Association of Pulmonary Function Decline over Time with Longitudinal Change of Glycated Hemoglobin in Participants without Diabetes Mellitus
Abstract
1. Introduction
2. Methods
2.1. Data Source
2.2. Ethics Statement
2.3. Spirometry Examinations
2.4. Definition of Type 2 DM
2.5. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Diabetes Association. 10. Cardiovascular disease and risk management: Standards of medical care in diabetes-2020. Diabetes Care 2020, 43, S111–S134. [Google Scholar] [CrossRef]
- Chawla, A.; Chawla, R.; Jaggi, S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab. 2016, 20, 546–551. [Google Scholar] [CrossRef]
- van den Borst, B.; Gosker, H.R.; Zeegers, M.P.; Schols, A.M. Pulmonary function in diabetes: A metaanalysis. Chest 2010, 138, 393–406. [Google Scholar] [CrossRef]
- Khateeb, J.; Fuchs, E.; Khamaisi, M. Diabetes and lung disease: A neglected relationship. Rev. Diabetes Stud. 2019, 15, 1–15. [Google Scholar] [CrossRef]
- Yang, G.; Han, Y.Y.; Forno, E.; Yan, Q.; Rosser, F.; Chen, W.; Celedon, J.C. Glycated hemoglobin a1c, lung function, and hospitalizations among adults with asthma. J. Allergy Clin. Immunol. Pract. 2020, 8, 3409–3415.e1. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.J.; Liao, W.I.; Tang, Z.C.; Wang, J.C.; Lee, C.H.; Chang, W.C.; Hsu, C.W.; Tang, S.E.; Tsai, S.H. Glycated hemoglobin a1c-based adjusted glycemic variables in patients with diabetes presenting with acute exacerbation of chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 1923–1932. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Davis, W.A.; Knuiman, M.; Kendall, P.; Grange, V.; Davis, T.M.; Fremantle Diabetes, S. Glycemic exposure is associated with reduced pulmonary function in type 2 diabetes: The fremantle diabetes study. Diabetes Care 2004, 27, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Islam, E.A.; Limsuwat, C.; Nantsupawat, T.; Berdine, G.G.; Nugent, K.M. The association between glucose levels and hospital outcomes in patients with acute exacerbations of chronic obstructive pulmonary disease. Ann. Thorac. Med. 2015, 10, 94–99. [Google Scholar] [PubMed]
- Gutierrez-Carrasquilla, L.; Sanchez, E.; Barbe, F.; Dalmases, M.; Lopez-Cano, C.; Hernandez, M.; Rius, F.; Carmona, P.; Hernandez, C.; Simo, R.; et al. Effect of glucose improvement on spirometric maneuvers in patients with type 2 diabetes: The sweet breath study. Diabetes Care 2019, 42, 617–624. [Google Scholar] [CrossRef]
- Johnson, J.D.; Theurer, W.M. A stepwise approach to the interpretation of pulmonary function tests. Am. Fam. Physician 2014, 89, 359–366. [Google Scholar] [PubMed]
- Kim, J.M.; Kim, M.K.; Joung, K.H.; Lee, J.H.; Kim, H.J.; Ku, B.J. Association between glycemic state and pulmonary function and effect of walking as a protective factor in subjects with diabetes mellitus. Ann. Transl. Med. 2019, 7, 530. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.E.; Beiser, A.; Givelber, R.J.; O’Connor, G.T.; Gottlieb, D.J. Association between glycemic state and lung function: The framingham heart study. Am. J. Respir. Crit. Care Med. 2003, 167, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Wen, W.L.; Wu, P.Y.; Huang, J.C.; Tu, H.P.; Chen, S.C. Different curve shapes of fasting glucose and various obesity-related indices by diabetes and sex. Int. J. Environ. Res. Public Health 2021, 18, 3096. [Google Scholar] [CrossRef]
- Lin, J.C.; Fan, C.T.; Liao, C.C.; Chen, Y.S. Taiwan biobank: Making cross-database convergence possible in the big data era. Gigascience 2018, 7, 1–4. [Google Scholar] [CrossRef]
- Miller, M.R.; Hankinson, J.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Crapo, R.; Enright, P.; van der Grinten, C.P.; Gustafsson, P.; et al. Standardisation of spirometry. Eur. Respir. J. 2005, 26, 319–338. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2020. Diabetes Care 2020, 43, S14–S31. [Google Scholar] [CrossRef]
- Thomas, E.T.; Guppy, M.; Straus, S.E.; Bell, K.J.L.; Glasziou, P. Rate of normal lung function decline in ageing adults: A systematic review of prospective cohort studies. BMJ Open 2019, 9, e028150. [Google Scholar] [CrossRef]
- van Oostrom, S.H.; Engelfriet, P.M.; Verschuren, W.M.M.; Schipper, M.; Wouters, I.M.; Boezen, M.; Smit, H.A.; Kerstjens, H.A.M.; Picavet, H.S.J. Aging-related trajectories of lung function in the general population-the doetinchem cohort study. PLoS ONE 2018, 13, e0197250. [Google Scholar] [CrossRef] [PubMed]
- Tantucci, C.; Modina, D. Lung function decline in copd. Int. J. Chronic Obstruct. Pulmon. Dis. 2012, 7, 95–99. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, D.; Lee, Y.; Jung, I.; Hyun, D.; Lee, H.; Ahn, Y.S. Hypertension is associated with increased risk of diabetic lung. Int. J. Environ. Res. Public Health 2020, 17, 7513. [Google Scholar] [CrossRef] [PubMed]
- Goldman, M.D. Lung dysfunction in diabetes. Diabetes Care 2003, 26, 1915–1918. [Google Scholar] [CrossRef]
- Leem, A.Y.; Park, B.; Kim, Y.S.; Chang, J.; Won, S.; Jung, J.Y. Longitudinal decline in lung function: A community-based cohort study in Korea. Sci. Rep. 2019, 9, 13614. [Google Scholar] [CrossRef] [PubMed]
- Ahn, K.M.; Lee, S.Y.; Lee, S.H.; Kim, S.S.; Park, H.W. Lung function decline is associated with serum uric acid in korean health screening individuals. Sci. Rep. 2021, 11, 10183. [Google Scholar] [CrossRef] [PubMed]
- Yeh, H.C.; Punjabi, N.M.; Wang, N.Y.; Pankow, J.S.; Duncan, B.B.; Cox, C.E.; Selvin, E.; Brancati, F.L. Cross-sectional and prospective study of lung function in adults with type 2 diabetes: The atherosclerosis risk in communities (aric) study. Diabetes Care 2008, 31, 741–746. [Google Scholar] [CrossRef]
- Lee, D.Y.; Nam, S.M. The association between lung function and type 2 diabetes in koreans. Osong Public Health Res. Perspect. 2020, 11, 27–33. [Google Scholar] [CrossRef]
- Diez-Manglano, J.; Asin Samper, U. Pulmonary function tests in type 2 diabetes: A meta-analysis. ERJ Open Res. 2021, 7, 7. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.T.; Ko, H.K.; Lin, C.C.; Shu, J.H.; Hsu, H.C.; Liang, Y.; Hsu, P.F.; Lin, C.C.; Wang, Y.J.; Din, Y.Z.; et al. Spirometric reference values in heathy chinese adults in taiwan: The secular changes and comparison with other asian populations. J. Formos. Med. Assoc. 2020, 119, 290–299. [Google Scholar] [CrossRef]
- Kabeya, Y.; Kato, K.; Tomita, M.; Katsuki, T.; Oikawa, Y.; Shimada, A. Association of glycemic status with impaired lung function among recipients of a health screening program: A cross-sectional study in japanese adults. J. Epidemiol. 2014, 24, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Chiu, H.T.; Li, T.C.; Li, C.I.; Liu, C.S.; Lin, W.Y.; Lin, C.C. Visit-to-visit glycemic variability is a strong predictor of chronic obstructive pulmonary disease in patients with type 2 diabetes mellitus: Competing risk analysis using a national cohort from the taiwan diabetes study. PLoS ONE 2017, 12, e0177184. [Google Scholar] [CrossRef]
- Zhang, R.H.; Zhou, J.B.; Cai, Y.H.; Shu, L.P.; Simo, R.; Lecube, A. Non-linear association between diabetes mellitus and pulmonary function: A population-based study. Respir. Res. 2020, 21, 292. [Google Scholar] [CrossRef]
- Maan, H.B.; Meo, S.A.; Al Rouq, F.; Meo, I.M.U.; Gacuan, M.E.; Alkhalifah, J.M. Effect of glycated hemoglobin (hba1c) and duration of disease on lung functions in type 2 diabetic patients. Int. J. Environ. Res. Public Health 2021, 18, 6970. [Google Scholar] [CrossRef] [PubMed]
- Oh, I.H.; Park, J.H.; Lee, C.H.; Park, J.S. The association of normal range glycated hemoglobin with restrictive lung pattern in the general population. PLoS ONE 2015, 10, e0117725. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.W.; Ku, C.R.; Noh, J.H.; Ko, K.S.; Rhee, B.D.; Kim, D.J. Association between self-reported smoking and hemoglobin a1c in a korean population without diabetes: The 2011-2012 korean national health and nutrition examination survey. PLoS ONE 2015, 10, e0126746. [Google Scholar] [CrossRef]
- Simmons, M.S.; Connett, J.E.; Nides, M.A.; Lindgren, P.G.; Kleerup, E.C.; Murray, R.P.; Bjornson, W.M.; Tashkin, D.P. Smoking reduction and the rate of decline in fev(1): Results from the lung health study. Eur. Respir. J. 2005, 25, 1011–1017. [Google Scholar] [CrossRef]
- Kolahian, S.; Leiss, V.; Nurnberg, B. Diabetic lung disease: Fact or fiction? Rev. Endocr. Metab. Disord. 2019, 20, 303–319. [Google Scholar] [CrossRef]
- Singh, S.; Bodas, M.; Bhatraju, N.K.; Pattnaik, B.; Gheware, A.; Parameswaran, P.K.; Thompson, M.; Freeman, M.; Mabalirajan, U.; Gosens, R.; et al. Hyperinsulinemia adversely affects lung structure and function. Am. J. Physiol. Lung Cell Mol. Physiol. 2016, 310, L837–L845. [Google Scholar] [CrossRef]
- Clemmer, J.S.; Xiang, L.; Lu, S.; Mittwede, P.N.; Hester, R.L. Hyperglycemia-mediated oxidative stress increases pulmonary vascular permeability. Microcirculation 2016, 23, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Sudy, R.; Schranc, A.; Fodor, G.H.; Tolnai, J.; Babik, B.; Petak, F. Lung volume dependence of respiratory function in rodent models of diabetes mellitus. Respir. Res. 2020, 21, 82. [Google Scholar] [CrossRef]
- Cazzola, M.; Calzetta, L.; Rogliani, P.; Lauro, D.; Novelli, L.; Page, C.P.; Kanabar, V.; Matera, M.G. High glucose enhances responsiveness of human airways smooth muscle via the rho/rock pathway. Am. J. Respir. Cell Mol. Biol. 2012, 47, 509–516. [Google Scholar] [CrossRef]
- Hollenbach, J.; Lopez-Rodriguez, E.; Muhlfeld, C.; Schipke, J. Voluntary activity modulates sugar-induced elastic fiber remodeling in the alveolar region of the mouse lung. Int. J. Mol. Sci. 2019, 20, 2438. [Google Scholar] [CrossRef]
- Adam, M.; Schikowski, T.; Carsin, A.E.; Cai, Y.; Jacquemin, B.; Sanchez, M.; Vierkotter, A.; Marcon, A.; Keidel, D.; Sugiri, D.; et al. Adult lung function and long-term air pollution exposure. Escape: A multicentre cohort study and meta-analysis. Eur. Respir. J. 2015, 45, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Roman, M.A.; Rossiter, H.B.; Casaburi, R. Exercise, ageing and the lung. Eur. Respir. J. 2016, 48, 1471–1486. [Google Scholar] [CrossRef] [PubMed]
- Kahnert, K.; Lucke, T.; Huber, R.M.; Behr, J.; Biertz, F.; Vogt, A.; Watz, H.; Alter, P.; Fahndrich, S.; Bals, R.; et al. Relationship of hyperlipidemia to comorbidities and lung function in copd: Results of the cosyconet cohort. PLoS ONE 2017, 12, e0177501. [Google Scholar] [CrossRef]
- Lee, Y.B.; Kim, Y.S.; Lee, D.H.; Kim, H.Y.; Lee, J.I.; Ahn, H.S.; Sohn, T.S.; Lee, T.K.; Song, J.Y.; Yeo, C.D.; et al. Association between homa-ir and lung function in korean young adults based on the korea national health and nutrition examination survey. Sci. Rep. 2017, 7, 11726. [Google Scholar] [CrossRef] [PubMed]
- Aronson, D.; Roterman, I.; Yigla, M.; Kerner, A.; Avizohar, O.; Sella, R.; Bartha, P.; Levy, Y.; Markiewicz, W. Inverse association between pulmonary function and c-reactive protein in apparently healthy subjects. Am. J. Respir. Crit. Care Med. 2006, 174, 626–632. [Google Scholar] [CrossRef] [PubMed]
Parameters | Baseline | Follow-Up | p-Value | Longitudinal Change |
---|---|---|---|---|
Age (year) | 49.5 ± 10.1 | 53.4 ± 10.0 | <0.001 | 3.9 ± 1.3 |
Systolic blood pressure (mmHg) | 114 ± 16 | 121 ± 18 | <0.001 | 8 ± 14 |
Body mass index (kg/m2) | 23.7 ± 3.4 | 24.0 ± 3.5 | <0.001 | 0.3 ± 1.3 |
Fasting blood glucose (g/dL) | 91.8 ± 7.8 | 93.1 ± 11.5 | <0.001 | 1.2 ± 10.3 |
HbA1c (%) | 5.56 ± 0.34 | 5.70 ± 0.44 | <0.001 | 0.14 ± 0.36 |
Creatinine (mg/dL) | 0.72 ± 0.28 | 0.71 ± 0.31 | 0.262 | 0.00 ± 0.13 |
GPT (u/L) | 22.8 ± 18.0 | 22.9 ± 19.3 | 0.608 | 0.1 ± 20.9 |
Total cholesterol (mg/dL) | 195.6 ± 34.5 | 198.1 ± 35.2 | <0.001 | 2.5 ± 29.1 |
Triglyceride (mg/dL) | 109.8 ± 81.3 | 114.9 ± 82.2 | <0.001 | 5.1 ± 70.9 |
Pulmonary function test | ||||
FVC (L) | 2.89 ± 0.78 | 2.68 ± 0.76 | <0.001 | −0.21 ± 0.33 |
FVC-predicted (%) | 108.1 ± 20.0 | 114.6 ± 22.8 | <0.001 | 6.5 ± 17.3 |
FEV1 (L) | 2.42 ± 0.67 | 2.33 ± 0.68 | <0.001 | −0.09 ± 0.37 |
FEV1-predicted (%) | 111.8 ± 21.6 | 112.1 ± 29.7 | <0.001 | 0.3 ± 27.8 |
FEV1/FVC (%) | 83.8 ± 6.2 | 87.4 ± 9.9 | <0.001 | 3.6 ± 10.9 |
Baseline HbA1c | ||||
---|---|---|---|---|
Univariable Analysis | Multivariable Analysis | |||
Baseline Parameters | Unstandardized Coefficient β (95% CI) | p-Value | Unstandardized Coefficient β (95% CI) | p-Value |
Age (year) | 0.010 (0.009, 0.011) | <0.001 | 0.005 (0.005, 0.006) | <0.001 |
Male (%) | 0.036 (0.019, 0.052) | <0.001 | - | |
Smoking (%) | 0.016 (−0.002, 0.034) | 0.088 | ||
Systolic blood pressure (mmHg) | 0.004 (0.003, 0.004) | <0.001 | - | |
Body mass index (kg/m2) | 0.019 (0.017, 0.022) | <0.001 | 0.011 (0.009, 0.013) | <0.001 |
Fasting blood glucose (g/dL) | 0.017 (0.016, 0.018) | <0.001 | 0.014 (0.013, 0.015) | <0.001 |
Creatinine (mg/dL) | 0.023 (−0.004, 0.051) | 0.100 | ||
GPT (u/L) | 0.002 (0.002, 0.003) | <0.001 | 0.001 (<0.001, 0.001) | <0.001 |
Total cholesterol (mg/dL) | 0.002 (0.002, 0.003) | <0.001 | 0.001 (<0.001, 0.001) | <0.001 |
Triglyceride (mg/dL) | 0.001 (<0.001, <0.001) | <0.001 | <0.001 (<0.001, <0.001) | 0.008 |
Pulmonary function test | ||||
FVC (L) | −0.046 (−0.056, −0.036) | <0.001 | −0.033 (−0.043, −0.024) | <0.001 |
FEV1 (L) | −0.053 (−0.065, −0.042) | <0.001 | - | |
FEV1/FVC (%) | −0.001 (−0.002, 0.001) | 0.334 | - |
Longitudinal Change of HbA1C | ||||
---|---|---|---|---|
Univariable Analysis | Multivariable Analysis | |||
Longitudinal Changes of Parameters | Unstandardized Coefficient β (95% CI) | p-Value | Unstandardized Coefficient β (95% CI) | p-Value |
Age (year) | 0.011 (0.004, 0.017) | 0.001 | - | |
Systolic blood pressure (mmHg) | <0.001 (−0.001, 0.001) | 0.972 | ||
Body mass index (kg/m2) | 0.037 (0.030, 0.043) | <0.001 | 0.027 (0.022, 0.033) | <0.001 |
Fasting blood glucose (g/dL) | 0.017 (0.016, 0.017) | <0.001 | 0.016 (0.016, 0.017) | <0.001 |
Creatinine (mg/dL) | −0.142 (−0.207, −0.076) | <0.001 | −0.173 (−0.231, −0.116) | <0.001 |
GPT (u/L) | 0.001 (<0.001, 0.001) | <0.001 | - | |
Total cholesterol (mg/dL) | 0.001 (<0.001, 0.001) | <0.001 | <0.001 (<0.001, 0.001) | 0.023 |
Triglyceride (mg/dL) | <0.001 (<0.001, <0.001) | <0.001 | <0.001 (<0.001, 0.001) | 0.042 |
Pulmonary function test | ||||
FVC (L) | −0.032 (−0.058, −0.007) | 0.013 | −0.025 (−0.048, −0.003) | 0.026 |
FEV1 (L) | −0.031 (−0.053, −0.008) | 0.008 | - | |
FEV1/FVC (%) | <0.001 (−0.001, 0.001) | 0.764 | - |
Longitudinal Change of FVC | ||||
---|---|---|---|---|
Univariable Analysis | Multivariable Analysis | |||
Longitudinal Changes of Parameters | Unstandardized Coefficient β (95% CI) | p-Value | Unstandardized Coefficient β (95% CI) | p-Value |
Age (year) | −0.017 (−0.023, −0.011) | <0.001 | −0.017 (−0.023, −0.011) | <0.001 |
Smoking (baseline) | −0.059 (−0.077, −0.042) | <0.001 | −0.059 (−0.077, −0.042) | <0.001 |
Systolic blood pressure (mmHg) | −0.001 (−0.001, <0.001) | 0.228 | ||
Fasting blood glucose (g/dL) | 0.001 (−0.001, 0.001) | 0.637 | ||
HbA1C (%) | −0.027 (−0.049, −0.006) | 0.013 | −0.022 (−0.044, −0.001) | 0.041 |
Creatinine (mg/dL) | 0.006 (−0.054, 0.060) | 0.842 | ||
GPT (u/L) | −0.001 (−0.001, <0.000) | 0.048 | −0.001 (−0.001, <0.000) | 0.035 |
Total cholesterol (mg/dL) | 0.001 (<−0.001, 0.001) | 0.950 | ||
Triglyceride (mg/dL) | −0.001 (<−0.001, 0.001) | 0.051 |
Longitudinal Changes of Parameters | With Newly Diagnosed Type 2 Diabetes Mellitus n = 271 (3.8%) | Without Newly Diagnosed Type 2 Diabetes Mellitus N = 6784 (96.2%) | p-Value |
---|---|---|---|
Age (year) | 4.1 ± 1.3 | 3.9 ± 1.3 | 0.086 |
Systolic blood pressure (mmHg) | 9 ± 15 | 8 ± 14 | 0.193 |
Body mass index (kg/m2) | 0.4 ± 1.3 | 0.3 ± 1.3 | 0.159 |
Fasting blood glucose (g/dL) | 16.6 ± 34.8 | 0.6 ± 7.1 | <0.001 |
HbA1c (%) | 0.92 ± 0.95 | 0.11 ± 0.27 | <0.001 |
Creatinine (mg/dL) | 0.0 ± 0.1 | 0.0 ± 0.1 | 0.167 |
GPT (u/L) | 1.8 ± 21.4 | 0.0 ± 20.1 | 0.187 |
Total cholesterol (mg/dL) | −5.7 ± 40.1 | 2.8 ± 28.6 | <0.001 |
Triglyceride (mg/dL) | −0.2 ± 120.7 | 5.3 ± 68.1 | 0.211 |
Pulmonary function test | |||
FVC (L) | −0.25 ± 0.29 | −0.21 ± 0.33 | 0.028 |
FVC-predicted (%) | 8.3 ± 14.8 | 6.4 ± 17.4 | 0.071 |
FEV1 (L) | −0.12 ± 0.31 | −0.09 ± 0.37 | 0.136 |
FEV1-predicted (%) | 0.0 ± 17.8 | 0.3 ± 28.1 | 0.949 |
FEV1/FVC (%) | 3.9 ± 9.0 | 3.6 ± 10.9 | 0.613 |
Newly Diagnosed Type 2 Diabetes Mellitus | ||||
---|---|---|---|---|
Univariable Analysis | Multivariable Analysis | |||
Longitudinal Changes of Parameters | Odds Ratio (95% CI) | p-Value | Odds Ratio (95% CI) | p-Value |
Age (per 1 year) | 1.084 (0.989, 1.118) | 0.086 | ||
Systolic blood pressure (per 1 mmHg) | 1.006 (0.997, 1.015) | 0.193 | ||
Body mass index (per 1 kg/m2) | 1.068 (0.976, 1.169) | 0.155 | ||
Fasting blood glucose (per 1 g/dL) | 1.102 (1.089, 1.115) | <0.001 | 1.103 (1.090, 1.117) | <0.001 |
Creatinine (per 1 mg/dL) | 0.379 (0.114, 1.261) | 0.114 | ||
GPT (per 1 u/L) | 1.003 (0.999, 1.007) | 0.180 | ||
Total cholesterol (per 1 mg/dL) | 0.991 (0.987, 0.994) | <0.001 | 0.989 (0.985, 0.993) | <0.001 |
Triglyceride (per 1 mg/dL) | 0.999 (0.997, 1.001) | 0.204 | ||
Pulmonary function test | ||||
FVC (per 1 L) | 0.669 (0.467, 0.957) | 0.028 | 0.625 (0.424, 0.922) | 0.018 |
FEV1 (L) (per 1 L) | 0.791 (0.581, 1.076) | 0.136 | ||
FEV1/FVC (per 1%) | 1.003 (0.992, 1.014) | 0.612 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.-H.; Wu, D.-W.; Chen, Y.-C.; Liu, Y.-H.; Liao, W.-S.; Chen, S.-C.; Hung, C.-H.; Kuo, C.-H.; Su, H.-M. Association of Pulmonary Function Decline over Time with Longitudinal Change of Glycated Hemoglobin in Participants without Diabetes Mellitus. J. Pers. Med. 2021, 11, 994. https://doi.org/10.3390/jpm11100994
Lee W-H, Wu D-W, Chen Y-C, Liu Y-H, Liao W-S, Chen S-C, Hung C-H, Kuo C-H, Su H-M. Association of Pulmonary Function Decline over Time with Longitudinal Change of Glycated Hemoglobin in Participants without Diabetes Mellitus. Journal of Personalized Medicine. 2021; 11(10):994. https://doi.org/10.3390/jpm11100994
Chicago/Turabian StyleLee, Wen-Hsien, Da-Wei Wu, Ying-Chih Chen, Yi-Hsueh Liu, Wei-Sheng Liao, Szu-Chia Chen, Chih-Hsing Hung, Chao-Hung Kuo, and Ho-Ming Su. 2021. "Association of Pulmonary Function Decline over Time with Longitudinal Change of Glycated Hemoglobin in Participants without Diabetes Mellitus" Journal of Personalized Medicine 11, no. 10: 994. https://doi.org/10.3390/jpm11100994
APA StyleLee, W.-H., Wu, D.-W., Chen, Y.-C., Liu, Y.-H., Liao, W.-S., Chen, S.-C., Hung, C.-H., Kuo, C.-H., & Su, H.-M. (2021). Association of Pulmonary Function Decline over Time with Longitudinal Change of Glycated Hemoglobin in Participants without Diabetes Mellitus. Journal of Personalized Medicine, 11(10), 994. https://doi.org/10.3390/jpm11100994