Influence of Polymorphism on the NFkB1 Gene (rs28362491) on the Susceptibility to Sarcopenia in the Elderly of the Brazilian Amazon
Abstract
:1. Introduction
2. Methods
2.1. Ethical Conformity
2.2. Case and Control
2.3. Sarcopenia Assessment
2.4. Clinical Assessment
2.5. DNA Extraction and Quantification
2.6. Genotyping
2.7. Hardy–Weinberg Equilibrium Analysis (HWE)
2.8. Genetic Ancestrality Analysis
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Mayhew, A.J.; Amog, K.; Phillips, S.; Parise, G.; McNicholas, P.D.; de Souza, R.J.; Thabane, L.; Raina, P. The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: A systematic review and meta-analyses. Age Ageing 2018, 48, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Diz, J.B.M.; Leopoldino, A.A.O.; Moreira, B.D.S.; Henschke, N.; Dias, R.C.; Pereira, L.S.M.; Oliveira, V.C. Prevalence of sarcopenia in older Brazilians: A systematic review and meta-analysis. Geriatr. Gerontol. Int. 2016, 17, 5–16. [Google Scholar] [CrossRef]
- Hirschfeld, H.P.; Kinsella, R.; Duque, G. Osteosarcopenia: Where bone, muscle, and fat collide. Osteoporos. Int. 2017, 28, 2781–2790. [Google Scholar] [CrossRef]
- Falcon, L.J.; Harris-Love, M.O. Sarcopenia and the New ICD-10-CM Code: Screening, Staging, and Diagnosis Considerations. Fed. Pract. 2017, 34, 24–32. [Google Scholar] [CrossRef]
- Tosato, M.; Marzetti, E.; Cesari, M.; Savera, G.; Miller, R.R.; Bernabei, R.; Landi, F.; Calvani, R. Measurement of muscle mass in sarcopenia: From imaging to biochemical markers. Aging Clin. Exp. Res. 2017, 29, 19–27. [Google Scholar] [CrossRef]
- Yao, X.; Yang, L.; Li, M.; Xiao, H. Relationship of vitamin D receptor gene polymorphism with sarcopenia and muscle traits based on propensity score matching. J. Clin. Lab. Anal. 2020, 34, e23485. [Google Scholar] [CrossRef] [PubMed]
- Urzi, F.; Pokorny, B.; Buzan, E. Pilot Study on Genetic Associations with Age-Related Sarcopenia. Front. Genet. 2021, 11, 615238. [Google Scholar] [CrossRef] [PubMed]
- Tacutu, R.; Craig, T.; Budovsky, A.; Wuttke, D.; Lehmann, G.; Taranukha, D.; Costa, J.; Fraifeld, V.E.; de Magalhaes, J.P. Human Ageing Genomic Resources: Integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res. 2012, 41, D1027–D1033. [Google Scholar] [CrossRef] [PubMed]
- Roth, S.M. Genetic aspects of skeletal muscle strength and mass with relevance to sarcopenia. Bonekey Rep. 2012, 1, 58. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.-J.; Liu, S.-L.; Lei, S.-F.; Papasian, C.J.; Deng, H.-W. Molecular genetic studies of gene identification for sarcopenia. Qual. Life Res. 2011, 131, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Calvani, R.; Marini, F.; Cesari, M.; Tosato, M.; Picca, A.; Anker, S.D.; Von Haehling, S.; Miller, R.R.; Bernabei, R.; Landi, F.; et al. Biomarkers for physical frailty and sarcopenia. Aging Clin. Exp. Res. 2017, 29, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Karasik, D.; Cohen-Zinder, M. The genetic pleiotropy of musculoskeletal aging. Front. Physiol. 2012, 3, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, S.-J.; Yu, L.-J. Oxidative Stress, Molecular Inflammation and Sarcopenia. Int. J. Mol. Sci. 2010, 11, 1509–1526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, H.P.; Al-Shanti, N.; Davies, L.C.; Barton, S.; Grounds, M.; Tellam, R.; Stewart, C.; Cooper, C.; Sayer, A.A. Lean Mass, Muscle Strength and Gene Expression in Community Dwelling Older Men: Findings from the Hertfordshire Sarcopenia Study (HSS). Calcif. Tissue Int. 2014, 95, 308–316. [Google Scholar] [CrossRef]
- Yenmis, G.; Oner, T.; Cam, C.; Koc, A.; Kucuk, O.S.; Yakicier, M.C.; Dizman, D.; Sultuybek, G.K. Association ofNFKB1 and NFKBIAPolymorphisms in Relation to Susceptibility of Behçet’s Disease. Scand. J. Immunol. 2014, 81, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-N.; Zhang, J.-Y.; Ma, Y.-T.; Xie, X.; Li, X.-M.; Liu, F.; Chen, B.-D.; Dong, X.-H.; Zheng, Y.-Y.; Pan, S.; et al. −94 ATTG Insertion/Deletion Polymorphism of theNFKB1Gene Is Associated with Coronary Artery Disease in Han and Uygur Women in China. Genet. Test. Mol. Biomark. 2014, 18, 430–438. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Cai, P.; Liang, H. Association of the genetic polymorphisms of NFKB1 with susceptibility to ovarian cancer. Genet. Mol. Res. 2015, 14, 8273–8282. [Google Scholar] [CrossRef]
- Lai, H.-M.; Li, X.-M.; Yang, Y.-N.; Ma, Y.-T.; Xu, R.; Pan, S.; Zhai, H.; Liu, F.; Chen, B.-D.; Zhao, Q. Genetic Variation in NFKB1 and NFKBIA and Susceptibility to Coronary Artery Disease in a Chinese Uygur Population. PLoS ONE 2015, 10, e0129144. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Pan, L.; Xue, J.; Yu, H. The association between NFKB1-94ins/del ATTG polymorphism and non-small cell lung cancer risk in a Chinese Han population. Int. J. Clin. Exp. Med. 2015, 8, 8153–8157. [Google Scholar]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.-P.; Rolland, Y.; Schneider, S.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, R.C.; Wang, Z.; Heo, M.; Ross, R.; Janssen, I.; Heymsfield, S.B. Total-body skeletal muscle mass: Development and cross-validation of anthropometric prediction models. Am. J. Clin. Nutr. 2000, 72, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Marchena-Gómez, J.; Acosta-Merida, M.A.; Hemmersbach-Miller, M.; Conde-Martel, A.; Roque-Castellano, C.; Hernandez-Romero, J. The Age-Adjusted Charlson Comorbidity Index as an Outcome Predictor of Patients with Acute Mesenteric Ischemia. Ann. Vasc. Surg. 2009, 23, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Serrano-Urrea, R.; Garcia-Meseguer, M.J. Malnutrition in an elderly population without cognitive impairment living in nursing homes in Spain: Study of prevalence using the Mini Nutritional Assessment test. Gerontology 2013, 59, 490–498. [Google Scholar] [CrossRef]
- Bahat, G.; Oren, M.M.; Yilmaz, O.; Kiliç, C.; Aydin, K.; Karan, M.A. Comparing SARC-F with SARC-CalF to Screen Sarcopenia in Community Living Older Adults. J. Nutr. Health Aging 2018, 22, 1034–1038. [Google Scholar] [CrossRef] [PubMed]
- Ramos, B.R.D.A.; D’Elia, M.P.B.; Amador, M.A.T.; Santos, N.P.C.; Santos, S.E.B.; Castelli, E.D.C.; Witkin, S.S.; Miot, H.A.; Miot, L.D.B.; da Silva, M.G. Neither self-reported ethnicity nor declared family origin are reliable indicators of genomic ancestry. Genetica 2016, 144, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, G.; Keshtkar, A.; Soltani, A.; Ahadi, Z.; Larijani, B.; Heshmat, R. Prevalence of sarcopenia in the world: A systematic review and meta- analysis of general population studies. J. Diabetes Metab. Disord. 2017, 16, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhillon, R.J.; Hasni, S. Pathogenesis and Management of Sarcopenia. Clin. Geriatr. Med. 2017, 33, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Pelegrini, A.; Mazo, G.Z.; Pinto, A.D.A.; Benedetti, T.R.B.; Silva, D.A.S.; Petroski, E.L. Sarcopenia: Prevalence and associated factors among elderly from a Brazilian capital. Fisioter. Mov. 2018, 31, e003102. [Google Scholar] [CrossRef] [Green Version]
- Moreira, V.G.; Perez, M.; Lourenço, R.A. Prevalence of sarcopenia and its associated factors: The impact of muscle mass, gait speed, and handgrip strength reference values on reported frequencies. Clinics 2019, 74, e477. [Google Scholar] [CrossRef]
- Alodhayani, A.A. Sex-specific differences in the prevalence of sarcopenia among pre-frail community-dwelling older adults in Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 4005–4009. [Google Scholar] [CrossRef] [PubMed]
- Geraci, A.; Calvani, R.; Ferri, E.; Marzetti, E.; Arosio, B.; Cesari, M. Sarcopenia and Menopause: The Role of Estradiol. Front. Endocrinol. 2021, 12, 682012. [Google Scholar] [CrossRef] [PubMed]
- Hairi, N.N.; Bulgiba, A.; Hiong, T.G.; Mudla, I. Sarcopenia in Older People. In Geriatrics Craig Atwood; Atwood, C., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 29–40. [Google Scholar] [CrossRef] [Green Version]
- Kolovou, G.; Kolovou, V.; Vasiliadis, I.; Giannakopoulou, V.; Mihas, C.; Bilianou, H.; Kollia, A.; Papadopoulou, E.; Marvaki, A.; Goumas, G.; et al. The Frequency of 4 Common Gene Polymorphisms in Nonagenarians, Centenarians, and Average Life Span Individuals. Angiology 2013, 65, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Romanick, M.; Thompson, L.V.; Brown-Borg, H.M. Murine models of atrophy, cachexia, and sarcopenia in skeletal muscle. Biochim. Biophys. Acta 2013, 1832, 1410–1420. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Malhotra, S.; Kumar, A. Nuclear factor-kappa B signaling in skeletal muscle atrophy. J. Mol. Med. 2008, 86, 1113–1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Lertwattanarak, R.; Garduño, J.D.J.; Galeana, J.J.; Li, J.; Zamarripa, F.; Lancaster, J.L.; Mohan, S.; Hussey, S.; Musi, N. Elevated Muscle TLR4 Expression and Metabolic Endotoxemia in Human Aging. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2014, 70, 232–246. [Google Scholar] [CrossRef] [PubMed]
- Thalacker-Mercer, A.E.; Dell’Italia, L.J.; Cui, X.; Cross, J.M.; Bamman, M.M. Differential genomic responses in old vs. young humans despite similar levels of modest muscle damage after resistance loading. Physiol. Genom. 2010, 40, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Buford, T.W.; Cooke, M.B.; Manini, T.M.; Leeuwenburgh, C.; Willoughby, D.S. Effects of Age and Sedentary Lifestyle on Skeletal Muscle NF- B Signaling in Men. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2010, 65, 532–537. [Google Scholar] [CrossRef]
- Di Iorio, A.; Abate, M.; Di Renzo, D.; Russolillo, A.; Battaglini, C.; Ripari, P.; Saggini, R.; Paganelli, R.; Abate, G. Sarcopenia: Age-Related Skeletal Muscle Changes from Determinants to Physical Disability. Int. J. Immunopathol. Pharmacol. 2006, 19, 703–719. [Google Scholar] [CrossRef] [Green Version]
- Abate, M.; Di Iorio, A.; Di Renzo, D.; Paganelli, R.; Saggini, R.; Abate, G. Frailty in the elderly: The physical dimension. Eura Medicophys. 2007, 43, 407–415. [Google Scholar]
- Dietzel, R.; Felsenberg, D.; Armbrecht, G. Mechanography performance tests and their association with sarcopenia, falls and impairment in the activities of daily living—A pilot cross-sectional study in 293 older adults. J. Musculoskelet. Neuronal Interact. 2015, 15, 249–256. [Google Scholar] [PubMed]
- De Souza, A.M.; Resende, S.S.; De Sousa, T.N.; De Brito, C.F.A. A systematic scoping review of the genetic ancestry of the Brazilian population. Genet. Mol. Biol. 2019, 42, 495–508. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Case (n = 74) | Control (n = 145) | p-Value |
---|---|---|---|
Sex | |||
Male | 32 (43.2%) | 51 (35.2%) | 0.2440 a |
Female | 42 (56.8%) | 94 (64.8%) | |
Age | |||
≤70 years | 32 (43.2%) | 88 (60.7%) | 0.0140 a,* |
>70 years | 42 (56.8%) | 57 (39.3%) | |
Charlson Index (Score) | |||
Median (p25%–p75%) | 5.0 (4.0–7.0) | 3.0 (2.0–5.0) | <0.0001 b,* |
Lifestyle | |||
Smoking | 46 (62.2%) | 74 (51.0%) | 0.1180 a |
Alcoholism | 34 (45.9%) | 74 (51.0%) | 0.4760 a |
Sedentary lifestyle | 67 (90.5%) | 50 (34.5%) | <0.0001 a,* |
Nutritional Status (NMA) | |||
Normal | 49 (66.2%) | 139 (95.9%) | <0.0001 a,* |
Malnourished | 25 (33.8%) | 6 (4.1%) | |
SARC-CalF (Score) | |||
Median (p25%–p75%) | 16.0 (12.0–18.0) | 10.0 (0.0–10.0) | <0.0001 b,* |
Ancestry | |||
European | 0.451 ± 0.178 | 0.456 ± 0.170 | 0.9530 b |
Amerindian | 0.316 ± 0.151 | 0.299 ± 0.149 | 0.4200 b |
African | 0.232 ± 0.123 | 0.244 ± 0.146 | 0.8470 b |
Variables | Case (n = 74) | Control (n = 145) | p-Value a |
---|---|---|---|
Anthropometry | |||
Weight (kg) | 50.99 ± 11.31 | 65.99 ± 11.89 | <0.0001 * |
Height (m) | 1.58 ± 0.09 | 1.59 ± 0.09 | 0.8890 |
BMI (kg/m2) | 20.31 ± 4.52 | 26.08 ± 4.57 | <0.0001 * |
Calf Circumference (cm) | 27.92 ± 2.09 | 34.26 ± 3.00 | <0.0001 * |
Total Muscle Mass Index (kg/m2) | |||
Mean (±sd) | 7.17 ± 1.69 | 8.50 ± 1.59 | <0.0001 * |
Functional Mobility | |||
Gait Speed (m/s) | 0.30 ± 0.19 | 0.60 ± 0.32 | <0.0001 * |
Genotype | Case (n = 74) | Control (n = 145) | p-Value a | OR (95% CI) |
---|---|---|---|---|
NFkB1 (rs28362491) | ||||
DEL/DEL | 15 (20.3%) | 37 (25.5%) | 0.010 * | INS/INS vs. Others: 2.943 (1.301–6.654) |
DEL/INS | 30 (40.5%) | 79 (54.5%) | ||
INS/INS | 29 (39.2%) | 29 (20.0%) | ||
Allele DEL | 60 (40.5%) | 153 (52.8%) | 0.008 * | 1.932 (1.187–3.145) |
Allele INS | 88 (59.5%) | 137 (47.2%) |
Variables | NFkB1 Genotypes (rs28362491) | INS/INS vs. Others p-Value a | |||
---|---|---|---|---|---|
DEL/DEL (n = 52) | DEL/INS (n = 109) | INS/INS (n = 58) | DEL/DEL+DEL/INS (n = 161) | ||
TMMI (kg/m2) | |||||
Mean (±sd) | 8.39 ± 1.58 | 8.00 ± 1.77 | 7.84 ± 1.82 | 8.14 ± 1.71 | 0.227 |
Calf Circumference (cm) | |||||
Mean (±sd) | 31.98 ± 3.09 | 32.71 ± 4.23 | 31.05 ± 2.29 | 32.48 ± 3.91 | 0.013 * |
Gait Speed (m/s) | |||||
Mean (±sd) | 0.43 ± 0.27 | 0.55 ± 0.34 | 0.46 ± 0.30 | 0.51 ± 0.33 | 0.269 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, E.E.B.; de Carvalho, D.C.; Leitão, L.P.C.; Rodrigues, J.C.G.; Modesto, A.A.C.; de Sousa, E.C.; dos Santos, S.E.B.; Fernandes, M.R.; dos Santos, N.P.C. Influence of Polymorphism on the NFkB1 Gene (rs28362491) on the Susceptibility to Sarcopenia in the Elderly of the Brazilian Amazon. J. Pers. Med. 2021, 11, 1045. https://doi.org/10.3390/jpm11101045
Pereira EEB, de Carvalho DC, Leitão LPC, Rodrigues JCG, Modesto AAC, de Sousa EC, dos Santos SEB, Fernandes MR, dos Santos NPC. Influence of Polymorphism on the NFkB1 Gene (rs28362491) on the Susceptibility to Sarcopenia in the Elderly of the Brazilian Amazon. Journal of Personalized Medicine. 2021; 11(10):1045. https://doi.org/10.3390/jpm11101045
Chicago/Turabian StylePereira, Esdras E. B., Darlen C. de Carvalho, Luciana P. C. Leitão, Juliana C. G. Rodrigues, Antônio A. C. Modesto, Evitom C. de Sousa, Sidney E. B. dos Santos, Marianne R. Fernandes, and Ney P. C. dos Santos. 2021. "Influence of Polymorphism on the NFkB1 Gene (rs28362491) on the Susceptibility to Sarcopenia in the Elderly of the Brazilian Amazon" Journal of Personalized Medicine 11, no. 10: 1045. https://doi.org/10.3390/jpm11101045
APA StylePereira, E. E. B., de Carvalho, D. C., Leitão, L. P. C., Rodrigues, J. C. G., Modesto, A. A. C., de Sousa, E. C., dos Santos, S. E. B., Fernandes, M. R., & dos Santos, N. P. C. (2021). Influence of Polymorphism on the NFkB1 Gene (rs28362491) on the Susceptibility to Sarcopenia in the Elderly of the Brazilian Amazon. Journal of Personalized Medicine, 11(10), 1045. https://doi.org/10.3390/jpm11101045