Late Failure of High-Flow Nasal Cannula May Be Associated with High Mortality in COVID-19 Patients: A Multicenter Retrospective Study in the Republic of Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Data Collection and Definitions
2.3. Statistical Analysis
3. Results
3.1. Clinical Characteristics and Outcomes
3.2. Changes in ROX Index and SpO2/FiO2 Ratio
3.3. Predictive Factors of Mortality in Mechanically Ventilated COVID-19 Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Marshall, J.C.; Murthy, S.; Diaz, J.; Adhikari, N.K.; Angus, D.C.; Arabi, Y.M.; Baillie, K.; Bauer, M.; Berry, S.; Blackwood, B.; et al. A minimal common outcome measure set for COVID-19 clinical research. Lancet Infect. Dis. 2020, 20, e192–e197. [Google Scholar] [CrossRef]
- Roca, O.; Riera, J.; Torres, F.; Masclans, J.R. High-flow oxygen therapy in acute respiratory failure. Respir. Care 2010, 55, 408–413. [Google Scholar] [PubMed]
- Nishimura, M. High-Flow Nasal Cannula Oxygen Therapy in Adults: Physiological Benefits, Indication, Clinical Benefits, and Adverse Effects. Respir. Care 2016, 61, 529–541. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, J.E.; Williams, A.B.; Gerard, C.; Hockey, H. Evaluation of a humidified nasal high-flow oxygen system, using oxygraphy, capnography and measurement of upper airway pressures. Anaesth. Intensive Care 2011, 39, 1103–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rochwerg, B.; Granton, D.; Wang, D.X.; Helviz, Y.; Einav, S.; Frat, J.P.; Mekontso-Dessap, A.; Schreiber, A.; Azoulay, E.; Mercat, A.; et al. High flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: A systematic review and meta-analysis. Intensive Care Med. 2019, 45, 563–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, B.J.; Koh, Y.; Lim, C.M.; Huh, J.W.; Baek, S.; Han, M.; Seo, H.S.; Suh, H.J.; Seo, G.J.; Kim, E.Y.; et al. Failure of high-flow nasal cannula therapy may delay intubation and increase mortality. Intensive Care Med. 2015, 41, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Ricard, J.D.; Roca, O.; Lemiale, V.; Corley, A.; Braunlich, J.; Jones, P.; Kang, B.J.; Lellouche, F.; Nava, S.; Rittayamai, N.; et al. Use of nasal high flow oxygen during acute respiratory failure. Intensive Care Med. 2020, 46, 2238–2247. [Google Scholar] [CrossRef]
- Fan, E.; Brodie, D.; Slutsky, A.S. Acute Respiratory Distress Syndrome: Advances in Diagnosis and Treatment. JAMA 2018, 319, 698–710. [Google Scholar] [CrossRef]
- Kangelaris, K.N.; Ware, L.B.; Wang, C.Y.; Janz, D.R.; Zhuo, H.; Matthay, M.A.; Calfee, C.S. Timing of Intubation and Clinical Outcomes in Adults With Acute Respiratory Distress Syndrome. Crit. Care Med. 2016, 44, 120–129. [Google Scholar] [CrossRef]
- Windisch, W.; Weber-Carstens, S.; Kluge, S.; Rossaint, R.; Welte, T.; Karagiannidis, C. Invasive and Non-Invasive Ventilation in Patients With COVID-19. Dtsch. Arztebl. Int. 2020, 117, 528–533. [Google Scholar] [CrossRef]
- Roca, O.; Messika, J.; Caralt, B.; García-de-Acilu, M.; Sztrymf, B.; Ricard, J.D.; Masclans, J.R. Predicting success of high-flow nasal cannula in pneumonia patients with hypoxemic respiratory failure: The utility of the ROX index. J. Crit. Care 2016, 35, 200–205. [Google Scholar] [CrossRef]
- Lim, W.S.; van der Eerden, M.M.; Laing, R.; Boersma, W.G.; Karalus, N.; Town, G.I.; Lewis, S.A.; Macfarlane, J.T. Defining community acquired pneumonia severity on presentation to hospital: An international derivation and validation study. Thorax 2003, 58, 377–382. [Google Scholar] [CrossRef] [Green Version]
- Calligaro, G.L.; Lalla, U.; Audley, G.; Gina, P.; Miller, M.G.; Mendelson, M.; Dlamini, S.; Wasserman, S.; Meintjes, G.; Peter, J.; et al. The utility of high-flow nasal oxygen for severe COVID-19 pneumonia in a resource-constrained setting: A multi-centre prospective observational study. EClinicalMedicine 2020, 28, 100570. [Google Scholar] [CrossRef]
- Chandel, A.; Patolia, S.; Brown, A.W.; Collins, A.C.; Sahjwani, D.; Khangoora, V.; Cameron, P.C.; Desai, M.; Kasarabada, A.; Kilcullen, J.K.; et al. High-Flow Nasal Cannula Therapy in COVID-19: Using the ROX Index to Predict Success. Respir. Care 2021, 66, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Zirpe, K.G.; Tiwari, A.M.; Gurav, S.K.; Deshmukh, A.M.; Suryawanshi, P.B.; Wankhede, P.P.; Kapse, U.S.; Bhoyar, A.P.; Khan, A.Z.; Malhotra, R.V.; et al. Timing of Invasive Mechanical Ventilation and Mortality among Patients with Severe COVID-19-associated Acute Respiratory Distress Syndrome. Indian J. Crit. Care Med. Peer Rev. Off. Publ. Indian Soc. Crit. Care Med. 2021, 25, 493–498. [Google Scholar]
- Hyman, J.B.; Leibner, E.S.; Tandon, P.; Egorova, N.N.; Bassily-Marcus, A.; Kohli-Seth, R.; Arvind, V.; Chang, H.L.; Lin, H.M.; Levin, M.A. Timing of Intubation and In-Hospital Mortality in Patients with Coronavirus Disease 2019. Crit. Care Explor. 2020, 2, e0254. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Romieu, A.C.; Adelman, M.W.; Hockstein, M.A.; Robichaux, C.J.; Edwards, J.A.; Fazio, J.C.; Blum, J.M.; Jabaley, C.S.; Caridi-Scheible, M.; Martin, G.S.; et al. Timing of Intubation and Mortality Among Critically Ill Coronavirus Disease 2019 Patients: A Single-Center Cohort Study. Crit. Care Med. 2020, 48, e1045–e1053. [Google Scholar] [CrossRef] [PubMed]
- Papoutsi, E.; Giannakoulis, V.G.; Xourgia, E.; Routsi, C.; Kotanidou, A.; Siempos, I.I. Effect of timing of intubation on clinical outcomes of critically ill patients with COVID-19: A systematic review and meta-analysis of non-randomized cohort studies. Crit. Care 2021, 25, 121. [Google Scholar] [CrossRef] [PubMed]
- Dhont, S.; Derom, E.; Van Braeckel, E.; Depuydt, P.; Lambrecht, B.N. The pathophysiology of ’happy’ hypoxemia in COVID-19. Respir. Res. 2020, 21, 198. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, W.G. Natural history of COVID-19 and current knowledge on treatment therapeutic options. Biomed. Pharmacother. Biomed. Pharmacother. 2020, 129, 110493. [Google Scholar] [CrossRef]
- Roedl, K.; Jarczak, D.; Thasler, L.; Bachmann, M.; Schulte, F.; Bein, B.; Weber, C.F.; Schäfer, U.; Veit, C.; Hauber, H.P.; et al. Mechanical ventilation and mortality among 223 critically ill patients with coronavirus disease 2019: A multicentric study in Germany. Aust. Crit. Care Off. J. Confed. Aust. Crit. Care Nurses 2021, 34, 167–175. [Google Scholar]
- COVID-ICU Group on behalf of the REVA Network and the COVID-ICU Investigators. Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: A prospective cohort study. Intensive Care Med. 2021, 47, 60–73. [Google Scholar] [CrossRef]
- Lim, Z.J.; Subramaniam, A.; Ponnapa Reddy, M.; Blecher, G.; Kadam, U.; Afroz, A.; Billah, B.; Ashwin, S.; Kubicki, M.; Bilotta, F.; et al. Case Fatality Rates for Patients with COVID-19 Requiring Invasive Mechanical Ventilation. A Meta-analysis. Am. J. Respir. Crit. Care Med. 2021, 203, 54–66. [Google Scholar] [CrossRef]
- Tuty Kuswardhani, R.A.; Henrina, J.; Pranata, R.; Anthonius Lim, M.; Lawrensia, S.; Suastika, K. Charlson comorbidity index and a composite of poor outcomes in COVID-19 patients: A systematic review and meta-analysis. Diabetes Metab. Syndr. 2020, 14, 2103–2109. [Google Scholar] [CrossRef]
- Gao, J.; Zhong, L.; Wu, M.; Ji, J.; Liu, Z.; Wang, C.; Xie, Q.; Liu, Z. Risk factors for mortality in critically ill patients with COVID-19: A multicenter retrospective case-control study. BMC Infect. Dis. 2021, 21, 602. [Google Scholar] [CrossRef]
- Raschke, R.A.; Agarwal, S.; Rangan, P.; Heise, C.W.; Curry, S.C. Discriminant Accuracy of the SOFA Score for Determining the Probable Mortality of Patients With COVID-19 Pneumonia Requiring Mechanical Ventilation. JAMA 2021, 325, 1469–1470. [Google Scholar] [CrossRef] [PubMed]
- Elezkurtaj, S.; Greuel, S.; Ihlow, J.; Michaelis, E.G.; Bischoff, P.; Kunze, C.A.; Sinn, B.V.; Gerhold, M.; Hauptmann, K.; Ingold-Heppner, B.; et al. Causes of death and comorbidities in hospitalized patients with COVID-19. Sci. Rep. 2021, 11, 4263. [Google Scholar] [CrossRef] [PubMed]
- Cruces, P.; Retamal, J.; Hurtado, D.E.; Erranz, B.; Iturrieta, P.; González, C.; Díaz, F. A physiological approach to understand the role of respiratory effort in the progression of lung injury in SARS-CoV-2 infection. Crit. Care 2020, 24, 494. [Google Scholar] [CrossRef] [PubMed]
- Weaver, L.; Das, A.; Saffaran, S.; Yehya, N.; Scott, T.E.; Chikhani, M.; Laffey, J.G.; Hardman, J.G.; Camporota, L.; Bates, D.G. High risk of patient self-inflicted lung injury in COVID-19 with frequently encountered spontaneous breathing patterns: A computational modelling study. Ann. Intensive Care 2021, 11, 109. [Google Scholar] [CrossRef] [PubMed]
Variables | All Patients (n = 70) | Early Failure (n = 50) | Late Failure (n = 20) | p Value |
---|---|---|---|---|
Age (years) | 75 (64–80) | 71 (63–79) | 77 (69–81) | 0.176 |
Male (%) | 41 (58.6) | 30 (60.0) | 11 (55.0) | 0.701 |
Smoking (%) | 12 (17.1) | 8 (16.0) | 4 (20.0) | 0.732 |
Symptoms at admission (%) | 69 (98.6) | 50 (72.5) | 19 (27.5) | 0.286 |
Time from symptom to admission (days) | 4 (2–7) | 5.5 (2–7) | 4 (2–6) | 0.350 |
Time from HFNC initiation to intubation (hours) | 11.3 (2.0–46.7) | 4.1 (1.1–13.5) | 70.9 (54.4–145.4) | <0.001 |
Body mass index (kg/m2) | 25.4 (21.8–27.8) | 25.5 (22.4–28.0) | 24.4 (21.7–27.7) | 0.447 |
Scoring systems | ||||
CURB-65 | 2 (1–2) | 1.5 (1–2) | 2 (1–2) | 0.731 |
SOFA score | 4 (2–7) | 5 (2–9) | 3 (1–4) | 0.035 |
APACHE II score | 11 (8–13) | 11 (8–14) | 11 (8–13) | 0.575 |
Charlson Comorbidity Index | 4 (2–4) | 4 (2–4) | 4 (3–5) | 0.181 |
Comorbidity (%) | ||||
Hypertension | 47 (67.1) | 34 (68.0) | 13 (65.0) | 0.809 |
Diabetes | 24 (34.3) | 17 (34.0) | 7 (35.0) | 0.937 |
Chronic lung disease | 6 (8.6) | 3 (6.0) | 3 (15.0) | 0.343 |
Chronic kidney disease | 3 (4.3) | 2 (4.0) | 1 (5.0) | 1.000 |
Chronic liver disease | 3 (4.3) | 3 (6.0) | 0 (0.0) | 0.552 |
Cardiovascular disease | 5 (7.1) | 2 (4.0) | 3 (15.0) | 0.137 |
Neurologic disease | 2 (2.9) | 1 (2.0) | 1 (5.0) | 0.493 |
Malignancy | 6 (8.6) | 6 (12.0) | 0 (0.0) | 0.173 |
Vital signs | ||||
Systolic blood pressure (mmHg) | 135 (123–151) | 133 (124–155) | 136 (118–149) | 0.640 |
Diastolic blood pressure (mmHg) | 78 (67–90) | 78.5 (68–90) | 75 (64–84) | 0.451 |
Heart rate (/min) | 88.5 (75–98.5) | 88 (74–101) | 89.5 (77.5–98) | 0.891 |
Respiratory rate (/min) | 20 (20–24) | 22 (20–25) | 21.75 (18.5–20) | 0.057 |
Body temperature (°C) | 36.7 (36.4–37.4) | 36.7 (36.4–37.6) | 36.8 (36.5–37.3) | 0.881 |
Oxygen saturation (%) | 95 (90–97) | 95 (89–97) | 95.5 (91.5–98) | 0.502 |
Glasgow Coma Scale | 15 (15–15) | 15 (15–15) | 15 (15–15) | 0.991 |
Duration of fever (days) | 6 (1–11) | 4 (1–8) | 10.5 (6–17.5) | 0.004 |
PaO2/FiO2 at HFNC initiation | 151 (93–248) | 154 (88–234) | 141 (95–268) | 0.943 |
Laboratory findings | ||||
White blood cells (×109/L) | 6.5 (4.9–10.2) | 7.0 (5.0–12.0) | 5.9 (4.6–7.3) | 0.092 |
Lymphocytes (×109/L) | 0.75 (0.38–1.08) | 0.72 (0.38–1.15) | 0.81 (0.39–0.97) | 0.866 |
Protein (g/dL) | 6.4 (6.0–6.8) | 6.4 (6.0–6.9) | 6.4 (6.1–6.8) | 0.887 |
Creatinine (mg/dL) | 0.80 (0.67–1.06) | 0.79 (0.60–1.10) | 0.87 (0.73–1.00) | 0.320 |
C-reactive protein (mg/dL) | 10.3 (6.0–18.2) | 11.0 (6.6–18.8) | 6.6 (2.6–12.8) | 0.008 |
Chest x-ray (%) | 0.065 | |||
Normal or unilateral | 11 (15.7) | 5 (10.0) | 6 (14.0) | |
Bilateral or multifocal | 59 (84.3) | 45 (90.0) | 14 (70.0) | |
Treatment (%) | ||||
Remdesivir | 28 (40.0) | 20 (71.4) | 8 (40.0) | 1.000 |
Antibiotics | 43 (61.4) | 33 (66.0) | 10 (50.0) | 0.214 |
Vasopressor | 33 (47.1) | 25 (50.0) | 8 (40.0) | 0.449 |
Continuous renal replacement therapy | 10 (14.3) | 7 (14.0) | 3 (15.0) | 1.000 |
Corticosteroid | 67 (95.7) | 47 (94.0) | 20 (100.0) | 0.552 |
Neuromuscular blocker | 49 (70.0) | 38 (76.0) | 11 (55.0) | 0.083 |
Prone positioning | 9 (12.9) | 6 (12.0) | 3 (15.0) | 0.708 |
Outcomes | ||||
In-hospital mortality (%) | 32 (45.7) | 19 (38.0) | 13 (65.0) | 0.041 |
Duration of mechanical ventilation (days) | 15 (9–31) | 15 (9–28.5) | 11 (6–38) | 0.458 |
Length of hospital stay (days) | 22 (16–31) | 27.5 (21–48) | 27.5 (17–62) | 0.948 |
Tracheostomy (%) | 24 (35.8) | 17 (34.7) | 7 (38.9) | 0.751 |
Variables | Univariate Analysis | Multivariable Analysis | p Value | |
---|---|---|---|---|
OR (95% CI) | p value | OR (95% CI) * | ||
Age | 0.003 | |||
<70 | Reference | |||
≥70 | 5.353 (1.793–15.985) | |||
Sex | 0.184 | |||
Female | Reference | |||
Male | 0.520 (0.198–1.364) | |||
Smoking | 0.820 (0.233–2.886) | 0.757 | ||
Body mass index | 1.003 (0.892–1.127) | 0.961 | ||
Charlson Comorbidity Index | 0.008 | 0.030 | ||
<3 | Reference | Reference | ||
≥3 | 6.304 (1.626–24.441) | 5.381 (1.179–24.559) | ||
CURB-65 | 0.091 | |||
<2 | Reference | |||
≥2 | 2.292 (0.875–6.002) | |||
SOFA score | 0.014 | 0.016 | ||
<3 | Reference | Reference | ||
≥3 | 3.514 (1.287–9.593) | 5.040 (1.344–18.899) | ||
APACHE II score | 0.074 | |||
<10 | Reference | |||
≥10 | 2.444 (0.916–6.526) | |||
Duration of fever | 1.015 (0.977–1.054) | 0.452 | ||
Hypertension | 0.679 (0.249–1.849) | 0.449 | ||
Diabetes | 1.007 (0.374–2.713) | 0.988 | ||
Remdesivir | 2.167 (0.818–5.737) | 0.120 | ||
Vasopressor | 1.971 (0.759–5.120) | 0.163 | ||
Corticosteroid | 0.405 (0.035–4.690) | 0.470 | ||
Neuromuscular blocker | 0.290 (0.099–0.853) | 0.024 | ||
Time from HFNC initiation to intubation | 0.045 | 0.035 | ||
<48 h | Reference | Reference | ||
≥48 h | 3.030 (1.027–8.939) | 4.757 (1.118–20.236) | ||
ROX index before intubation | 0.799 (0.614–1.039) | 0.094 | ||
Chest X-ray | 0.985 | |||
Normal or unilateral | Reference | |||
Bilateral or multifocal | 1.012 (0.278–3.688) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, A.-R.; Seong, G.M.; Lee, S.-I.; Kim, W.-Y.; Na, Y.S.; Kim, J.H.; Lee, B.Y.; Baek, M.S. Late Failure of High-Flow Nasal Cannula May Be Associated with High Mortality in COVID-19 Patients: A Multicenter Retrospective Study in the Republic of Korea. J. Pers. Med. 2021, 11, 989. https://doi.org/10.3390/jpm11100989
Baek A-R, Seong GM, Lee S-I, Kim W-Y, Na YS, Kim JH, Lee BY, Baek MS. Late Failure of High-Flow Nasal Cannula May Be Associated with High Mortality in COVID-19 Patients: A Multicenter Retrospective Study in the Republic of Korea. Journal of Personalized Medicine. 2021; 11(10):989. https://doi.org/10.3390/jpm11100989
Chicago/Turabian StyleBaek, Ae-Rin, Gil Myeong Seong, Song-I Lee, Won-Young Kim, Yong Sub Na, Jin Hyoung Kim, Bo Young Lee, and Moon Seong Baek. 2021. "Late Failure of High-Flow Nasal Cannula May Be Associated with High Mortality in COVID-19 Patients: A Multicenter Retrospective Study in the Republic of Korea" Journal of Personalized Medicine 11, no. 10: 989. https://doi.org/10.3390/jpm11100989
APA StyleBaek, A.-R., Seong, G. M., Lee, S.-I., Kim, W.-Y., Na, Y. S., Kim, J. H., Lee, B. Y., & Baek, M. S. (2021). Late Failure of High-Flow Nasal Cannula May Be Associated with High Mortality in COVID-19 Patients: A Multicenter Retrospective Study in the Republic of Korea. Journal of Personalized Medicine, 11(10), 989. https://doi.org/10.3390/jpm11100989