., Barrionuevo, F. J., ... Carmona, F. D. (2021). Evaluation of Male Fertility-Associated Loci in a European Population of Patients with Severe Spermatogenic Impairment. Journal of Personalized Medicine, 11(1), 22. https://doi.org/10.3390/jpm11010022