Associations of the SREBF2 Gene and INSIG2 Polymorphisms with Obesity and Dyslipidemia in Thai Psychotic Disorder Patients Treated with Risperidone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligible Patients
2.2. Biochemical and Anthropometric Assessments
2.3. Genomic DNA Preparation and Genotyping Assay
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics and Genotyping Data
3.2. Effect of the SREBF2 Gene (Rs1052717, Rs2267439, and Rs2267443) Polymorphisms on Obesity and Dyslipidemia in Patients with Psychotic Disorders
3.3. Effect of INSIG2 (Rs7566605, Rs11123469, and Rs17587100) Polymorphisms on Obesity and Dyslipidemia in Patients with Psychotic Disorders
3.4. Multivariate Logistic Regression Analysis of Predictive Factors for Risperidone-Induced Hypertriglyceridemia in Patients with Psychotic Disorders
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, H.; Zhuang, X. Atypical antipsychotics-induced metabolic syndrome and nonalcoholic fatty liver disease: A critical review. Neuropsychiatr. Dis. Treat. 2019, 15, 2087–2099. [Google Scholar] [CrossRef] [Green Version]
- Alrob, O.A.; Alazzam, S.; Alzoubi, K.; Nusair, M.B.; Amawi, H.; Karasneh, R.; Rababa’H, A.; Nammas, M. The Effect of Long-Term Second-Generation Antipsychotics Use on the Metabolic Syndrome Parameters in Jordanian Population. Medicina 2019, 55, 320. [Google Scholar] [CrossRef] [Green Version]
- Carli, M.; Kolachalam, S.; Longoni, B.; Pintaudi, A.; Baldini, M.; Aringhieri, S.; Fasciani, I.; Annibale, P.; Maggio, R.; Scarselli, M. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals 2021, 14, 238. [Google Scholar] [CrossRef] [PubMed]
- Dommermuth, R.; Ewing, K. Metabolic Syndrome: Systems Thinking in Heart Disease. Prim Care. 2018, 45, 109–129. [Google Scholar] [CrossRef] [PubMed]
- Mendrick, D.L.; Diehl, A.M.; Topor, L.S.; Dietert, R.R.; Will, Y.; A La Merrill, M.; Bouret, S.; Varma, V.; Hastings, K.L.; Schug, T.T.; et al. Metabolic Syndrome and Associated Diseases: From the Bench to the Clinic. Toxicol. Sci. 2018, 162, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Crump, C.; Winkleby, M.A.; Sundquist, K.; Sundquist, J. Comorbidities and mortality in persons with schizophrenia: A Swedish national cohort study. Am. J. Psychiatry 2013, 170, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Nordentoft, M.; Wahlbeck, K.; Hällgren, J.; Westman, J.; Ösby, U.; Alinaghizadeh, H.; Gissler, M.; Laursen, T.M. Excess mortality, causes of death and life expectancy in 270,770 patients with recent onset of mental disorders in Denmark, Finland and Sweden. PLoS ONE 2013, 8, e55176. [Google Scholar] [CrossRef] [Green Version]
- Tschoner, A.; Engl, J.; Laimer, M.; Kaser, S.; Rettenbacher, M.; Fleischhacker, W.W.; Patsch, J.R.; Ebenbichler, C. Metabolic side effects of antipsychotic medication. Int. J. Clin. Pract. 2007, 61, 1356–1370. [Google Scholar] [CrossRef] [PubMed]
- Allison, D.B.; Mackell, J.A.; McDonnell, D.D. The impact of weight gain on quality of life among persons with schizophrenia. Psychiatr. Serv. 2003, 54, 565–567. [Google Scholar] [CrossRef]
- MacNeil, R.R.; Müller, D.J. Genetics of Common Antipsychotic-Induced Adverse Effects. Mol. Neuropsychiatry 2016, 2, 61–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; Cao, T.; Wu, X.; Tang, M.; Xiang, D.; Cai, H. Progress in Genetic Polymorphisms Related to Lipid Disturbances Induced by Atypical Antipsychotic Drugs. Front. Pharmacol. 2019, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Chen, J.; Liu, D.; Yu, S.; Cong, E.; Li, Y.; Wu, H.; Yue, Y.; Zuo, S.; Wang, Y.; et al. Association between SREBF2 gene polymorphisms and metabolic syndrome in clozapine-treated patients with schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2015, 56, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Liou, Y.-J.; Bai, Y.M.; Lin, E.; Chen, J.-Y.; Chen, T.-T.; Hong, C.-J.; Tsai, S.-J. Gene-gene interactions of the INSIG1 and INSIG2 in metabolic syndrome in schizophrenic patients treated with atypical antipsychotics. Pharm. J. 2012, 12, 54–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeBose-Boyd, R.A.; Ye, J. SREBPs in Lipid Metabolism, Insulin Signaling, and Beyond. Trends Biochem. Sci. 2018, 43, 358–368. [Google Scholar] [CrossRef]
- Walker, A.K.; Näär, A.M. SREBPs: Regulators of cholesterol/lipids as therapeutic targets in metabolic disorders, cancers and viral diseases. Clin. Lipidol. 2012, 7, 27–36. [Google Scholar] [CrossRef]
- Dong, X.Y.; Tang, S.Q. Insulin-induced gene: A new regulator in lipid metabolism. Peptides 2010, 31, 2145–2150. [Google Scholar] [CrossRef]
- Cai, H.L.; Tan, Q.Y.; Jiang, P.; Dang, R.L.; Xue, Y.; Tang, M.M.; Xu, P.; Deng, Y.; Li, H.D.; Yao, J.K. A potential mechanism underlying atypical antipsychotics-induced lipid disturbances. Transl. Psychiatry 2015, 5, e661. [Google Scholar] [CrossRef]
- Galavi, H.; Noorzehi, N.; Saravani, R.; Sargazi, S.; Mollashahee-Kohkan, F.; Shahraki, H. Association study of SREBF-2 gene polymorphisms and the risk of type 2 diabetes in a sample of Iranian population. Gene 2018, 660, 145–150. [Google Scholar] [CrossRef]
- Le Hellard, S.; Theisen, F.M.; Haberhausen, M.; Raeder, M.B.; Fernø, J.; Gebhardt, S.; Hinney, A.; Remschmidt, H.; Krieg, J.C.; Mehler-Wex, C.; et al. Association between the insulin-induced gene 2 (INSIG2) and weight gain in a German sample of antipsychotic-treated schizophrenic patients: Perturbation of SREBP-controlled lipogenesis in drug-related metabolic adverse effects? Mol. Psychiatry 2009, 14, 308–317. [Google Scholar] [CrossRef]
- Herbert, A.; Gerry, N.P.; McQueen, M.B.; Heid, I.M.; Pfeufer, A.; Illig, T.; Wichmann, H.-E.; Meitinger, T.; Hunter, D.; Hu, F.B.; et al. A common genetic variant is associated with adult and childhood obesity. Science 2006, 312, 279–283. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization; Regional Office for the Western Pacific. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; Health Communications: Sydney, Australia, 2000. [Google Scholar]
- Tandon, R. Safety and tolerability: How do newer generation “atypical” antipsychotics compare? Psychiatr. Q. 2002, 73, 297–311. [Google Scholar] [CrossRef] [PubMed]
- Newcomer, J.W. Second-generation (atypical) antipsychotics and metabolic effects: A comprehensive literature review. CNS Drugs 2005, 19 (Suppl. S1), 1–93. [Google Scholar] [CrossRef]
- Kritharides, L.; Chow, V.; Lambert, T.J. Cardiovascular disease in patients with schizophrenia. Med. J. Aust. 2017, 206, 91–95. [Google Scholar] [CrossRef]
- Jones, M.E.; Campbell, G.; Patel, D.; Brunner, E.; Shatapathy, C.C.; Murray-Thomas, T.; van Staa, T.; Motsko, S. Risk of Mortality (including Sudden Cardiac Death) and Major Cardiovascular Events in Users of Olanzapine and Other Antipsychotics: A Study with the General Practice Research Database. Cardiovasc. Psychiatry Neurol. 2013, 2013, 647476. [Google Scholar] [CrossRef]
- Murashita, M.; Inoue, T.; Kusumi, I.; Nakagawa, S.; Itoh, K.; Tanaka, T.; Izumi, T.; Hosoda, H.; Kangawa, K.; Koyama, T. Glucose and lipid metabolism of long-term risperidone monotherapy in patients with schizophrenia. Psychiatry Clin. Neurosci. 2007, 61, 54–58. [Google Scholar] [CrossRef]
- Meyer, J.M. A retrospective comparison of weight, lipid, and glucose changes between risperidone- and olanzapine-treated inpatients: Metabolic outcomes after 1 year. J. Clin. Psychiatry 2002, 63, 425–433. [Google Scholar] [CrossRef] [PubMed]
- Syamsuddin, S.; Mahardika, A.; Hawaidah; Lisal, S.T. Changes of Body Weight and Triglyceride Level in Schizophrenia Patients Treated with Atypical Antipsychotics. Int. J. Clin. Psychiatry 2018, 6, 40–46. [Google Scholar] [CrossRef]
- Horton, J.D.; Goldstein, J.L.; Brown, M.S. SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Investig. 2002, 109, 1125–1131. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Belmonte, L.M.; Moreno-Santos, I.; Cabrera-Bueno, F.; Sánchez-Espín, G.; Castellano-Castillo, D.; Such, M.; Crespo-Leiro, M.G.; Carrasco-Chinchilla, F.; Alonso-Pulpón, L.; López-Garrido, M.; et al. Expression of Sterol Regulatory Element-Binding Proteins in epicardial adipose tissue in patients with coronary artery disease and diabetes mellitus: Preliminary study. Int. J. Med. Sci. 2017, 14, 268–274. [Google Scholar] [CrossRef] [Green Version]
- Engelking, L.J.; Liang, G.; Hammer, R.E.; Takaishi, K.; Kuriyama, H.; Evers, B.M.; Li, W.-P.; Horton, J.D.; Goldstein, J.L.; Brown, M.S. Schoenheimer effect explained--feedback regulation of cholesterol synthesis in mice mediated by Insig proteins. J. Clin. Investig. 2005, 115, 2489–2498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krapivner, S.; Popov, S.; Chernogubova, E.; Hellénius, M.-L.; Fisher, R.M.; Hamsten, A.; Hooft, F.M.V. Insulin-induced gene 2 involvement in human adipocyte metabolism and body weight regulation. J. Clin. Endocrinol. Metab. 2008, 93, 1995–2001. [Google Scholar] [CrossRef] [Green Version]
- Cervino, A.C.; Li, G.; Edwards, S.; Zhu, J.; Laurie, C.; Tokiwa, G.; Lum, P.Y.; Wang, S.; Castellini, L.W.; Lusis, A.J.; et al. Integrating QTL and high-density SNP analyses in mice to identify Insig2 as a susceptibility gene for plasma cholesterol levels. Genomics 2005, 86, 505–517. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, R.; Wang, F.; Lu, M.; Lin, R.-Y.; Wang, S.-Z.; Wen, H.; Jin, L.; Wang, X.-F. A common polymorphism is associated with body mass index in Uyghur population. Diabetes Res. Clin. Pract. 2008, 81, e11–e13. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, C.H.; Mogensen, M.S.; Borch-Johnsen, K.; Sandbæk, A.; Lauritzen, T.; Sørensen, T.I.A.; Hansen, L.; Almind, K.; Jørgensen, T.; Pedersen, O.; et al. Non-replication of genome-wide based associations between common variants in INSIG2 and PFKP and obesity in studies of 18,014 Danes. PLoS ONE 2008, 3, e2872. [Google Scholar] [CrossRef] [Green Version]
- Boes, E.; Kollerits, B.; Heid, I.M.; Hunt, S.C.; Pichler, M.; Paulweber, B.; Coassin, S.; Adams, T.D.; Hopkins, P.N.; Lingenhel, A.; et al. INSIG2 polymorphism is neither associated with BMI nor with phenotypes of lipoprotein metabolism. Obesity 2008, 16, 827–833. [Google Scholar] [CrossRef]
- Heid, I.M.; Huth, C.; Loos, R.J.F.; Kronenberg, F.; Adámkova, V.; Anand, S.S.; Ardlie, K.; Biebermann, H.; Bjerregaard, P.; Boeing, H.; et al. Meta-Analysis of the INSIG2 Association with Obesity Including 74,345 Individuals: Does Heterogeneity of Estimates Relate to Study Design? PLoS Genet. 2009, 5, e1000694. [Google Scholar] [CrossRef]
- Vimaleswaran, K.S.; Franks, P.; Brage, S.; Sardinha, L.; Andersen, L.B.; Wareham, N.J.; Ekelund, U.; Loos, R. Absence of association between the INSIG2 gene polymorphism (rs7566605) and obesity in the European Youth Heart Study (EYHS). Obesity 2009, 17, 1453–1457. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Zai, C.C.; Meltzer, H.Y.; Lieberman, J.A.; Müller, D.J.; Kennedy, J.L. Association study of polymorphisms in insulin induced gene 2 (INSIG2) with antipsychotic-induced weight gain in European and African-American schizophrenia patients. Hum. Psychopharmacol. 2010, 25, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Arca, M.; Veronesi, C.; D’Erasmo, L.; Borghi, C.; Colivicchi, F.; De Ferrari, G.M.; Desideri, G.; Pontremoli, R.; Temporelli, P.L.; Perrone, V.; et al. Association of Hypertriglyceridemia with All-Cause Mortality and Atherosclerotic Cardiovascular Events in a Low-Risk Italian Population: The TG-REAL Retrospective Cohort Analysis. J. Am. Heart Assoc. 2020, 9, e015801. [Google Scholar] [CrossRef]
Genes | Gene Polymorphisms | Genotype | N (Frequency, %) | Minor Allele Frequency |
---|---|---|---|---|
SREBF2 | ||||
rs1052717 (G/A) | GG | 56 (49.56%) | A = 0.27 | |
GA | 52 (46.02%) | |||
AA | 5 (4.42%) | |||
rs2267439 (T/C) | TT | 22 (19.47%) | T = 0.44 | |
TC | 55 (48.67%) | |||
CC | 36 (31.86%) | |||
rs2267443 (G/A) | GG | 52 (46.02%) | A = 0.31 | |
GA | 53 (46.90%) | |||
AA | 8 (7.08%) | |||
INSIG2 | ||||
rs7566605 (G/C) | GG | 46 (40.71%) | C = 0.40 | |
GC | 43 (38.05%) | |||
CC | 24 (21.24%) | |||
rs11123469 (T/C) | TT | 54 (47.79%) | C = 0.30 | |
TC | 50 (44.25%) | |||
CC | 9 (7.96%) | |||
rs17587100 (A/C) | AA | 106 (93.81%) | C = 0.03 | |
AC | 7 (6.19%) | |||
CC | 0 (0.00%) |
Characteristics of the Patients | BMI < 25.0 kg/m2 (n = 56) | BMI ≥ 25.0 kg/m2 (n = 57) | p-Value |
---|---|---|---|
Age (years), median (IQR) | 38.00 (31.00–47.50) | 42.00 (34.00–49.50) | 0.16 a |
Gender, n (%) | |||
Male (n = 53) | 26 (49.06%) | 27 (50.94%) | 0.92 b |
Female (n = 60) | 30 (50.00%) | 30 (50.00%) | |
Diagnosis, n (%) | |||
Schizophrenia (n = 92) | 46 (50.00%) | 46 (50.00%) | 0.84 b |
Other diagnosis (n = 21) | 10 (47.62%) | 11 (52.38%) | |
Duration of risperidone treatment (months), median (IQR) | 33.75 (6.10–51.55) | 22.72 (16.89–44.22) | 0.78 a |
Dose of risperidone (mg/day), median (IQR) | 4.00 (2.00–4.00) | 4.00 (2.00–6.00) | 0.07 a |
Smoking status, n (%) | |||
No | 38 (48.72%) | 40 (51.28%) | 0.79 b |
Yes | 18 (51.43%) | 17 (48.57%) |
Obesity and Dyslipidemia | Rs1052717 (G/A) | OR (95%CI) | p-Value | Rs2267439 (T/C) | OR (95% CI) | p-Value | Rs2267443 (G/A) | OR (95% CI) | p-Value | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GG | GA + AA | TT | TC + CC | GG | GA + AA | |||||||
Obesity | ||||||||||||
Absent (n = 56) | 27 (48.21%) | 29 (51.79%) | 0.90 (0.43–1.88) | 0.78 | 14 (25.00%) | 42 (75.00%) | 2.04 (0.78–5.34) | 0.14 | 24 (42.86%) | 32 (57.14%) | 0.77 (0.37–1.63) | 0.50 |
Present (n = 57) | 29 (50.87%) | 28 (49.13%) | 8 (14.04%) | 49 (85.96%) | 28 (49.12%) | 29 (50.88%) | ||||||
Abdominal Obesity | ||||||||||||
Absent (n = 40) | 21 (52.50%) | 19 (47.50%) | 1.20 (0.56–2.59) | 0.64 | 8 (20.00%) | 32 (80.00%) | 1.05 (0.40–2.77) | 0.91 | 20 (50.00%) | 20 (50.00%) | 1.28 (0.59–2.77) | 0.53 |
Present (n = 73) | 35 (47.95%) | 38 (52.05%) | 14 (19.18%) | 59 (80.82%) | 32 (43.84%) | 41 (56.16%) | ||||||
Hypercholesterolemia | ||||||||||||
Absent (n = 53) | 27 (50.94%) | 26 (49.06%) | 1.11 (0.53–2.32) | 0.78 | 10 (18.87%) | 43 (81.13%) | 0.93 (0.36–2.36) | 0.88 | 25 (47.17%) | 28 (52.83%) | 1.09 (0.52–2.29) | 0.82 |
Present (n =60) | 29 (48.33%) | 31 (51.67%) | 12 (20.00%) | 48 (80.00%) | 27 (45.00%) | 33 (55.00%) | ||||||
Hypertriglyceridemia | ||||||||||||
Absent (n = 77) | 42 (54.55%) | 35 (45.45%) | 1.89 (0.84–4.22) | 0.12 | 18 (23.38%) | 59 (76.62%) | 2.44 (0.76–7.83) | 0.12 | 41 (53.25%) | 36 (46.75%) | 2.56 (1.12–5.99) | 0.02 * |
Present (n = 36) | 14 (38.89%) | 22 (61.11%) | 4 (11.11%) | 32 (88.89%) | 11 (30.56%) | 25 (69.44%) | ||||||
Hyper-LDL Cholesterolemia | ||||||||||||
Absent (n = 58) | 29 (50.00%) | 29 (50.00%) | 1.03 (0.49–2.16) | 0.92 | 11 (18.97%) | 47 (81.03%) | 0.93 (0.36–2.37) | 0.89 | 26 (44.83%) | 32 (55.17%) | 0.90 (0.43-1.90) | 0.79 |
Present (n = 55) | 27 (49.09%) | 28 (50.91%) | 11 (20.00%) | 44 (80.00%) | 26 (47.27%) | 29 (52.73%) | ||||||
Hypo-HDL Cholesterolemia | ||||||||||||
Absent (n = 91) | 46 (50.55%) | 45 (49.45%) | 1.23 (0.48–3.12) | 0.67 | 21 (23.08%) | 70 (76.92%) | 6.30 (0.80–49.65) | 0.05 | 43 (47.25%) | 48 (52.75%) | 1.29 (0.50–3.32) | 0.59 |
Present (n = 22) | 10 (45.45%) | 12 (54.55%) | 1 (4.55%) | 21 (95.45%) | 9 (40.91%) | 13 (59.09%) |
Obesity and Dyslipidemia | Rs7566605 (G/C) | OR (95% CI) | p-Value | Rs11123469 (T/C) | OR (95% CI) | p-Value | Rs17587100 (A/C) | OR (95% CI) | p-Value | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GG | GC + CC | TT | TC + CC | AA | AC + CC | |||||||
Obesity | ||||||||||||
Absent (n = 56) | 23 (41.07%) | 33 (58.93%) | 1.03 (0.48–2.18) | 0.94 | 27 (48.21%) | 29 (51.79%) | 1.03 (0.49–2.16) | 0.93 | 52 (92.86%) | 4 (7.14%) | 0.72 (0.15–3.38) | 0.68 |
Present (n = 57) | 23 (40.35%) | 34 (59.65%) | 27 (47.37%) | 30 (52.63%) | 54 (94.74%) | 3 (5.26%) | ||||||
Abdominal Obesity | ||||||||||||
Absent (n = 40) | 16 (40.00%) | 24 (60.00%) | 0.95 (0.43–2.09) | 0.91 | 18 (45.00%) | 22 (55.00%) | 0.84 (0.39–1.82) | 0.66 | 38 (95.00%) | 2 (5.00%) | 1.39 (0.26–7.55) | 0.69 |
Present (n = 73) | 30 (41.10%) | 43 (58.90%) | 36 (49.32%) | 37 (50.68%) | 68 (93.15%) | 5 (6.85%) | ||||||
Hypercholesterolemia | ||||||||||||
Absent (n = 53) | 24 (45.28%) | 29 (54.72%) | 1.42 (0.67–3.04) | 0.35 | 26 (49.06%) | 27 (50.94%) | 1.10 (0.52–2.30) | 0.80 | 49 (92.45%) | 4 (7.55%) | 0.64 (0.14–3.02) | 0.57 |
Present (n = 60) | 22 (36.67%) | 38 (63.33%) | 28 (46.67%) | 32 (53.33%) | 57 (95.00%) | 3 (5.00%) | ||||||
Hypertriglyceridemia | ||||||||||||
Absent (n = 77) | 31 (40.26%) | 46 (59.74%) | 0.94 (0.42–2.10) | 0.89 | 33 (42.86%) | 44 (57.14%) | 0.54 (0.27–1.06) | 0.07 | 73 (94.81%) | 4 (5.19%) | 1.66 (0.35–7.83) | 0.52 |
Present (n = 36) | 15 (41.67%) | 21 (58.33%) | 21 (58.33%) | 15 (41.67%) | 33 (91.67%) | 3 (8.33%) | ||||||
Hyper-LDL Cholesterolemia | ||||||||||||
Absent (n = 58) | 26 (44.83%) | 32 (55.17%) | 1.42 (0.67–3.02) | 0.36 | 32 (55.17%) | 26 (44.83%) | 1.84 (0.87–3.89) | 0.11 | 53 (91.38%) | 5 (8.62%) | 0.40 (0.07–2.15) | 0.27 |
Present (n = 55) | 20 (36.36%) | 35 (63.64%) | 22 (40.00%) | 33 (60.00%) | 53 (96.36%) | 2 (3.64%) | ||||||
Hypo-HDL Cholesterolemia | ||||||||||||
Absent (n = 91) | 38 (41.76%) | 53 (58.24%) | 1.25 (0.48–3.29) | 0.64 | 45 (49.45%) | 46 (50.55%) | 1.41 (0.55–3.63) | 0.47 | 86 (94.51%) | 5 (5.49%) | 1.72 (0.31–9.51) | 0.53 |
Present (n = 22) | 8 (36.36%) | 14 (63.64%) | 9 (40.91%) | 13 (59.09%) | 20 (90.91%) | 2 (9.09%) |
Predictive Factors | Hypertriglyceridemia | ||
---|---|---|---|
Odds Ratio | 95% Confidence Intervals | p-Value | |
SREBF2 rs2267439 (T/C) | 2.98 | 0.82–10.87 | 0.098 |
SREBF2 rs2267443 (G/A) | 4.47 | 1.62–12.32 | 0.004 * |
INSIG2 rs11123469 (T/C) | 0.37 | 0.14–0.97 | 0.043 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanwong, N.; Sukasem, C.; Unaharassamee, W.; Jiratjintana, N.; Na Nakorn, C.; Hongkaew, Y.; Puangpetch, A. Associations of the SREBF2 Gene and INSIG2 Polymorphisms with Obesity and Dyslipidemia in Thai Psychotic Disorder Patients Treated with Risperidone. J. Pers. Med. 2021, 11, 943. https://doi.org/10.3390/jpm11100943
Vanwong N, Sukasem C, Unaharassamee W, Jiratjintana N, Na Nakorn C, Hongkaew Y, Puangpetch A. Associations of the SREBF2 Gene and INSIG2 Polymorphisms with Obesity and Dyslipidemia in Thai Psychotic Disorder Patients Treated with Risperidone. Journal of Personalized Medicine. 2021; 11(10):943. https://doi.org/10.3390/jpm11100943
Chicago/Turabian StyleVanwong, Natchaya, Chonlaphat Sukasem, Weerapon Unaharassamee, Napa Jiratjintana, Chalitpon Na Nakorn, Yaowaluck Hongkaew, and Apichaya Puangpetch. 2021. "Associations of the SREBF2 Gene and INSIG2 Polymorphisms with Obesity and Dyslipidemia in Thai Psychotic Disorder Patients Treated with Risperidone" Journal of Personalized Medicine 11, no. 10: 943. https://doi.org/10.3390/jpm11100943
APA StyleVanwong, N., Sukasem, C., Unaharassamee, W., Jiratjintana, N., Na Nakorn, C., Hongkaew, Y., & Puangpetch, A. (2021). Associations of the SREBF2 Gene and INSIG2 Polymorphisms with Obesity and Dyslipidemia in Thai Psychotic Disorder Patients Treated with Risperidone. Journal of Personalized Medicine, 11(10), 943. https://doi.org/10.3390/jpm11100943