Outcomes and Prognosis of Non-Elderly Patients with Brain Metastases—A Prospective Cohort Incorporating Individualized Assessment of Heart Rate Variability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. ECG Signal Processing for HRV
2.3. Radiotherapy and Follow-Up
2.4. Study Endpoints and Statistics
3. Results
3.1. Characteristics of the Participants
3.2. Treatment Outcomes
3.3. Prognostic Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Posner, J.B.; Chernik, N.L. Intracranial metastases from systemic cancer. Adv. Neurol. 1978, 19, 579–592. [Google Scholar] [PubMed]
- Posner, J.B. Management of brain metastases. Rev. Neurol. 1992, 148, 477–487. [Google Scholar]
- Tsao, M.N.; Xu, W.; Wong, R.K.; Lloyd, N.; Laperriere, N.; Sahgal, A.; Rakovitch, E.; Chow, E. Whole brain radiotherapy for the treatment of newly diagnosed multiple brain metastases. Cochrane Database Syst. Rev. 2018, 1, CD003869. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, L.; Scott, C.; Rotman, M.; Asbell, S.; Phillips, T.; Wasserman, T.; McKenna, W.G.; Byhardt, R. Recursive partitioning analysis (RPA) of prognostic factors in three Radiation Therapy Oncology Group (RTOG) brain metastases trials. Int. J. Radiat. Oncol. Biol. Phys. 1997, 37, 745–751. [Google Scholar] [CrossRef]
- Weltman, E.; Salvajoli, J.V.; Brandt, R.A.; de Morais Hanriot, R.; Prisco, F.E.; Cruz, J.C.; de Oliveira Borges, S.R.; Wajsbrot, D.B. Radiosurgery for brain metastases: A score index for predicting prognosis. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 1155–1161. [Google Scholar] [CrossRef]
- Lorenzoni, J.; Devriendt, D.; Massager, N.; David, P.; Ruiz, S.; Vanderlinden, B.; Van Houtte, P.; Brotchi, J.; Levivier, M. Radiosurgery for treatment of brain metastases: Estimation of patient eligibility using three stratification systems. Int. J. Radiat. Oncol. Biol. Phys. 2004, 60, 218–224. [Google Scholar] [CrossRef]
- Sperduto, P.W.; Berkey, B.; Gaspar, L.E.; Mehta, M.; Curran, W. A new prognostic index and comparison to three other indices for patients with brain metastases: An analysis of 1960 patients in the RTOG database. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 510–514. [Google Scholar] [CrossRef]
- Tsao, M.N.; Rades, D.; Wirth, A.; Lo, S.S.; Danielson, B.L.; Gaspar, L.E.; Sperduto, P.W.; Vogelbaum, M.A.; Radawski, J.D.; Wang, J.Z.; et al. Radiotherapeutic and surgical management for newly diagnosed brain metastasis(es): An American Society for Radiation Oncology evidence-based guideline. Pract. Radiat. Oncol. 2012, 2, 210–225. [Google Scholar] [CrossRef] [Green Version]
- Achrol, A.S.; Rennert, R.C.; Anders, C.; Soffietti, R.; Ahluwalia, M.S.; Nayak, L.; Peters, S.; Arvold, N.D.; Harsh, G.R.; Steeg, P.S.; et al. Brain metastases. Nat. Rev. Dis. Primers 2019, 5, 5. [Google Scholar] [CrossRef]
- Boire, A.; Brastianos, P.K.; Garzia, L.; Valiente, M. Brain metastasis. Nat. Rev. Cancer 2020, 20, 4–11. [Google Scholar] [CrossRef]
- Nieder, C.; Grosu, A.L.; Spanne, O.; Andratschke, N.H.; Geinitz, H. Brain metastases in patients under 50 years of age: Retrospective analysis. Clin. Exp. Metastasis 2012, 29, 949–956. [Google Scholar] [CrossRef]
- Akselrod, S.; Gordon, D.; Ubel, F.A.; Shannon, D.C.; Berger, A.C.; Cohen, R.J. Power spectrum analysis of heart rate fluctuation: A quantitative probe of beat-to-beat cardiovascular control. Science 1981, 213, 220–222. [Google Scholar] [CrossRef]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Tsuji, H.; Larson, M.G.; Venditti, F.J., Jr.; Manders, E.S.; Evans, J.C.; Feldman, C.L.; Levy, D. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation 1996, 94, 2850–2855. [Google Scholar] [CrossRef]
- Sato, A.; Sato, Y.; Uchida, S. Regulation of cerebral cortical blood flow by the basal forebrain cholinergic fibers and aging. Auton. Neurosci. 2002, 96, 13–19. [Google Scholar] [CrossRef]
- Gidron, Y.; Perry, H.; Glennie, M. Does the vagus nerve inform the brain about preclinical tumours and modulate them? Lancet Oncol. 2005, 6, 245–248. [Google Scholar] [CrossRef]
- Kleiger, R.E.; Miller, J.P.; Bigger, J.T., Jr.; Moss, A.J. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 1987, 59, 256–262. [Google Scholar] [CrossRef]
- Tuininga, Y.S.; van Veldhuisen, D.J.; Brouwer, J.; Haaksma, J.; Crijns, H.J.; Man in’t Veld, A.J.; Lie, K.I. Heart rate variability in left ventricular dysfunction and heart failure: Effects and implications of drug treatment. Br. Heart J. 1994, 72, 509–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.M.; Wu, H.T.; Huang, E.Y.; Kou, Y.R.; Hseu, S.S. Heart rate variability is associated with survival in patients with brain metastasis: A preliminary report. Biomed. Res. Int. 2013, 2013, 503421. [Google Scholar] [CrossRef] [Green Version]
- Benichou, T.; Pereira, B.; Mermillod, M.; Tauveron, I.; Pfabigan, D.; Maqdasy, S.; Dutheil, F. Heart rate variability in type 2 diabetes mellitus: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0195166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloter, E.; Barrueto, K.; Klein, S.D.; Scholkmann, F.; Wolf, U. Heart Rate Variability as a Prognostic Factor for Cancer Survival—A Systematic Review. Front. Physiol. 2018, 9, 623. [Google Scholar] [CrossRef] [Green Version]
- De Couck, M.; van Brummelen, D.; Schallier, D.; De Greve, J.; Gidron, Y. The relationship between vagal nerve activity and clinical outcomes in prostate and non-small cell lung cancer patients. Oncol. Rep. 2013, 30, 2435–2441. [Google Scholar] [CrossRef]
- De Couck, M.; Caers, R.; Spiegel, D.; Gidron, Y. The Role of the Vagus Nerve in Cancer Prognosis: A Systematic and a Comprehensive Review. J. Oncol. 2018, 2018, 1236787. [Google Scholar] [CrossRef]
- De Couck, M.; Mravec, B.; Gidron, Y. You may need the vagus nerve to understand pathophysiology and to treat diseases. Clin. Sci. 2012, 122, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Ohira, H.; Matsunaga, M.; Osumi, T.; Fukuyama, S.; Shinoda, J.; Yamada, J.; Gidron, Y. Vagal nerve activity as a moderator of brain-immune relationships. J. Neuroimmunol. 2013, 260, 28–36. [Google Scholar] [CrossRef]
- Chiang, J.K.; Koo, M.; Kuo, T.B.; Fu, C.H. Association between cardiovascular autonomic functions and time to death in patients with terminal hepatocellular carcinoma. J. Pain Symptom Manag. 2010, 39, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Lauer, M.S. Autonomic function and prognosis. Cleve Clin. J. Med. 2009, 76 (Suppl. 2), S18–S22. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kim, J.A.; Choi, Y.S.; Kim, S.H.; Lee, J.Y.; Kim, Y.E. Heart rate variability and length of survival in hospice cancer patients. J. Korean Med. Sci. 2010, 25, 1140–1145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Couck, M.; Marechal, R.; Moorthamers, S.; Van Laethem, J.L.; Gidron, Y. Vagal nerve activity predicts overall survival in metastatic pancreatic cancer, mediated by inflammation. Cancer Epidemiol. 2016, 40, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Koshy, S.; Hui, D.; Palmer, J.L.; Shin, K.; Bozkurt, M.; Yusuf, S.W. Prognostic Value of Heart Rate Variability in Patients with Cancer. J. Clin. Neurophysiol. 2015, 32, 516–520. [Google Scholar] [CrossRef] [Green Version]
- Hoca, A.; Yildiz, M.; Ozyigit, G. Evaluation of the effects of mediastinal radiation therapy on autonomic nervous system. Med. Oncol. 2012, 29, 3581–3586. [Google Scholar] [CrossRef] [PubMed]
- Chang, E.L.; Wefel, J.S.; Hess, K.R.; Allen, P.K.; Lang, F.F.; Kornguth, D.G.; Arbuckle, R.B.; Swint, J.M.; Shiu, A.S.; Maor, M.H.; et al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: A randomised controlled trial. Lancet Oncol. 2009, 10, 1037–1044. [Google Scholar] [CrossRef]
- Tallet, A.V.; Azria, D.; Barlesi, F.; Spano, J.P.; Carpentier, A.F.; Goncalves, A.; Metellus, P. Neurocognitive function impairment after whole brain radiotherapy for brain metastases: Actual assessment. Radiat. Oncol. 2012, 7, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, P.D.; Ahluwalia, M.S.; Khan, O.H.; Asher, A.L.; Wefel, J.S.; Gondi, V. Whole-Brain Radiotherapy for Brain Metastases: Evolution or Revolution? J. Clin. Oncol. 2018, 36, 483–491. [Google Scholar] [CrossRef]
- In Laws & Regulations, National Health Insurance Administration, Ministry of Health and Welfare. Available online: https://www.nhi.gov.tw/english/Content_List.aspx?n=A7354F4F704B6377&topn=A7354F4F704B6377 (accessed on 20 July 2021).
Parameter | n | % |
---|---|---|
Gender | ||
Female | 24 | 60.0% |
Male | 16 | 40.0% |
Age | ||
<40 | 3 | 7.5% |
40–49 | 6 | 15.0% |
50–59 | 17 | 42.5% |
60–64 | 14 | 35.0% |
KPS | ||
40–50 | 9 | 22.5% |
60–70 | 17 | 42.5% |
80–90 | 14 | 35.0% |
Extracranial metastases | ||
Without | 8 | 20.0% |
With | 32 | 80.0% |
Primary Status | ||
Not controlled | 35 | 87.5% |
Controlled | 5 | 12.5% |
Number of Metastasis | ||
1 | 4 | 10.0% |
2–3 | 6 | 15.0% |
>3 | 30 | 75.0% |
Volume of the largest lesion | ||
<5 cm3 | 23 | 57.5% |
5–13 cm3 | 9 | 22.5% |
≥13 cm3 | 8 | 20.0% |
Primary | ||
NSCLC | 24 | 60.0% |
SCLC | 3 | 7.5% |
Breast | 7 | 17.5% |
Others | 6 | 15.0% |
DM | ||
With | 6 | 15.0% |
Without | 34 | 85.0% |
HTN | ||
With | 10 | 25.0% |
Without | 30 | 75.0% |
SDNN | ||
<10 ms | 13 | 32.5% |
≥10 ms | 27 | 67.5% |
RPA Class | ||
I | 1 | 2.5% |
II | 28 | 70.0% |
III | 11 | 27.5% |
SDNN < 10 ms | SDNN ≥ 10 ms | p Value | |
---|---|---|---|
Age | 57.23 ± 6.60 | 52.52 ± 8.56 | 0.089 |
Gender | |||
Female | 6 | 18 | 0.305 |
Male | 7 | 9 | |
KPS | |||
<80 | 10 | 16 | 0.316 |
≥80 | 3 | 11 | |
Extracranial metastases | |||
Without | 2 | 6 | 1.000 |
With | 11 | 21 | |
Primary status | |||
Not controlled | 11 | 24 | 1.000 |
Controlled | 2 | 3 | |
Number of metastases | |||
≤3 | 4 | 6 | 0.700 |
>3 | 9 | 21 | |
Volume of the largest lesion | |||
≤5 cm3 | 6 | 17 | 0.496 |
>5 cm3 | 7 | 10 | |
Primary | |||
NSCLC | 8 | 16 | 1.000 |
Others | 5 | 11 | |
DM | |||
With | 1 | 5 | 0.643 |
Without | 12 | 22 | |
HTN | |||
With | 5 | 5 | 0.246 |
Without | 8 | 22 |
Parameters | n | Overall Survival | |||
---|---|---|---|---|---|
Median (months) | 3M | 6M | p Value | ||
All Participant | 40 | 6.21 | 62.5% | 52.5% | - |
Gender | |||||
Female | 24 | 7.63 | 66.7% | 54.2% | 0.420 |
Male | 16 | 3.62 | 56.3% | 50.0% | |
KPS | |||||
<80 | 26 | 2.17 | 42.3% | 34.6% | 0.019 |
≥80 | 14 | 9.93 | 100.0% | 85.7% | |
Extracranial metastases | |||||
Without | 8 | 12.07 | 87.5% | 87.5% | 0.245 |
With | 32 | 3.91 | 56.3% | 43.8% | |
Primary status | |||||
Not controlled | 35 | 6.21 | 60.0% | 51.4% | 0.196 |
Controlled | 5 | 21.47 | 80.0% | 60.0% | |
Number of Metastases | |||||
≤3 | 10 | 6.21 | 70.0% | 60.0% | 0.493 |
>3 | 30 | 5.65 | 60.0% | 50.0% | |
Volume of the largest lesion | |||||
≤5 cm3 | 23 | 8.52 | 65.2% | 56.5% | 0.949 |
>5 cm3 | 17 | 4.47 | 58.8% | 47.1% | |
Primary | |||||
NSCLC | 24 | 8.02 | 62.5% | 58.3% | 0.312 |
Others | 16 | 3.91 | 62.5% | 43.8% | |
DM | |||||
With | 6 | 12.92 | 83.3% | 83.3% | 0.515 |
Without | 34 | 4.47 | 58.8% | 47.1% | |
HTN | |||||
With | 10 | 7.63 | 60.0% | 60.0% | 0.463 |
Without | 30 | 5.65 | 63.3% | 50.0% | |
SDNN | |||||
<10 ms | 13 | 2.70 | 46.2% | 30.8% | 0.007 |
≥10 ms | 27 | 8.88 | 70.4% | 63.0% |
Parameters | Overall Survival | ||
---|---|---|---|
p Value | HR | 95% CI | |
KPS: <80 vs. ≥80 | 0.018 | 2.349 | 1.159–4.762 |
SDNN: <10 ms vs. ≥10 ms | 0.008 | 2.766 | 1.306–5.857 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-M.; Cheng, J.-Y.; Wang, C.-J.; Hseu, S.-S.; Huang, E.-Y. Outcomes and Prognosis of Non-Elderly Patients with Brain Metastases—A Prospective Cohort Incorporating Individualized Assessment of Heart Rate Variability. J. Pers. Med. 2021, 11, 1049. https://doi.org/10.3390/jpm11111049
Wang Y-M, Cheng J-Y, Wang C-J, Hseu S-S, Huang E-Y. Outcomes and Prognosis of Non-Elderly Patients with Brain Metastases—A Prospective Cohort Incorporating Individualized Assessment of Heart Rate Variability. Journal of Personalized Medicine. 2021; 11(11):1049. https://doi.org/10.3390/jpm11111049
Chicago/Turabian StyleWang, Yu-Ming, Jen-Yu Cheng, Chong-Jong Wang, Shu-Shya Hseu, and Eng-Yen Huang. 2021. "Outcomes and Prognosis of Non-Elderly Patients with Brain Metastases—A Prospective Cohort Incorporating Individualized Assessment of Heart Rate Variability" Journal of Personalized Medicine 11, no. 11: 1049. https://doi.org/10.3390/jpm11111049
APA StyleWang, Y.-M., Cheng, J.-Y., Wang, C.-J., Hseu, S.-S., & Huang, E.-Y. (2021). Outcomes and Prognosis of Non-Elderly Patients with Brain Metastases—A Prospective Cohort Incorporating Individualized Assessment of Heart Rate Variability. Journal of Personalized Medicine, 11(11), 1049. https://doi.org/10.3390/jpm11111049