ADHD: Reviewing the Causes and Evaluating Solutions
Abstract
:1. Introduction
2. Environmental Factors Associated with ADHD
2.1. Preconceptional, Gestational, and Perinatal Conditions
2.2. Heavy Metal Exposure
3. Sleep Disorders and ADHD
4. Genetic Factors Associated with ADHD
4.1. BDNF
4.1.1. Circulating BDNF
4.1.2. Genetics of BDNF
4.1.3. Other Neurotrophines
4.2. Dopaminergic System
5. Changes in Brain Structure and Function in ADHD Patients
5.1. Brain Imaging Studies
5.2. Quantitative Electroencephalography
6. Therapeutic Approaches
6.1. Pharmacological Treatment
6.1.1. Methylphenidate
6.1.2. Atomoxetine
6.1.3. Adverse Effects
6.1.4. Long-Term Adverse Effects
6.1.5. Long-Term Therapeutic Effect
6.2. Non-Pharmacological Therapies
6.2.1. Behavioral Parent Training
6.2.2. Cognitive Behavioral Therapy
6.2.3. Attention Training Techniques
6.2.4. Neurofeedback
6.2.5. Other Non-Pharmacological Approaches
7. Treatment Personalization
8. Discussion
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Delgado-Mejia, I.D.; Palencia-Avendano, M.L.; Mogollon-Rincon, C.; Etchepareborda, M.C. Theta/beta ratio (NEBA) in the diagnosis of attention deficit hyperactivity disorder. Rev. Neurol. 2014, 58 (Suppl. S1), S57–S63. [Google Scholar]
- Rodrak, S.; Wongsawat, Y. EEG brain mapping and brain connectivity index for subtypes classification of attention deficit hyperactivity disorder children during the eye-opened period. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; Volume 2013, pp. 7400–7403. [Google Scholar] [CrossRef]
- Huss, M.; Duhan, P.; Gandhi, P.; Chen, C.W.; Spannhuth, C.; Kumar, V. Methylphenidate dose optimization for ADHD treatment: Review of safety, efficacy, and clinical necessity. Neuropsychiatr. Dis. Treat. 2017, 13, 1741–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortíz León, S.; Jaimes Medrano, A.L. Trastorno por déficit de atención en la edad adulta y en universitarios. Revista de la Facultad de Medicina de la UNAM 2016, 59, 6–14. [Google Scholar]
- Homberg, J.R.; Kyzar, E.J.; Nguyen, M.; Norton, W.H.; Pittman, J.; Poudel, M.K.; Gaikwad, S.; Nakamura, S.; Koshiba, M.; Yamanouchi, H.; et al. Understanding autism and other neurodevelopmental disorders through experimental translational neurobehavioral models. Neurosci. Biobehav. Rev. 2016, 65, 292–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aylward, G.P. Neurodevelopmental outcomes of infants born prematurely. J. Dev. Behav. Pediatr. 2005, 26, 427–440. [Google Scholar] [CrossRef]
- Ambrosino, S.; de Zeeuw, P.; Wierenga, L.M.; van Dijk, S.; Durston, S. What can Cortical Development in Attention-Deficit/Hyperactivity Disorder Teach us About the Early Developmental Mechanisms Involved? Cereb. Cortex 2017, 27, 4624–4634. [Google Scholar] [CrossRef] [PubMed]
- Allred, E.N.; Dammann, O.; Fichorova, R.N.; Hooper, S.R.; Hunter, S.J.; Joseph, R.M.; Kuban, K.; Leviton, A.; O’Shea, T.M.; Scott, M.N.; et al. Systemic Inflammation during the First Postnatal Month and the Risk of Attention Deficit Hyperactivity Disorder Characteristics among 10 year-old Children Born Extremely Preterm. J. Neuroimmune Pharmacol. 2017, 12, 531–543. [Google Scholar] [CrossRef] [PubMed]
- Giannopoulou, I.; Pagida, M.A.; Briana, D.D.; Panayotacopoulou, M.T. Perinatal hypoxia as a risk factor for psychopathology later in life: The role of dopamine and neurotrophins. Hormones 2018, 17, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Gharami, K.; Das, M.; Das, S. Essential role of docosahexaenoic acid towards development of a smarter brain. Neurochem. Int. 2015, 89, 51–62. [Google Scholar] [CrossRef]
- Bonvicini, C.; Faraone, S.V.; Scassellati, C. Attention-deficit hyperactivity disorder in adults: A systematic review and meta-analysis of genetic, pharmacogenetic and biochemical studies. Mol. Psychiatry 2016, 21, 872–884. [Google Scholar] [CrossRef] [PubMed]
- Udagawa, J.; Hino, K. Impact of Maternal Stress in Pregnancy on Brain Function of the Offspring. Nihon Eiseigaku Zasshi 2016, 71, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.S.; Kim, P.; Park, J.H.; Gonzales, E.L.; Kim, K.C.; Cho, K.S.; Ko, M.J.; Yang, S.M.; Seung, H.; Han, S.H.; et al. High sucrose consumption during pregnancy induced ADHD-like behavioral phenotypes in mice offspring. J. Nutr. Biochem. 2015, 26, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Kim, P.; Joo, S.H.; Kim, M.K.; Park, J.H.; Kim, H.J.; Ryu, J.H.; Cheong, J.H.; Shin, C.Y. Effects of Preconceptional Ethanol Consumption on ADHD-Like Symptoms in Sprague-Dawley Rat Offsprings. Biomol. Ther. 2012, 20, 226–233. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.; Choi, C.S.; Park, J.H.; Joo, S.H.; Kim, S.Y.; Ko, H.M.; Kim, K.C.; Jeon, S.J.; Park, S.H.; Han, S.H.; et al. Chronic exposure to ethanol of male mice before mating produces attention deficit hyperactivity disorder-like phenotype along with epigenetic dysregulation of dopamine transporter expression in mouse offspring. J. Neurosci. Res. 2014, 92, 658–670. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.R.; Taylor, M.M.; Shalat, S.L.; Guillot, T.S., 3rd; Caudle, W.M.; Hossain, M.M.; Mathews, T.A.; Jones, S.R.; Cory-Slechta, D.A.; Miller, G.W. Developmental pesticide exposure reproduces features of attention deficit hyperactivity disorder. FASEB J. 2015, 29, 1960–1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, M.J.; Almotawah, F.; Pani, S.C.; Ingle, N.A. A Comparison of Salivary Mercury Levels in Children with Attention Deficit/Hyperactivity Disorder When Compared to Age-matched Controls: A Case-control Observational Study. J. Contemp. Dent. Pract. 2020, 21, 129–132. [Google Scholar]
- Bhang, S.Y.; Cho, S.C.; Kim, J.W.; Hong, Y.C.; Shin, M.S.; Yoo, H.J.; Cho, I.H.; Kim, Y.; Kim, B.N. Relationship between blood manganese levels and children’s attention, cognition, behavior, and academic performance--a nationwide cross-sectional study. Environ. Res. 2013, 126, 9–16. [Google Scholar] [CrossRef]
- Schullehner, J.; Thygesen, M.; Kristiansen, S.M.; Hansen, B.; Pedersen, C.B.; Dalsgaard, S. Exposure to Manganese in Drinking Water during Childhood and Association with Attention-Deficit Hyperactivity Disorder: A Nationwide Cohort Study. Environ. Health Perspect. 2020, 128, 97004. [Google Scholar] [CrossRef]
- Chan, T.J.; Gutierrez, C.; Ogunseitan, O.A. Metallic Burden of Deciduous Teeth and Childhood Behavioral Deficits. Int. J. Environ. Res. Public Health 2015, 12, 6771–6787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Huo, X.; Liu, D.; Zeng, X.; Zhang, Y.; Xu, X. S100beta in heavy metal-related child attention-deficit hyperactivity disorder in an informal e-waste recycling area. Neurotoxicology 2014, 45, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Nigg, J.T.; Knottnerus, G.M.; Martel, M.M.; Nikolas, M.; Cavanagh, K.; Karmaus, W.; Rappley, M.D. Low blood lead levels associated with clinically diagnosed attention-deficit/hyperactivity disorder and mediated by weak cognitive control. Biol. Psychiatry 2008, 63, 325–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nigg, J.T.; Nikolas, M.; Mark Knottnerus, G.; Cavanagh, K.; Friderici, K. Confirmation and extension of association of blood lead with attention-deficit/hyperactivity disorder (ADHD) and ADHD symptom domains at population-typical exposure levels. J. Child Psychol. Psychiatry 2010, 51, 58–65. [Google Scholar] [CrossRef] [Green Version]
- Nigg, J.T.; Elmore, A.L.; Natarajan, N.; Friderici, K.H.; Nikolas, M.A. Variation in an Iron Metabolism Gene Moderates the Association Between Blood Lead Levels and Attention-Deficit/Hyperactivity Disorder in Children. Psychol. Sci. 2016, 27, 257–269. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhang, J.; Xu, Y. Epigenetic Basis of Lead-Induced Neurological Disorders. Int. J. Environ. Res. Public Health 2020, 17, 4878. [Google Scholar] [CrossRef]
- Munoz, M.P.; Rubilar, P.; Valdes, M.; Munoz-Quezada, M.T.; Gomez, A.; Saavedra, M.; Iglesias, V. Attention deficit hyperactivity disorder and its association with heavy metals in children from northern Chile. Int. J. Hyg. Environ. Health 2020, 226, 113483. [Google Scholar] [CrossRef]
- Sanders, A.P.; Claus Henn, B.; Wright, R.O. Perinatal and Childhood Exposure to Cadmium, Manganese, and Metal Mixtures and Effects on Cognition and Behavior: A Review of Recent Literature. Curr. Environ. Health Rep. 2015, 2, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Jang, Y.; Lim, Y.H.; Kim, B.N.; Shin, C.H.; Lee, Y.A.; Kim, J.I.; Hong, Y.C. The Effect of Prenatal Cadmium Exposure on Attention-deficit/Hyperactivity Disorder in 6-Year-old Children in Korea. J. Prev. Med. Public Health 2020, 53, 29–36. [Google Scholar] [CrossRef]
- Li, Y.; Cha, C.; Lv, X.; Liu, J.; He, J.; Pang, Q.; Meng, L.; Kuang, H.; Fan, R. Association between 10 urinary heavy metal exposure and attention deficit hyperactivity disorder for children. Environ. Sci. Pollut. Res. Int. 2020, 27, 31233–31242. [Google Scholar] [CrossRef]
- Skalny, A.V.; Mazaletskaya, A.L.; Ajsuvakova, O.P.; Bjorklund, G.; Skalnaya, M.G.; Chao, J.C.; Chernova, L.N.; Shakieva, R.A.; Kopylov, P.Y.; Skalny, A.A.; et al. Serum zinc, copper, zinc-to-copper ratio, and other essential elements and minerals in children with attention deficit/hyperactivity disorder (ADHD). J. Trace Elem. Med. Biol. 2020, 58, 126445. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Mo, Y.; Liu, M. Blood and hair zinc levels in children with attention deficit hyperactivity disorder: A meta-analysis. Asian J. Psychiatr. 2020, 47, 101805. [Google Scholar] [CrossRef] [PubMed]
- Bijlenga, D.; Vollebregt, M.A.; Kooij, J.J.S.; Arns, M. The role of the circadian system in the etiology and pathophysiology of ADHD: Time to redefine ADHD? Atten. Defic. Hyperact. Disord. 2019, 11, 5–19. [Google Scholar] [CrossRef]
- Snitselaar, M.A.; Smits, M.G.; van der Heijden, K.B.; Spijker, J. Sleep and Circadian Rhythmicity in Adult ADHD and the Effect of Stimulants. J. Atten. Disord. 2017, 21, 14–26. [Google Scholar] [CrossRef] [PubMed]
- Chamorro, M.; Lara, J.P.; Insa, I.; Espadas, M.; Alda-Diez, J.A. Evaluation and treatment of sleep problems in children diagnosed with attention deficit hyperactivity disorder: An update of the evidence. Rev. Neurol. 2017, 64, 413–421. [Google Scholar]
- Wajszilber, D.; Santiseban, J.A.; Gruber, R. Sleep disorders in patients with ADHD: Impact and management challenges. Nat. Sci. Sleep 2018, 10, 453–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hvolby, A. Associations of sleep disturbance with ADHD: Implications for treatment. Atten. Defic. Hyperact. Disord. 2015, 7, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weibel, S.; Menard, O.; Ionita, A.; Boumendjel, M.; Cabelguen, C.; Kraemer, C.; Micoulaud-Franchi, J.A.; Bioulac, S.; Perroud, N.; Sauvaget, A.; et al. Practical considerations for the evaluation and management of Attention Deficit Hyperactivity Disorder (ADHD) in adults. Encephale 2020, 46, 30–40. [Google Scholar] [CrossRef]
- Lugo, J.; Fadeuilhe, C.; Gisbert, L.; Setien, I.; Delgado, M.; Corrales, M.; Richarte, V.; Ramos-Quiroga, J.A. Sleep in adults with autism spectrum disorder and attention deficit/hyperactivity disorder: A systematic review and meta-analysis. Eur. Neuropsychopharmacol. 2020, 38, 1–24. [Google Scholar] [CrossRef]
- Singh, K.; Zimmerman, A.W. Sleep in Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder. Semin. Pediatr. Neurol. 2015, 22, 113–125. [Google Scholar] [CrossRef]
- Owens, J.A. Sleep disorders and attention-deficit/hyperactivity disorder. Curr. Psychiatry Rep. 2008, 10, 439–444. [Google Scholar] [CrossRef]
- Tsai, M.H.; Huang, Y.S. Attention-deficit/hyperactivity disorder and sleep disorders in children. Med. Clin. N. Am. 2010, 94, 615–632. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.; Hunter, K. Adenotonsillectomy as a treatment for sleep-disordered breathing in children with ADHD. JAAPA 2020, 33, 34–39. [Google Scholar] [CrossRef]
- Faraone, S.V.; Perlis, R.H.; Doyle, A.E.; Smoller, J.W.; Goralnick, J.J.; Holmgren, M.A.; Sklar, P. Molecular genetics of attention-deficit/hyperactivity disorder. Biol. Psychiatry 2005, 57, 1313–1323. [Google Scholar] [CrossRef] [Green Version]
- Demontis, D.; Walters, R.K.; Martin, J.; Mattheisen, M.; Als, T.D.; Agerbo, E.; Baldursson, G.; Belliveau, R.; Bybjerg-Grauholm, J.; Baekvad-Hansen, M.; et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 2019, 51, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Morga, M.; Quesada-Rico, M.P.; Bueno, C.; Martinez, S. Neurobiological bases of autistic spectrum disorder and attention deficit hyperactivity disorder: Neural differentiation and synaptogenesis. Rev. Neurol. 2018, 66, S97–S102. [Google Scholar]
- Liu, D.Y.; Shen, X.M.; Yuan, F.F.; Guo, O.Y.; Zhong, Y.; Chen, J.G.; Zhu, L.Q.; Wu, J. The Physiology of BDNF and Its Relationship with ADHD. Mol. Neurobiol. 2015, 52, 1467–1476. [Google Scholar] [CrossRef] [PubMed]
- Galvez-Contreras, A.Y.; Campos-Ordonez, T.; Gonzalez-Castaneda, R.E.; Gonzalez-Perez, O. Alterations of Growth Factors in Autism and Attention-Deficit/Hyperactivity Disorder. Front. Psychiatry 2017, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Saadat, F.; Kosha, M.; Amiry, A.; Torabi, G. Brain-derived neurotrophic factor as a biomarker in children with attention deficit-hyperactivity disorder. J. Krishna Inst. Med. Sci. Univ. 2015, 4, 10–17. [Google Scholar]
- Corominas-Roso, M.; Ramos-Quiroga, J.A.; Ribases, M.; Sanchez-Mora, C.; Palomar, G.; Valero, S.; Bosch, R.; Casas, M. Decreased serum levels of brain-derived neurotrophic factor in adults with attention-deficit hyperactivity disorder. Int. J. Neuropsychopharmacol. 2013, 16, 1267–1275. [Google Scholar] [CrossRef] [Green Version]
- Amiri, A.; Torabi Parizi, G.; Kousha, M.; Saadat, F.; Modabbernia, M.J.; Najafi, K.; Atrkar Roushan, Z. Changes in plasma Brain-derived neurotrophic factor (BDNF) levels induced by methylphenidate in children with Attention deficit-hyperactivity disorder (ADHD). Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 47, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Akay, A.P.; Resmi, H.; Guney, S.A.; Erkuran, H.O.; Ozyurt, G.; Sargin, E.; Topuzoglu, A.; Tufan, A.E. Serum brain-derived neurotrophic factor levels in treatment-naive boys with attention-deficit/hyperactivity disorder treated with methylphenidate: An 8-week, observational pretest-posttest study. Eur. Child. Adolesc. Psychiatry 2018, 27, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Simsek, S.; Gencoglan, S.; Yuksel, T.; Kaplan, I.; Aktas, H.; Alaca, R. Evaluation of the Relationship between Brain-Derived Neurotropic Factor Levels and the Stroop Interference Effect in Children with Attention-Deficit Hyperactivity Disorder. Noro Psikiyatr. Ars. 2016, 53, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Bilgic, A.; Toker, A.; Isik, U.; Kilinc, I. Serum brain-derived neurotrophic factor, glial-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 levels in children with attention-deficit/hyperactivity disorder. Eur. Child. Adolesc. Psychiatry 2017, 26, 355–363. [Google Scholar] [CrossRef]
- Sahin, S.; Yuce, M.; Alacam, H.; Karabekiroglu, K.; Say, G.N.; Salis, O. Effect of methylphenidate treatment on appetite and levels of leptin, ghrelin, adiponectin, and brain-derived neurotrophic factor in children and adolescents with attention deficit and hyperactivity disorder. Int. J. Psychiatry Clin. Pract. 2014, 18, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Luo, W.; Li, Q.; Xu, R.; Wang, Q.; Huang, Q. Peripheral brain-derived neurotrophic factor in attention-deficit/hyperactivity disorder: A comprehensive systematic review and meta-analysis. J. Affect. Disord. 2018, 227, 298–304. [Google Scholar] [CrossRef]
- Cubero-Millan, I.; Ruiz-Ramos, M.J.; Molina-Carballo, A.; Martinez-Serrano, S.; Fernandez-Lopez, L.; Machado-Casas, I.; Tortosa-Pinto, P.; Ruiz-Lopez, A.; Luna-Del-Castillo, J.D.; Uberos, J.; et al. BDNF concentrations and daily fluctuations differ among ADHD children and respond differently to methylphenidate with no relationship with depressive symptomatology. Psychopharmacology 2017, 234, 267–279. [Google Scholar] [CrossRef]
- Ozturk, O.; Basay, B.K.; Buber, A.; Basay, O.; Alacam, H.; Bacanli, A.; Yilmaz, S.G.; Erdal, M.E.; Herken, H.; Ercan, E.S. Brain-Derived Neurotrophic Factor Gene Val66Met Polymorphism Is a Risk Factor for Attention-Deficit Hyperactivity Disorder in a Turkish Sample. Psychiatry Investig. 2016, 13, 518–525. [Google Scholar] [CrossRef]
- Aureli, A.; Del Beato, T.; Sebastiani, P.; Marimpietri, A.; Melillo, C.V.; Sechi, E.; Di Loreto, S. Attention-deficit hyperactivity disorder and intellectual disability: A study of association with brain-derived neurotrophic factor gene polymorphisms. Int. J. Immunopathol. Pharmacol. 2010, 23, 873–880. [Google Scholar] [CrossRef]
- Lanktree, M.; Squassina, A.; Krinsky, M.; Strauss, J.; Jain, U.; Macciardi, F.; Kennedy, J.L.; Muglia, P. Association study of brain-derived neurotrophic factor (BDNF) and LIN-7 homolog (LIN-7) genes with adult attention-deficit/hyperactivity disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147B, 945–951. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Song, G.G. BDNF 196 G/A and COMT Val158Met Polymorphisms and Susceptibility to ADHD: A Meta-Analysis. J. Atten. Disord. 2018, 22, 872–877. [Google Scholar] [CrossRef]
- Xu, X.; Mill, J.; Zhou, K.; Brookes, K.; Chen, C.K.; Asherson, P. Family-based association study between brain-derived neurotrophic factor gene polymorphisms and attention deficit hyperactivity disorder in UK and Taiwanese samples. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2007, 144B, 83–86. [Google Scholar] [CrossRef]
- Kwon, H.J.; Ha, M.; Jin, H.J.; Hyun, J.K.; Shim, S.H.; Paik, K.C.; Park, W.S.; Lim, M.H. Association between BDNF gene polymorphisms and attention deficit hyperactivity disorder in Korean children. Genet. Test. Mol. Biomark. 2015, 19, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Jiang, X.; Cao, G.; Xiong, P.; Yang, R.; Zhang, J.; Shen, M. Association between BDNF gene polymorphisms and attention deficit hyperactivity disorder in school-aged children in Wuhan, China. J. Affect. Disord. 2020, 264, 304–309. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Wang, Z.; Yan, F.; Fu, W. Correlation between single nucleotide polymorphisms of neurotrophic factors and executive function characteristics in children with attention deficit hyperactivity disorder. Wei Sheng Yan Jiu 2019, 48, 577–582. [Google Scholar]
- Cho, S.C.; Kim, H.W.; Kim, B.N.; Kim, J.W.; Shin, M.S.; Chung, S.; Cho, D.Y.; Jung, S.W.; Yoo, H.J.; Chung, I.W.; et al. Gender-specific association of the brain-derived neurotrophic factor gene with attention-deficit/hyperactivity disorder. Psychiatry Investig. 2010, 7, 285–290. [Google Scholar] [CrossRef]
- Hawi, Z.; Cummins, T.D.; Tong, J.; Arcos-Burgos, M.; Zhao, Q.; Matthews, N.; Newman, D.P.; Johnson, B.; Vance, A.; Heussler, H.S.; et al. Rare DNA variants in the brain-derived neurotrophic factor gene increase risk for attention-deficit hyperactivity disorder: A next-generation sequencing study. Mol. Psychiatry 2017, 22, 580–584. [Google Scholar] [CrossRef] [Green Version]
- Viikki, M.L.; Jarventausta, K.; Leinonen, E.; Huuhka, M.; Mononen, N.; Lehtimaki, T.; Kampman, O. BDNF polymorphism rs11030101 is associated with the efficacy of electroconvulsive therapy in treatment-resistant depression. Psychiatr. Genet. 2013, 23, 134–136. [Google Scholar] [CrossRef]
- Tsai, A.; Liou, Y.J.; Hong, C.J.; Wu, C.L.; Tsai, S.J.; Bai, Y.M. Association study of brain-derived neurotrophic factor gene polymorphisms and body weight change in schizophrenic patients under long-term atypical antipsychotic treatment. Neuromol. Med. 2011, 13, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Licinio, J.; Dong, C.; Wong, M.L. Novel sequence variations in the brain-derived neurotrophic factor gene and association with major depression and antidepressant treatment response. Arch. Gen. Psychiatry 2009, 66, 488–497. [Google Scholar] [CrossRef]
- Pae, C.U.; Chiesa, A.; Porcelli, S.; Han, C.; Patkar, A.A.; Lee, S.J.; Park, M.H.; Serretti, A.; De Ronchi, D. Influence of BDNF variants on diagnosis and response to treatment in patients with major depression, bipolar disorder and schizophrenia. Neuropsychobiology 2012, 65, 1–11. [Google Scholar] [CrossRef]
- Ye, C.Y.; Xu, Y.Q.; Hu, H.; Yu, S.Y.; Wang, D.X.; Shi, S.X.; Wang, L.W. An association study of brain-derived neurotrophic factor gene polymorphism in bipolar disorders. Zhonghua Yi Xue Za Zhi 2009, 89, 1897–1901. [Google Scholar]
- Xie, B.; Wang, B.; Suo, P.; Kou, C.; Wang, J.; Meng, X.; Cheng, L.; Ma, X.; Yu, Y. Genetic association between BDNF gene polymorphisms and phobic disorders: A case-control study among mainland Han Chinese. J. Affect. Disord. 2011, 132, 239–242. [Google Scholar] [CrossRef]
- Aldoghachi, A.F.; Tor, Y.S.; Redzun, S.Z.; Lokman, K.A.B.; Razaq, N.A.A.; Shahbudin, A.F.; Badamasi, I.M.; Cheah, P.S.; Stanslas, J.; Veerakumarasivam, A.; et al. Screening of brain-derived neurotrophic factor (BDNF) single nucleotide polymorphisms and plasma BDNF levels among Malaysian major depressive disorder patients. PLoS ONE 2019, 14, e0211241. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, Y.; Jiang, S.; Cui, D.; Qian, Y.; Jiang, K. Family-based association study between brain-derived neurotrophic factor gene and major depressive disorder of Chinese descent. Psychiatry Res. 2009, 169, 169–172. [Google Scholar] [CrossRef]
- Kocabas, N.A.; Antonijevic, I.; Faghel, C.; Forray, C.; Kasper, S.; Lecrubier, Y.; Linotte, S.; Massat, I.; Mendlewicz, J.; Noro, M.; et al. Brain-derived neurotrophic factor gene polymorphisms: Influence on treatment response phenotypes of major depressive disorder. Int. Clin. Psychopharmacol. 2011, 26, 1–10. [Google Scholar] [CrossRef]
- Xie, B.; Liu, Z.; Liu, W.; Jiang, L.; Zhang, R.; Cui, D.; Zhang, Q.; Xu, S. DNA Methylation and Tag SNPs of the BDNF Gene in Conversion of Amnestic Mild Cognitive Impairment into Alzheimer’s Disease: A Cross-Sectional Cohort Study. J. Alzheimers Dis. 2017, 58, 263–274. [Google Scholar] [CrossRef]
- Ng, T.; Teo, S.M.; Yeo, H.L.; Shwe, M.; Gan, Y.X.; Cheung, Y.T.; Foo, K.M.; Cham, M.T.; Lee, J.A.; Tan, Y.P.; et al. Brain-derived neurotrophic factor genetic polymorphism (rs6265) is protective against chemotherapy-associated cognitive impairment in patients with early-stage breast cancer. Neuro Oncol. 2016, 18, 244–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Xing, L.; Yang, T.; Chai, R.; Wang, J.; Bao, J.; Shen, W.; Ding, S.; Chen, G. The neurodevelopmental role of dopaminergic signaling in neurological disorders. Neurosci. Lett. 2021, 741, 135540. [Google Scholar] [CrossRef]
- Cybulska-Klosowicz, A.; Laczkowska, M.; Zakrzewska, R.; Kaliszewska, A. Attentional deficits and altered neuronal activation in medial prefrontal and posterior parietal cortices in mice with reduced dopamine transporter levels. Mol. Cell. Neurosci. 2017, 85, 82–92. [Google Scholar] [CrossRef]
- Mereu, M.; Contarini, G.; Buonaguro, E.F.; Latte, G.; Manago, F.; Iasevoli, F.; de Bartolomeis, A.; Papaleo, F. Dopamine transporter (DAT) genetic hypofunction in mice produces alterations consistent with ADHD but not schizophrenia or bipolar disorder. Neuropharmacology 2017, 121, 179–194. [Google Scholar] [CrossRef]
- Cinque, S.; Zoratto, F.; Poleggi, A.; Leo, D.; Cerniglia, L.; Cimino, S.; Tambelli, R.; Alleva, E.; Gainetdinov, R.R.; Laviola, G.; et al. Behavioral Phenotyping of Dopamine Transporter Knockout Rats: Compulsive Traits, Motor Stereotypies, and Anhedonia. Front. Psychiatry 2018, 9, 43. [Google Scholar] [CrossRef] [PubMed]
- Leo, D.; Sukhanov, I.; Zoratto, F.; Illiano, P.; Caffino, L.; Sanna, F.; Messa, G.; Emanuele, M.; Esposito, A.; Dorofeikova, M.; et al. Pronounced Hyperactivity, Cognitive Dysfunctions, and BDNF Dysregulation in Dopamine Transporter Knock-out Rats. J. Neurosci. 2018, 38, 1959–1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, C.L.; Lee, I.H.; Chi, M.H.; Chen, K.C.; Chen, P.S.; Yao, W.J.; Chiu, N.T.; Yang, Y.K. Availability of dopamine transporters and auditory P300 abnormalities in adults with attention-deficit hyperactivity disorder: Preliminary results. CNS Spectr. 2018, 23, 264–270. [Google Scholar] [CrossRef] [Green Version]
- Pineau, G.; Villemonteix, T.; Slama, H.; Kavec, M.; Baleriaux, D.; Metens, T.; Baijot, S.; Mary, A.; Ramoz, N.; Gorwood, P.; et al. Dopamine transporter genotype modulates brain activity during a working memory task in children with ADHD. Res. Dev. Disabil. 2019, 92, 103430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rommelse, N.N.; Altink, M.E.; Arias-Vasquez, A.; Buschgens, C.J.; Fliers, E.; Faraone, S.V.; Buitelaar, J.K.; Sergeant, J.A.; Franke, B.; Oosterlaan, J. A review and analysis of the relationship between neuropsychological measures and DAT1 in ADHD. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147B, 1536–1546. [Google Scholar] [CrossRef]
- Hong, J.H.; Hwang, I.W.; Lim, M.H.; Kwon, H.J.; Jin, H.J. Genetic associations between ADHD and dopaminergic genes (DAT1 and DRD4) VNTRs in Korean children. Genes Genom. 2018, 40, 1309–1317. [Google Scholar] [CrossRef]
- Stanley, A.; Chavda, K.; Subramanian, A.; Prabhu, S.V.; Ashavaid, T.F. DRD4 and DAT1 VNTR Genotyping in Children with Attention Deficit Hyperactivity Disorder. Indian J. Clin. Biochem. 2017, 32, 239–242. [Google Scholar] [CrossRef]
- Grunblatt, E.; Werling, A.M.; Roth, A.; Romanos, M.; Walitza, S. Association study and a systematic meta-analysis of the VNTR polymorphism in the 3’-UTR of dopamine transporter gene and attention-deficit hyperactivity disorder. J. Neural. Transm. 2019, 126, 517–529. [Google Scholar] [CrossRef] [Green Version]
- Thursina, C.; Nurputra, D.K.; Harahap, I.S.K.; Harahap, N.I.F.; Sa’adah, N.; Wibowo, S.; Sutarni, S.; Sadewa, A.H.; Hanjaya, H.; Nishio, H. Determining the association between polymorphisms of the DAT1 and DRD4 genes with attention deficit hyperactivity disorder in children from Java Island. Neurol. Int. 2020, 12, 8292. [Google Scholar] [CrossRef] [PubMed]
- Bolat, H.; Ercan, E.S.; Unsel-Bolat, G.; Tahillioglu, A.; Yazici, K.U.; Bacanli, A.; Pariltay, E.; Aygunes Jafari, D.; Kosova, B.; Ozgul, S.; et al. DRD4 genotyping may differentiate symptoms of attention-deficit/hyperactivity disorder and sluggish cognitive tempo. Braz. J. Psychiatry 2020, 42, 630–637. [Google Scholar] [CrossRef]
- Kuc, K.; Bielecki, M.; Racicka-Pawlukiewicz, E.; Czerwinski, M.B.; Cybulska-Klosowicz, A. The SLC6A3 gene polymorphism is related to the development of attentional functions but not to ADHD. Sci. Rep. 2020, 10, 6176. [Google Scholar] [CrossRef] [Green Version]
- Ettinger, U.; Merten, N.; Kambeitz, J. Meta-analysis of the association of the SLC6A3 3’-UTR VNTR with cognition. Neurosci. Biobehav. Rev. 2016, 60, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Combita, L.M.; Voelker, P.; Abundis-Gutierrez, A.; Pozuelos, J.P.; Rueda, M.R. Influence of the SLC6A3-DAT1 Gene on Multifaceted Measures of Self-regulation in Preschool Children. Front. Psychol. 2017, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Areal, L.B.; Blakely, R.D. Neurobehavioral changes arising from early life dopamine signaling perturbations. Neurochem. Int. 2020, 137, 104747. [Google Scholar] [CrossRef]
- Paval, D. A Dopamine Hypothesis of Autism Spectrum Disorder. Dev. Neurosci. 2017, 39, 355–360. [Google Scholar] [CrossRef]
- Aguilar-Valles, A.; Rodrigue, B.; Matta-Camacho, E. Maternal Immune Activation and the Development of Dopaminergic Neurotransmission of the Offspring: Relevance for Schizophrenia and Other Psychoses. Front. Psychiatry 2020, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- Sonnenschein, S.F.; Gomes, F.V.; Grace, A.A. Dysregulation of Midbrain Dopamine System and the Pathophysiology of Schizophrenia. Front. Psychiatry 2020, 11, 613. [Google Scholar] [CrossRef] [PubMed]
- Costa Dias, T.G.; Wilson, V.B.; Bathula, D.R.; Iyer, S.P.; Mills, K.L.; Thurlow, B.L.; Stevens, C.A.; Musser, E.D.; Carpenter, S.D.; Grayson, D.S.; et al. Reward circuit connectivity relates to delay discounting in children with attention-deficit/hyperactivity disorder. Eur. Neuropsychopharmacol. 2013, 23, 33–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Jiang, X.; Ji, W. The Mechanism of Cortico-Striato-Thalamo-Cortical Neurocircuitry in Response Inhibition and Emotional Responding in Attention Deficit Hyperactivity Disorder with Comorbid Disruptive Behavior Disorder. Neurosci. Bull. 2018, 34, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.G.; Ye, Z.; Li, Q.Y.; Liu, G.J.; Xie, B.; Wang, J. Changes of brain structure and function in ADHD children. Brain Topogr. 2011, 24, 243–252. [Google Scholar] [CrossRef]
- Bonath, B.; Tegelbeckers, J.; Wilke, M.; Flechtner, H.H.; Krauel, K. Regional Gray Matter Volume Differences Between Adolescents With ADHD and Typically Developing Controls: Further Evidence for Anterior Cingulate Involvement. J. Atten. Disord. 2018, 22, 627–638. [Google Scholar] [CrossRef]
- Wyciszkiewicz, A.; Pawlak, M.A.; Krawiec, K. Cerebellar Volume in Children with Attention-Deficit Hyperactivity Disorder (ADHD). J. Child. Neurol. 2017, 32, 215–221. [Google Scholar] [CrossRef]
- Hoogman, M.; Muetzel, R.; Guimaraes, J.P.; Shumskaya, E.; Mennes, M.; Zwiers, M.P.; Jahanshad, N.; Sudre, G.; Wolfers, T.; Earl, E.A.; et al. Brain Imaging of the Cortex in ADHD: A Coordinated Analysis of Large-Scale Clinical and Population-Based Samples. Am. J. Psychiatry 2019, 176, 531–542. [Google Scholar] [CrossRef]
- Saute, R.; Dabbs, K.; Jones, J.E.; Jackson, D.C.; Seidenberg, M.; Hermann, B.P. Brain morphology in children with epilepsy and ADHD. PLoS ONE 2014, 9, e95269. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, Y.; Kagitani-Shimono, K.; Jung, M.; Makita, K.; Takiguchi, S.; Fujisawa, T.X.; Tachibana, M.; Nakanishi, M.; Mohri, I.; Taniike, M.; et al. Structural brain abnormalities in children and adolescents with comorbid autism spectrum disorder and attention-deficit/hyperactivity disorder. Transl. Psychiatry 2019, 9, 332. [Google Scholar] [CrossRef]
- Bares, M.; Brunovsky, M.; Novak, T.; Kopecek, M.; Stopkova, P.; Sos, P.; Krajca, V.; Hoschl, C. The change of prefrontal QEEG theta cordance as a predictor of response to bupropion treatment in patients who had failed to respond to previous antidepressant treatments. Eur. Neuropsychopharmacol. 2010, 20, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Leuchter, A.F.; McGough, J.J.; Korb, A.S.; Hunter, A.M.; Glaser, P.E.; Deldar, A.; Durell, T.M.; Cook, I.A. Neurophysiologic predictors of response to atomoxetine in young adults with attention deficit hyperactivity disorder: A pilot project. J. Psychiatr. Res. 2014, 54, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Leuchter, A.F.; Cook, I.A.; Hunter, A.; Korb, A. Use of clinical neurophysiology for the selection of medication in the treatment of major depressive disorder: The state of the evidence. Clin. EEG Neurosci. 2009, 40, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Hunter, A.M.; Cook, I.A.; Abrams, M.; Leuchter, A.F. Neurophysiologic effects of repeated exposure to antidepressant medication: Are brain functional changes during antidepressant administration influenced by learning processes? Med. Hypotheses 2013, 81, 1004–1011. [Google Scholar] [CrossRef] [Green Version]
- Hunter, A.M.; Cook, I.A.; Leuchter, A.F. Does prior antidepressant treatment of major depression impact brain function during current treatment? Eur. Neuropsychopharmacol. 2012, 22, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Clemens, B.; Menes, A.; Piros, P.; Bessenyei, M.; Altmann, A.; Jerney, J.; Kollar, K.; Rosdy, B.; Rozsavolgyi, M.; Steinecker, K.; et al. Quantitative EEG effects of carbamazepine, oxcarbazepine, valproate, lamotrigine, and possible clinical relevance of the findings. Epilepsy Res. 2006, 70, 190–199. [Google Scholar] [CrossRef]
- Loo, S.K.; Makeig, S. Clinical utility of EEG in attention-deficit/hyperactivity disorder: A research update. Neurotherapeutics 2012, 9, 569–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Lee, Y.; Han, D.; Min, K.; Kim, D.; Lee, C. The utility of quantitative electroencephalography and Integrated Visual and Auditory Continuous Performance Test as auxiliary tools for the Attention Deficit Hyperactivity Disorder diagnosis. Clin. Neurophysiol. 2015, 126, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Arns, M.; Conners, C.K.; Kraemer, H.C. A decade of EEG Theta/Beta Ratio Research in ADHD: A meta-analysis. J. Atten. Disord. 2013, 17, 374–383. [Google Scholar] [CrossRef]
- Markovska-Simoska, S.; Pop-Jordanova, N. Quantitative EEG in Children and Adults with Attention Deficit Hyperactivity Disorder: Comparison of Absolute and Relative Power Spectra and Theta/Beta Ratio. Clin. EEG Neurosci. 2017, 48, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Tombor, L.; Kakuszi, B.; Papp, S.; Rethelyi, J.; Bitter, I.; Czobor, P. Decreased resting gamma activity in adult attention deficit/hyperactivity disorder. World J. Biol. Psychiatry 2018. [Google Scholar] [CrossRef]
- Acosta, M.T. Trastorno por déficit de atención e hiperactividad más allá de la adolescencia ¿tiempo de pensar diferente. Medicina 2018, 78, 57–62. [Google Scholar]
- Kim, J.W.; Kim, S.Y.; Choi, J.W.; Kim, K.M.; Nam, S.H.; Min, K.J.; Lee, Y.S.; Choi, T.Y. Differences in Resting-state Quantitative Electroencephalography Patterns in Attention Deficit/Hyperactivity Disorder with or without Comorbid Symptoms. Clin. Psychopharmacol. Neurosci. 2017, 15, 138–145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Hong, J.S.; Han, D.H.; Min, K.J.; Lee, Y.S.; Kee, B.S.; Kim, S.M. Comparison of QEEG Findings between Adolescents with Attention Deficit Hyperactivity Disorder (ADHD) without Comorbidity and ADHD Comorbid with Internet Gaming Disorder. J. Korean Med. Sci. 2017, 32, 514–521. [Google Scholar] [CrossRef]
- Zuluaga-Valencia, J.B.; Fandiño-Tabares, D.C. Comorbilidades asociadas al déficit de atención con hiperactividad. Revista de la Facultad de Medicina. Universidad Nacional de Colombia 2017, 65, 61–66. [Google Scholar] [CrossRef]
- Arns, M.; Vollebregt, M.A.; Palmer, D.; Spooner, C.; Gordon, E.; Kohn, M.; Clarke, S.; Elliott, G.R.; Buitelaar, J.K. Electroencephalographic biomarkers as predictors of methylphenidate response in attention-deficit/hyperactivity disorder. Eur. Neuropsychopharmacol. 2018, 28, 881–891. [Google Scholar] [CrossRef]
- Ehlers, C.L.; Phillips, E. EEG low-voltage alpha and alpha power in African American young adults: Relation to family history of alcoholism. Alcohol. Clin. Exp. Res. 2003, 27, 765–772. [Google Scholar] [CrossRef]
- Ehlers, C.L.; Phillips, E.; Finnerman, G.; Gilder, D.; Lau, P.; Criado, J. P3 components and adolescent binge drinking in Southwest California Indians. Neurotoxicol. Teratol. 2007, 29, 153–163. [Google Scholar] [CrossRef]
- Ehlers, C.L.; Phillips, E.; Schuckit, M.A. EEG alpha variants and alpha power in Hispanic American and white non-Hispanic American young adults with a family history of alcohol dependence. Alcohol 2004, 33, 99–106. [Google Scholar] [CrossRef]
- Ehlers, C.L.; Phillips, E.; Wall, T.L.; Wilhelmsen, K.; Schuckit, M.A. EEG alpha and level of response to alcohol in Hispanic- and non-Hispanic-American young adults with a family history of alcoholism. J. Stud. Alcohol 2004, 65, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, C.L.; Wall, T.L.; Garcia-Andrade, C.; Phillips, E. Effects of age and parental history of alcoholism on EEG findings in mission Indian children and adolescents. Alcohol. Clin. Exp. Res. 2001, 25, 672–679. [Google Scholar] [CrossRef] [PubMed]
- Otero, G.A. EEG spectral analysis in children with sociocultural handicaps. Int. J. Neurosci. 1994, 79, 213–220. [Google Scholar] [CrossRef]
- Otero, G.A.; Pliego-Rivero, F.B.; Fernandez, T.; Ricardo, J. EEG development in children with sociocultural disadvantages: A follow-up study. Clin. Neurophysiol. 2003, 114, 1918–1925. [Google Scholar] [CrossRef]
- Cuzen, N.L.; Andrew, C.; Thomas, K.G.; Stein, D.J.; Fein, G. Absence of P300 reduction in South African treatment-naive adolescents with alcohol dependence. Alcohol. Clin. Exp. Res. 2013, 37, 40–48. [Google Scholar] [CrossRef] [Green Version]
- Fein, G.; Andrew, C. Event-related potentials during visual target detection in treatment-naive active alcoholics. Alcohol. Clin. Exp. Res. 2011, 35, 1171–1179. [Google Scholar] [CrossRef]
- Herrera-Morales, W.V.; Ramirez-Lugo, L.; Santiago-Rodríguez, E.; Reyes-Lopez, J.; Núñez-Jaramillo, L. Hazardous alcohol consumption and risk of alcohol dependence present different neurophysiological correlates. Rev. Neurol. 2019, 68, 137–146. [Google Scholar] [PubMed]
- Brown, K.A.; Samuel, S.; Patel, D.R. Pharmacologic management of attention deficit hyperactivity disorder in children and adolescents: A review for practitioners. Transl. Pediatr. 2018, 7, 36–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerrillo-Urbina, A.J.; Garcia-Hermoso, A.; Pardo-Guijarro, M.J.; Sanchez-Lopez, M.; Santos-Gomez, J.L.; Martinez-Vizcaino, V. The Effects of Long-Acting Stimulant and Nonstimulant Medications in Children and Adolescents with Attention-Deficit/Hyperactivity Disorder: A Meta-Analysis of Randomized Controlled Trials. J. Child. Adolesc. Psychopharmacol. 2018, 28, 494–507. [Google Scholar] [CrossRef]
- Perugi, G.; Pallucchini, A.; Rizzato, S.; Pinzone, V.; De Rossi, P. Current and emerging pharmacotherapy for the treatment of adult attention deficit hyperactivity disorder (ADHD). Expert Opin. Pharmacother. 2019, 20, 1457–1470. [Google Scholar] [CrossRef] [PubMed]
- Storebo, O.J.; Pedersen, N.; Ramstad, E.; Kielsholm, M.L.; Nielsen, S.S.; Krogh, H.B.; Moreira-Maia, C.R.; Magnusson, F.L.; Holmskov, M.; Gerner, T.; et al. Methylphenidate for attention deficit hyperactivity disorder (ADHD) in children and adolescents-assessment of adverse events in non-randomised studies. Cochrane Database Syst. Rev. 2018, 5, CD012069. [Google Scholar] [CrossRef]
- Pievsky, M.A.; McGrath, R.E. Neurocognitive effects of methylphenidate in adults with attention-deficit/hyperactivity disorder: A meta-analysis. Neurosci. Biobehav. Rev. 2018, 90, 447–455. [Google Scholar] [CrossRef]
- Zimmer, L. Contribution of Clinical Neuroimaging to the Understanding of the Pharmacology of Methylphenidate. Trends Pharmacol. Sci. 2017, 38, 608–620. [Google Scholar] [CrossRef]
- Savill, N.C.; Buitelaar, J.K.; Anand, E.; Day, K.A.; Treuer, T.; Upadhyaya, H.P.; Coghill, D. The efficacy of atomoxetine for the treatment of children and adolescents with attention-deficit/hyperactivity disorder: A comprehensive review of over a decade of clinical research. CNS Drugs 2015, 29, 131–151. [Google Scholar] [CrossRef]
- Childress, A.C. A critical appraisal of atomoxetine in the management of ADHD. Ther. Clin. Risk Manag. 2016, 12, 27–39. [Google Scholar] [CrossRef] [Green Version]
- Meridor, K.; Levy, Y. Systemic sclerosis induced by CNS stimulants for ADHD: A case series and review of the literature. Autoimmun. Rev. 2020, 19, 102439. [Google Scholar] [CrossRef] [PubMed]
- Reed, V.A.; Buitelaar, J.K.; Anand, E.; Day, K.A.; Treuer, T.; Upadhyaya, H.P.; Coghill, D.R.; Kryzhanovskaya, L.A.; Savill, N.C. The Safety of Atomoxetine for the Treatment of Children and Adolescents with Attention-Deficit/Hyperactivity Disorder: A Comprehensive Review of Over a Decade of Research. CNS Drugs 2016, 30, 603–628. [Google Scholar] [CrossRef]
- Clemow, D.B.; Bushe, C.; Mancini, M.; Ossipov, M.H.; Upadhyaya, H. A review of the efficacy of atomoxetine in the treatment of attention-deficit hyperactivity disorder in children and adult patients with common comorbidities. Neuropsychiatr. Dis. Treat. 2017, 13, 357–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hutchison, S.L.; Ghuman, J.K.; Ghuman, H.S.; Karpov, I.; Schuster, J.M. Efficacy of atomoxetine in the treatment of attention-deficit hyperactivity disorder in patients with common comorbidities in children, adolescents and adults: A review. Ther. Adv. Psychopharmacol. 2016, 6, 317–334. [Google Scholar] [CrossRef]
- Yang, R.; Li, R.; Gao, W.; Zhao, Z. Tic Symptoms Induced by Atomoxetine in Treatment of ADHD: A Case Report and Literature Review. J. Dev. Behav. Pediatr. 2017, 38, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Fay, T.B.; Alpert, M.A. Cardiovascular Effects of Drugs Used to Treat Attention-Deficit/Hyperactivity Disorder Part 2: Impact on Cardiovascular Events and Recommendations for Evaluation and Monitoring. Cardiol. Rev. 2019, 27, 173–178. [Google Scholar] [CrossRef]
- Catala-Lopez, F.; Hutton, B.; Nunez-Beltran, A.; Page, M.J.; Ridao, M.; Macias Saint-Gerons, D.; Catala, M.A.; Tabares-Seisdedos, R.; Moher, D. The pharmacological and non-pharmacological treatment of attention deficit hyperactivity disorder in children and adolescents: A systematic review with network meta-analyses of randomised trials. PLoS ONE 2017, 12, e0180355. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zheng, Y.; Du, Y.; Song, D.H.; Shin, Y.J.; Cho, S.C.; Kim, B.N.; Ahn, D.H.; Marquez-Caraveo, M.E.; Gao, H.; et al. Atomoxetine versus methylphenidate in paediatric outpatients with attention deficit hyperactivity disorder: A randomized, double-blind comparison trial. Aust. N. Z. J. Psychiatry 2007, 41, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Garg, J.; Arun, P.; Chavan, B.S. Comparative short term efficacy and tolerability of methylphenidate and atomoxetine in attention deficit hyperactivity disorder. Indian Pediatr. 2014, 51, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Holmskov, M.; Storebo, O.J.; Moreira-Maia, C.R.; Ramstad, E.; Magnusson, F.L.; Krogh, H.B.; Groth, C.; Gillies, D.; Zwi, M.; Skoog, M.; et al. Gastrointestinal adverse events during methylphenidate treatment of children and adolescents with attention deficit hyperactivity disorder: A systematic review with meta-analysis and Trial Sequential Analysis of randomised clinical trials. PLoS ONE 2017, 12, e0178187. [Google Scholar] [CrossRef]
- Cortese, S.; Panei, P.; Arcieri, R.; Germinario, E.A.; Capuano, A.; Margari, L.; Chiarotti, F.; Curatolo, P. Safety of Methylphenidate and Atomoxetine in Children with Attention-Deficit/Hyperactivity Disorder (ADHD): Data from the Italian National ADHD Registry. CNS Drugs 2015, 29, 865–877. [Google Scholar] [CrossRef]
- Loureiro-Vieira, S.; Costa, V.M.; de Lourdes Bastos, M.; Carvalho, F.; Capela, J.P. Methylphenidate effects in the young brain: Friend or foe? Int. J. Dev. Neurosci. 2017, 60, 34–47. [Google Scholar] [CrossRef]
- Krinzinger, H.; Hall, C.L.; Groom, M.J.; Ansari, M.T.; Banaschewski, T.; Buitelaar, J.K.; Carucci, S.; Coghill, D.; Danckaerts, M.; Dittmann, R.W.; et al. Neurological and psychiatric adverse effects of long-term methylphenidate treatment in ADHD: A map of the current evidence. Neurosci. Biobehav. Rev. 2019, 107, 945–968. [Google Scholar] [CrossRef]
- Wong, I.C.K.; Banaschewski, T.; Buitelaar, J.; Cortese, S.; Dopfner, M.; Simonoff, E.; Coghill, D.; European, A.G.G. Emerging challenges in pharmacotherapy research on attention-deficit hyperactivity disorder-outcome measures beyond symptom control and clinical trials. Lancet Psychiatry 2019, 6, 528–537. [Google Scholar] [CrossRef]
- Coghill, D. Debate: Are Stimulant Medications for Attention-Deficit/Hyperactivity Disorder Effective in the Long Term? (For). J. Am. Acad. Child. Adolesc. Psychiatry 2019, 58, 938–939. [Google Scholar] [CrossRef]
- Cortese, S. Debate: Are Stimulant Medications for Attention-Deficit/Hyperactivity Disorder Effective in the Long Term? J. Am. Acad. Child. Adolesc. Psychiatry 2019, 58, 936. [Google Scholar] [CrossRef]
- Swanson, J.M. Debate: Are Stimulant Medications for Attention-Deficit/Hyperactivity Disorder Effective in the Long Term? (Against). J. Am. Acad. Child. Adolesc. Psychiatry 2019, 58, 936–938. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, N.A.; Yamamoto, K.M.; Froehlich, T.E. Genetic Influence on Efficacy of Pharmacotherapy for Pediatric Attention-Deficit/Hyperactivity Disorder: Overview and Current Status of Research. CNS Drugs 2020, 34, 389–414. [Google Scholar] [CrossRef]
- Chiarenza, G.A.; Chabot, R.; Isenhart, R.; Montaldi, L.; Chiarenza, M.P.; Torto, M.G.; Prichep, L.S. The quantified EEG characteristics of responders and non-responders to long-term treatment with atomoxetine in children with attention deficit hyperactivity disorders. Int. J. Psychophysiol. 2016, 104, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T.; Biederman, J.; Wilens, T.; Harding, M.; O’Donnell, D.; Griffin, S. Pharmacotherapy of attention-deficit hyperactivity disorder across the life cycle. J. Am. Acad. Child. Adolesc. Psychiatry 1996, 35, 409–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogrim, G.; Kropotov, J.D. Predicting Clinical Gains and Side Effects of Stimulant Medication in Pediatric Attention-Deficit/Hyperactivity Disorder by Combining Measures From qEEG and ERPs in a Cued GO/NOGO Task. Clin. EEG Neurosci. 2019, 50, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buoli, M.; Serati, M.; Cahn, W. Alternative pharmacological strategies for adult ADHD treatment: A systematic review. Expert Rev. Neurother. 2016, 16, 131–144. [Google Scholar] [CrossRef]
- Zwi, M.; Jones, H.; Thorgaard, C.; York, A.; Dennis, J.A. Parent training interventions for Attention Deficit Hyperactivity Disorder (ADHD) in children aged 5 to 18 years. Cochrane Database Syst. Rev. 2011. [Google Scholar] [CrossRef] [PubMed]
- Chacko, A.; Bedard, A.V.; Marks, D.; Gopalan, G.; Feirsen, N.; Uderman, J.; Chimiklis, A.; Heber, E.; Cornwell, M.; Anderson, L.; et al. Sequenced neurocognitive and behavioral parent training for the treatment of ADHD in school-age children. Child. Neuropsychol. 2018, 24, 427–450. [Google Scholar] [CrossRef] [PubMed]
- Fosco, W.D.; Sarver, D.E.; Kofler, M.J.; Aduen, P.A. Parent and child neurocognitive functioning predict response to behavioral parent training for youth with ADHD. Atten. Defic. Hyperact. Disord. 2018, 10, 285–295. [Google Scholar] [CrossRef]
- Ciesielski, H.A.; Loren, R.E.A.; Tamm, L. Behavioral Parent Training for ADHD Reduces Situational Severity of Child Noncompliance and Related Parental Stress. J. Atten. Disord. 2020, 24, 758–767. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.M.; Amdisen, B.L.; Jorgensen, K.J.; Arnfred, S.M. Cognitive behavioural therapy for ADHD in adults: Systematic review and meta-analyses. Atten. Defic. Hyperact. Disord. 2016, 8, 3–11. [Google Scholar] [CrossRef]
- Knouse, L.E.; Teller, J.; Brooks, M.A. Meta-analysis of cognitive-behavioral treatments for adult ADHD. J. Consult. Clin. Psychol. 2017, 85, 737–750. [Google Scholar] [CrossRef] [PubMed]
- Lopez, P.L.; Torrente, F.M.; Ciapponi, A.; Lischinsky, A.G.; Cetkovich-Bakmas, M.; Rojas, J.I.; Romano, M.; Manes, F.F. Cognitive-behavioural interventions for attention deficit hyperactivity disorder (ADHD) in adults. Cochrane Database Syst. Rev. 2018, 3, CD010840. [Google Scholar] [CrossRef]
- Lambez, B.; Harwood-Gross, A.; Golumbic, E.Z.; Rassovsky, Y. Non-pharmacological interventions for cognitive difficulties in ADHD: A systematic review and meta-analysis. J. Psychiatr. Res. 2020, 120, 40–55. [Google Scholar] [CrossRef]
- Nimmo-Smith, V.; Merwood, A.; Hank, D.; Brandling, J.; Greenwood, R.; Skinner, L.; Law, S.; Patel, V.; Rai, D. Non-pharmacological interventions for adult ADHD: A systematic review. Psychol. Med. 2020, 50, 529–541. [Google Scholar] [CrossRef]
- Pan, M.R.; Huang, F.; Zhao, M.J.; Wang, Y.F.; Wang, Y.F.; Qian, Q.J. A comparison of efficacy between cognitive behavioral therapy (CBT) and CBT combined with medication in adults with attention-deficit/hyperactivity disorder (ADHD). Psychiatry Res. 2019, 279, 23–33. [Google Scholar] [CrossRef]
- Modesto-Lowe, V.; Farahmand, P.; Chaplin, M.; Sarro, L. Does mindfulness meditation improve attention in attention deficit hyperactivity disorder? World J. Psychiatry 2015, 5, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.S.C.; Ma, M.T.; Ho, H.Y.; Tsang, K.K.; Zheng, Y.Y.; Wu, Z.Y. The Effectiveness of Mindfulness-Based Intervention in Attention on Individuals with ADHD: A Systematic Review. Hong Kong J. Occup. Ther. 2017, 30, 33–41. [Google Scholar] [CrossRef]
- Vancampfort, D.; Stubbs, B.; Van Damme, T.; Smith, L.; Hallgren, M.; Schuch, F.; Deenik, J.; Rosenbaum, S.; Ashdown-Franks, G.; Mugisha, J.; et al. The efficacy of meditation-based mind-body interventions for mental disorders: A meta-review of 17 meta-analyses of randomized controlled trials. J. Psychiatr. Res. 2020, 134, 181–191. [Google Scholar] [CrossRef]
- Aadil, M.; Cosme, R.M.; Chernaik, J. Mindfulness-Based Cognitive Behavioral Therapy as an Adjunct Treatment of Attention Deficit Hyperactivity Disorder in Young Adults: A Literature Review. Cureus 2017, 9, e1269. [Google Scholar] [CrossRef]
- Evans, S.; Ling, M.; Hill, B.; Rinehart, N.; Austin, D.; Sciberras, E. Systematic review of meditation-based interventions for children with ADHD. Eur. Child Adolesc. Psychiatry 2018, 27, 9–27. [Google Scholar] [CrossRef]
- Nicastro, R.; Jermann, F.; Bluteau Blin, S.; Waeber, C.; Perroud, N. Mindfulness Training for Adults with Attention-Deficit/Hyperactivity Disorder: Implementation of Mindful Awareness Practices in a French-Speaking Attention-Deficit/Hyperactivity Disorder Unit. J. Altern. Complement. Med. 2020. [Google Scholar] [CrossRef]
- Santonastaso, O.; Zaccari, V.; Crescentini, C.; Fabbro, F.; Capurso, V.; Vicari, S.; Menghini, D. Clinical Application of Mindfulness-Oriented Meditation: A Preliminary Study in Children with ADHD. Int. J. Environ. Res. Public Health 2020, 17, 6916. [Google Scholar] [CrossRef]
- Muratori, P.; Conversano, C.; Levantini, V.; Masi, G.; Milone, A.; Villani, S.; Bogels, S.; Gemignani, A. Exploring the Efficacy of a Mindfulness Program for Boys With Attention-Deficit Hyperactivity Disorder and Oppositional Defiant Disorder. J. Atten. Disord. 2020. [Google Scholar] [CrossRef]
- Van Doren, J.; Heinrich, H.; Bezold, M.; Reuter, N.; Kratz, O.; Horndasch, S.; Berking, M.; Ros, T.; Gevensleben, H.; Moll, G.H.; et al. Theta/beta neurofeedback in children with ADHD: Feasibility of a short-term setting and plasticity effects. Int. J. Psychophysiol. 2017, 112, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Ros, T.; Baars, B.; Lanius, R.A.; Vuilleumier, P. Tuning pathological brain oscillations with neurofeedback: A systems neuroscience framework. Front. Hum. Neurosci. 2014, 8, 1008. [Google Scholar] [CrossRef] [Green Version]
- Ros, T.; Munneke, M.A.; Ruge, D.; Gruzelier, J.H.; Rothwell, J.C. Endogenous control of waking brain rhythms induces neuroplasticity in humans. Eur. J. Neurosci. 2010, 31, 770–778. [Google Scholar] [CrossRef]
- Ros, T.; Theberge, J.; Frewen, P.A.; Kluetsch, R.; Densmore, M.; Calhoun, V.D.; Lanius, R.A. Mind over chatter: Plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. Neuroimage 2013, 65, 324–335. [Google Scholar] [CrossRef]
- Arns, M.; Heinrich, H.; Strehl, U. Evaluation of neurofeedback in ADHD: The long and winding road. Biol. Psychol. 2014, 95, 108–115. [Google Scholar] [CrossRef]
- Enriquez-Geppert, S.; Smit, D.; Pimenta, M.G.; Arns, M. Neurofeedback as a Treatment Intervention in ADHD: Current Evidence and Practice. Curr. Psychiatry Rep. 2019, 21, 46. [Google Scholar] [CrossRef] [Green Version]
- Bussalb, A.; Congedo, M.; Barthelemy, Q.; Ojeda, D.; Acquaviva, E.; Delorme, R.; Mayaud, L. Clinical and Experimental Factors Influencing the Efficacy of Neurofeedback in ADHD: A Meta-Analysis. Front. Psychiatry 2019, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Van Doren, J.; Arns, M.; Heinrich, H.; Vollebregt, M.A.; Strehl, U.; Loo, S.K. Sustained effects of neurofeedback in ADHD: A systematic review and meta-analysis. Eur. Child. Adolesc. Psychiatry 2019, 28, 293–305. [Google Scholar] [CrossRef] [Green Version]
- Cortese, S.; Ferrin, M.; Brandeis, D.; Holtmann, M.; Aggensteiner, P.; Daley, D.; Santosh, P.; Simonoff, E.; Stevenson, J.; Stringaris, A.; et al. Neurofeedback for Attention-Deficit/Hyperactivity Disorder: Meta-Analysis of Clinical and Neuropsychological Outcomes From Randomized Controlled Trials. J. Am. Acad. Child. Adolesc. Psychiatry 2016, 55, 444–455. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Wang, S.; Yuan, Y.; Zhang, J. Effects of neurofeedback versus methylphenidate for the treatment of ADHD: Systematic review and meta-analysis of head-to-head trials. Evid. Based Ment. Health 2019, 22, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Riesco-Matias, P.; Yela-Bernabe, J.R.; Crego, A.; Sanchez-Zaballos, E. What Do Meta-Analyses Have to Say About the Efficacy of Neurofeedback Applied to Children with ADHD? Review of Previous Meta-Analyses and a New Meta-Analysis. J. Atten. Disord. 2019. [Google Scholar] [CrossRef] [PubMed]
- Razoki, B. Neurofeedback versus psychostimulants in the treatment of children and adolescents with attention-deficit/hyperactivity disorder: A systematic review. Neuropsychiatr. Dis. Treat. 2018, 14, 2905–2913. [Google Scholar] [CrossRef] [Green Version]
- Mohagheghi, A.; Amiri, S.; Moghaddasi Bonab, N.; Chalabianloo, G.; Noorazar, S.G.; Tabatabaei, S.M.; Farhang, S. A Randomized Trial of Comparing the Efficacy of Two Neurofeedback Protocols for Treatment of Clinical and Cognitive Symptoms of ADHD: Theta Suppression/Beta Enhancement and Theta Suppression/Alpha Enhancement. Biomed. Res. Int. 2017, 2017, 3513281. [Google Scholar] [CrossRef] [Green Version]
- Dobrakowski, P.; Lebecka, G. Individualized Neurofeedback Training May Help Achieve Long-Term Improvement of Working Memory in Children With ADHD. Clin. EEG Neurosci. 2020, 51, 94–101. [Google Scholar] [CrossRef]
- Schonenberg, M.; Wiedemann, E.; Schneidt, A.; Scheeff, J.; Logemann, A.; Keune, P.M.; Hautzinger, M. Neurofeedback, sham neurofeedback, and cognitive-behavioural group therapy in adults with attention-deficit hyperactivity disorder: A triple-blind, randomised, controlled trial. Lancet Psychiatry 2017, 4, 673–684. [Google Scholar] [CrossRef]
- Neurofeedback Collaborative, G. Double-Blind Placebo-Controlled Randomized Clinical Trial of Neurofeedback for Attention-Deficit/Hyperactivity Disorder With 13-Month Follow-up. J. Am. Acad. Child. Adolesc. Psychiatry 2020. [Google Scholar] [CrossRef]
- Janssen, T.W.P.; Gelade, K.; Bink, M.; van Mourik, R.; Twisk, J.W.R.; Maras, A.; Oosterlaan, J. Long-term effects of theta/beta neurofeedback on EEG power spectra in children with attention deficit hyperactivity disorder. Clin. Neurophysiol. 2020, 131, 1332–1341. [Google Scholar] [CrossRef] [PubMed]
- Pakdaman, F.; Irani, F.; Tajikzadeh, F.; Jabalkandi, S.A. The efficacy of Ritalin in ADHD children under neurofeedback training. Neurol. Sci. 2018, 39, 2071–2078. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Garcia, I.; Meneres-Sancho, S.; Camacho-Vara de Rey, C.; Servera, M. A Randomized Controlled Trial to Examine the Posttreatment Efficacy of Neurofeedback, Behavior Therapy, and Pharmacology on ADHD Measures. J. Atten. Disord. 2019, 23, 374–383. [Google Scholar] [CrossRef] [PubMed]
- Gelade, K.; Bink, M.; Janssen, T.W.; van Mourik, R.; Maras, A.; Oosterlaan, J. An RCT into the effects of neurofeedback on neurocognitive functioning compared to stimulant medication and physical activity in children with ADHD. Eur. Child. Adolesc. Psychiatry 2017, 26, 457–468. [Google Scholar] [CrossRef] [Green Version]
- Rosi, E.; Grazioli, S.; Villa, F.M.; Mauri, M.; Gazzola, E.; Pozzi, M.; Molteni, M.; Nobile, M. Use of Non-Pharmacological Supplementations in Children and Adolescents with Attention Deficit/Hyperactivity Disorder: A Critical Review. Nutrients 2020, 12, 1573. [Google Scholar] [CrossRef]
- Noorazar, S.G.; Malek, A.; Aghaei, S.M.; Yasamineh, N.; Kalejahi, P. The efficacy of zinc augmentation in children with attention deficit hyperactivity disorder under treatment with methylphenidate: A randomized controlled trial. Asian J. Psychiatr. 2020, 48, 101868. [Google Scholar] [CrossRef]
- Aldemir, R.; Demirci, E.; Bayram, A.K.; Canpolat, M.; Ozmen, S.; Per, H.; Tokmakci, M. Evaluation of Two Types of Drug Treatment with QEEG in Children with ADHD. Transl. Neurosci. 2018, 9, 106–116. [Google Scholar] [CrossRef]
- Surmeli, T.; Ertem, A.; Eralp, E.; Kos, I.H. Schizophrenia and the efficacy of qEEG-guided neurofeedback treatment: A clinical case series. Clin. EEG Neurosci. 2012, 43, 133–144. [Google Scholar] [CrossRef]
- Surmeli, T.; Ertem, A. Obsessive compulsive disorder and the efficacy of qEEG-guided neurofeedback treatment: A case series. Clin. EEG Neurosci. 2011, 42, 195–201. [Google Scholar] [CrossRef]
- Walker, J.E. QEEG-guided neurofeedback for recurrent migraine headaches. Clin. EEG Neurosci. 2011, 42, 59–61. [Google Scholar] [CrossRef]
- Surmeli, T.; Eralp, E.; Mustafazade, I.; Kos, H.; Ozer, G.E.; Surmeli, O.H. Quantitative EEG Neurometric Analysis-Guided Neurofeedback Treatment in Dementia: 20 Cases. How Neurometric Analysis Is Important for the Treatment of Dementia and as a Biomarker? Clin. EEG Neurosci. 2016, 47, 118–133. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, T.; Herrera, W.; Harmony, T.; Diaz-Comas, L.; Santiago, E.; Sanchez, L.; Bosch, J.; Fernandez-Bouzas, A.; Otero, G.; Ricardo-Garcell, J.; et al. EEG and behavioral changes following neurofeedback treatment in learning disabled children. Clin. Electroencephalogr. 2003, 34, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Becerra, J.; Fernandez, T.; Harmony, T.; Caballero, M.I.; Garcia, F.; Fernandez-Bouzas, A.; Santiago-Rodriguez, E.; Prado-Alcala, R.A. Follow-up study of learning-disabled children treated with neurofeedback or placebo. Clin. EEG Neurosci. 2006, 37, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Arns, M.; Drinkenburg, W.; Leon Kenemans, J. The effects of QEEG-informed neurofeedback in ADHD: An open-label pilot study. Appl. Psychophysiol. Biofeedback 2012, 37, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Krepel, N.; Egtberts, T.; Sack, A.T.; Heinrich, H.; Ryan, M.; Arns, M. A multicenter effectiveness trial of QEEG-informed neurofeedback in ADHD: Replication and treatment prediction. Neuroimage Clin. 2020, 28, 102399. [Google Scholar] [CrossRef]
- Ligezka, A.N.; Sonmez, A.I.; Corral-Frias, M.P.; Golebiowski, R.; Lynch, B.; Croarkin, P.E.; Romanowicz, M. A systematic review of microbiome changes and impact of probiotic supplementation in children and adolescents with neuropsychiatric disorders. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020. [Google Scholar] [CrossRef]
- Boonchooduang, N.; Louthrenoo, O.; Chattipakorn, N.; Chattipakorn, S.C. Possible links between gut-microbiota and attention-deficit/hyperactivity disorders in children and adolescents. Eur. J. Nutr. 2020, 59, 3391–3403. [Google Scholar] [CrossRef] [PubMed]
- Hiergeist, A.; Gessner, J.; Gessner, A. Current Limitations for the Assessment of the Role of the Gut Microbiome for Attention Deficit Hyperactivity Disorder (ADHD). Front. Psychiatry 2020, 11, 623. [Google Scholar] [CrossRef] [PubMed]
- Mathee, K.; Cickovski, T.; Deoraj, A.; Stollstorff, M.; Narasimhan, G. The gut microbiome and neuropsychiatric disorders: Implications for attention deficit hyperactivity disorder (ADHD). J. Med. Microbiol. 2020, 69, 14–24. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Núñez-Jaramillo, L.; Herrera-Solís, A.; Herrera-Morales, W.V. ADHD: Reviewing the Causes and Evaluating Solutions. J. Pers. Med. 2021, 11, 166. https://doi.org/10.3390/jpm11030166
Núñez-Jaramillo L, Herrera-Solís A, Herrera-Morales WV. ADHD: Reviewing the Causes and Evaluating Solutions. Journal of Personalized Medicine. 2021; 11(3):166. https://doi.org/10.3390/jpm11030166
Chicago/Turabian StyleNúñez-Jaramillo, Luis, Andrea Herrera-Solís, and Wendy Verónica Herrera-Morales. 2021. "ADHD: Reviewing the Causes and Evaluating Solutions" Journal of Personalized Medicine 11, no. 3: 166. https://doi.org/10.3390/jpm11030166
APA StyleNúñez-Jaramillo, L., Herrera-Solís, A., & Herrera-Morales, W. V. (2021). ADHD: Reviewing the Causes and Evaluating Solutions. Journal of Personalized Medicine, 11(3), 166. https://doi.org/10.3390/jpm11030166