Long-Term Results of a Standard Algorithm for Intravenous Port Implantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Population
2.2. Standard Algorithm for Port Implantation
2.3. Surgical Method
2.4. Follow-Up and Postoperative Surveillance
2.5. Statistics
3. Results
3.1. Sex Differences
3.2. Procedure and Late Complications
3.3. Evolution of Operation Method and Operative Time
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Seo, T.-S.; Song, M.G.; Kang, E.-Y.; Lee, C.H.; Yong, H.S.; Doo, K. A Single-Incision Technique for Placement of Implantable Venous Access Ports via the Axillary Vein. J. Vasc. Interv. Radiol. 2014, 25, 1439–1446. [Google Scholar] [CrossRef]
- Iorio, O.; Gazzanelli, S.; D’Ermo, G.; Pezzolla, A.; Gurrado, A.; Testini, M.; De Toma, G.; Cavallaro, G. A Prospective, Comparative Evaluation on Totally Implantable Venous Access Devices by External Jugular Vein versus Cephalic Vein Cutdown. Am. Surg. 2018, 84, 841–843. [Google Scholar] [CrossRef] [PubMed]
- Plumhans, C.; Mahnken, A.H.; Ocklenburg, C.; Keil, S.; Behrendt, F.F.; Günther, R.W.; Schoth, F. Jugular versus subclavian totally implantable access ports: Catheter position, complications and intrainterventional pain perception. Eur. J. Radiol. 2011, 79, 338–342. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Fu, J.-Y.; Feng, P.-H.; Kao, T.-C.; Yu, S.-Y.; Li, H.-J.; Ko, P.-J.; Hsieh, H.-C. Catheter Fracture of Intravenous Ports and its Management. World J. Surg. 2011, 35, 2403–2410. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-Y.; Fu, J.-Y.; Feng, P.-H.; Liu, Y.-H.; Kao, T.-C.; Yu, S.-Y.; Ko, P.-J.; Hsieh, H.-C. Risk Factors and Possible Mechanisms of Intravenous Port Catheter Migration. Eur. J. Vasc. Endovasc. Surg. 2012, 44, 82–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.-Y.; Hu, H.C.; Ko, P.J.; Fu, J.Y.; Wu, C.F.; Liu, Y.H.; Li, H.J.; Kao, T.-C.; Yu, S.-Y.; Chang, C.J.; et al. Risk factors and possible mechanisms of superior vena cava intravenous port malfunction. Ann. Surg. 2012, 255, 971–975. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-F.; Ko, P.-J.; Liu, Y.-H.; Kao, T.-C.; Yu, S.-Y.; Li, H.-J.; Hsieh, H.-C. A single-center study of vascular access sites for intravenous ports. Surg. Today 2014, 44, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Su, T.W.; Wu, C.F.; Fu, J.Y.; Ko, P.J.; Yu, S.Y.; Kao, T.C.; Hiseih, H.-C.; Wu, C.Y. Deltoid branch of thoracoacromial vein: A safe alternative entry vessel for intravenous port implan-tation. Medicine 2015, 94, e728. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Seo, T.-S.; Song, M.G.; Seol, H.-Y.; Suh, S.I.; Ryoo, I.-S. Clinical outcomes of totally implantable venous access port placement via the axillary vein in patients with head and neck malignancy. J. Vasc. Access 2018, 20, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Song, M.G.; Seo, T.S.; Kim, Y.H.; Cho, S.B.; Chung, H.H.; Lee, S.H.; Jung, E. Effect of catheter diameter on left innominate vein in breast cancer patients after totally im-plantable venous access port placement. J. Vasc. Access 2018, 19, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Bai, X.; Shen, J.; Yu, Z.; Zhuang, Z.; Jin, Y. Comparison between ultrasound-guided TIVAD via the right innominate vein and the right inter-nal jugular vein approach. BMC Surg. 2019, 19, 189. [Google Scholar] [CrossRef] [Green Version]
- Ku, Y.-H.; Kuo, P.-H.; Tsai, Y.-F.; Huang, W.-T.; Lin, M.-H.; Tsao, C.-J. Port-A-Cath Implantation Using Percutaneous Puncture Without Guidance. Ann. Surg. Oncol. 2008, 16, 729–734. [Google Scholar] [CrossRef]
- Yanık, F.; Karamustafaoğlu, Y.A.; Karataş, A.; Yörük, Y. Experience in totally implantable venous port catheter: Analysis of 3000 patients in 12 years. Turk. J. Thorac. Cardiovasc. Surg. 2018, 26, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Velioğlu, Y.; Yüksel, A.; Sınmaz, E. Complications and management strategies of totally implantable venous access port inser-tion through percutaneous subclavian vein. Turk. J. Thorac. Cardiovasc. Surg. 2019, 27, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Di Carlo, I.; Pulvirenti, E.; Mannino, M.; Toro, A. Increased use of percutaneous technique for totally implantable venous access de-vices. Is it real progress? A 27-year comprehensive review on early complications. Ann Surg Oncol. 2010, 17, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.C.; Wu, C.Y.; Wu, C.F.; Fu, J.Y.; Su, T.W.; Yu, S.Y.; Ko, P.J. The Treatment Results of a Standard Algorithm for Choosing the Best Entry Vessel for Intrave-nous Port Implantation. Medicine 2015, 94, e1381. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, Y.B.; Lee, M.K.; Kim, J.I.; Lee, J.Y.; Lee, S.Y.; Lee, E.-J.; Lee, Y.S. Catastrophic hemothorax on the contralateral side of the insertion of an implantable subcla-vian venous access device and the ipsilateral side of the removal of the infected port-A case report. Korean J. Anesthesiol. 2010, 59, 214–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarach, J.; Zschokke, I.; Melcher, G.A. A Life-Threatening Mediastinal Hematoma after Central Venous Port System Implanta-tion. Am. J. Case Rep. 2015, 16, 904–907. [Google Scholar] [CrossRef] [PubMed]
- Aitken, D.R.; Minton, J.P. The “pinch-off sign”: A warning of impending problems with permanent subclavian catheters. Am. J. Surg. 1984, 148, 633–636. [Google Scholar] [CrossRef]
- Wu, C.Y.; Fu, J.Y.; Wu, C.F. SVC port catheter tip confirmation: Quantified formula for intravascular catheter length versus anatomic landmark reference. Ann. Vasc Surg. 2019, 60, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-Y.; Fu, J.-Y.; Ko, P.-J.; Liu, Y.-H.; Kao, T.-C.; Yu, S.-Y. Dose Intraoperative Fluoroscopy Precisely Predict Catheter Tip Location via Superior Vena Cava Route? Medicine 2015, 94, e2199. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, S.; Otsubo, R.; Adachi, M.; Doi, R.; Shibata, K.; Sano, I.; Shibata, Y.; Nakazaki, T.; Taniguchi, H.; Nagayasu, T. Cephalic Vein Cut-down for Totally Implantable Central Venous Access Devices With Preoperative Ultrasonography by Surgical Residents. Vivo 2019, 33, 2079–2085. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Sousa, B.; Furlanetto, J.; Hutka, M.; Gouveia, P.; Wuerstlein, R.; Mariz, J.M.; Pinto, D.; Cardoso, F.L. Central venous access in oncology: ESMO Clinical Practice Guidelines. Ann. Oncol. 2015, 26, v152–v168. [Google Scholar] [CrossRef] [PubMed]
- Povoski, S.P. A prospective analysis of the cephalic vein cutdown approach for chronic indwelling central venous access in 100 consecutive cancer patients. Ann. Surg. Oncol. 2000, 7, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Fu, J.; Cheng, C.; Liu, Y.; Ko, P.; Liu, Y.; Chu, Y. Initial experiences with a new design for a preattached intravenous port device. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2018, 106, 1017–1027. [Google Scholar] [CrossRef]
- Fu, J.Y.; Wu, C.F.; Ko, P.J.; Wu, C.Y.; Kao, T.C.; Yu, S.Y.; Liu, Y.-H.; Hsieh, H.-C. Analysis of chest X-ray plain film images of intravenous ports inserted via the superior vena cava. Surg. Today 2014, 44, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.Y.; Cheng, C.H.; Fu, J.Y.; Chu, Y.; Wu, C.F.; Chiu, C.H.; Ko, P.-J.; Liu, Y.-H. Recommended irrigation volume for an intravenous port: Ex vivo simulation study. PLoS ONE 2018, 13, e0201785. [Google Scholar] [CrossRef] [Green Version]
- Chou, P.-L.; Fu, J.-Y.; Cheng, C.-H.; Chu, Y.; Wu, C.-F.; Ko, P.-J.; Liu, Y.-H. Current port maintenance strategies are insufficient: View based on actual presentations of implanted ports. Medicine 2019, 98, e17757. [Google Scholar] [CrossRef] [PubMed]
- Spencer, T.R.; Mahoney, K.J. Reducing catheter-related thrombosis using a risk reduction tool centered on catheter to vessel ratio. J. Thromb. Thrombolysis 2017, 44, 427–434. [Google Scholar] [CrossRef]
Variables | n (%) or Mean ± SD | p Value | |
---|---|---|---|
Male | Female | ||
Age | 59.6 ± 12.8 | 57.3 ± 12.8 | <0.0001 |
Body height | 165.8 ± 7.2 | 154.9 ± 6.9 | <0.0001 |
Body weight | 64.4 ± 11.8 | 55.8 ± 10.4 | <0.0001 |
Body mass index | 23.4 ± 3.8 | 23.2 ± 4.0 | 0.2941 |
Malignancy 1 | |||
Head and neck | 264 (15.4%) | 38 (3.07%) | <0.0001 |
Thorax | 653 (38.1%) | 621 (50.20%) | <0.0001 |
Abdomen | 662 (38.6%) | 471 (38.08%) | 0.7536 |
Pelvis | 7 (0.4%) | 6 (0.49%) | 0.7572 |
Soft tissue | 9 (0.5%) | 8 (0.65%) | 0.6675 |
Hematology | 146 (8.5%) | 104 (8.41%) | 0.9114 |
Other | 15 (0.9%) | 6 (0.49%) | 0.2130 |
Side | |||
Right | 1618 (94.4%) | 1022 (82.6%) | <0.0001 |
Left | 95 (5.6%) | 215 (17.4%) | |
Entry route | |||
Superior vena cava | 1683 (98.2%) | 1222 (98.8%) | 0.2388 |
Inferior vena cava | 30 (1.8%) | 15 (1.2%) | |
Entry vessel | |||
Cephalic vein | 1467 (85.7%) | 1034 (83.6%) | |
Thoracoacromial vein | 177 (10.3%) | 149 (12.0%) | 0.0632 |
IJV 2 | 36 (2.1%) | 39 (3.2%) | |
Other 3 | 33 (1.9%) | 15 (1.2%) | |
Port type | 0.0100 | ||
B’Braun Fr. 6.5 | 528 (30.8%) | 331 (26.7%) | |
Bard X Fr.6/8 | 408 (23.8%) | 357 (28.9%) | |
Bard power Fr.6 | 544 (31.8%) | 388 (31.4%) | |
Polysite Fr.7 | 233 (13.6%) | 161 (13.0%) | |
Operation method | <0.0001 | ||
Vessel cutdown | 1085 (63.4%) | 785 (63.5%) | |
Wire assistance without puncture | 394 (23.0%) | 208 (16.8%) | |
Wire assistance with puncture | 173 (10.1%) | 180 (14.5%) | |
Wire and venogram assistance | |||
a. Without puncture | 7 (0.4%) | 6 (0.5%) | |
b. Puncture | 19 (1.1%) | 18 (1.5%) | |
Echo guide puncture | 35 (2.0%) | 40 (3.2%) | |
Operation time (Minutes) | |||
Vessel cutdown | 26.4 ± 10.7 | 28.6 ± 10.8 | <0.0001 |
Wire assistance without puncture | 29.9 ± 10.7 | 30.5 ± 10.3 | 0.4947 |
Wire assistance with puncture | 39.2 ± 14.9 | 41.5 ± 16.6 | 0.1748 |
Wire and venogram assistance | |||
a. Without puncture | 32.4 ± 11.1 | 34.2 ± 8.9 | 0.7635 |
b. Puncture | 48.9 ± 17.0 | 48.3 ± 16.4 | 0.9038 |
Echo guide puncture | 62.0 ± 12.6 | 60.2 ± 22.2 | 0.6585 |
Post-op quality | |||
Catheter-nut angle (°) | 169.7 ± 7.7 | 170.0 ± 7.2 | 0.1926 |
Tip location (cm) | 1.0 ± 1.4 | 1.4 ± 1.5 | <0.0001 |
Functional period (days) | 458.8 ± 449.3 | 658.7 ± 535.7 | <0.0001 |
Follow-up status | |||
Alive | 949 (55.4%) | 864 (69.9%) | <0.0001 |
Expired | 514 (30.0%) | 254 (20.5%) | |
Discharged Against advice | 250 (14.6%) | 119 (9.6%) |
Entry Vessel | Cephalic Vein | Thoracoacromial Vein | Internal Jugular Vein | Other | Greater Saphenous Vein | Total | |||||
Number of patients | 2242 | 259 | 296 | 30 | 61 | 14 | 48 | 0 | 38 | 7 | 2950 |
Side of Complication | Right | Left | Right | Left | Right | Left | Right | Left | Right | Left | 91 |
Procedure related | |||||||||||
Rotation | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 |
Late | |||||||||||
Infection | 29 | 3 | 4 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 38 |
Malfunction | 7 | 1 | 2 | 0 | 2 | 0 | 2 | 0 | 1 | 1 | 16 |
Migration | 16 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 20 |
Deep vein thrombosis | 10 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 15 |
Complication Rate | |||||||||||
Entry Vessel | Cephalic Vein | Thoracoacromial Vein | Internal Jugular Vein | Other | Greater Saphenous Vein | Total | |||||
Number of patients | 2242 | 259 | 296 | 30 | 61 | 14 | 3 | 0 | 38 | 7 | 2950 |
Side/Total rate | Right | Left | Right | Left | Right | Left | Right | Left | Right | Left | 3.08% |
Procedure related | |||||||||||
Rotation | 0.04% | 0 | 0 | 0 | 1.64% | 0 | 0 | 0 | 0 | 0 | 0.07% |
Late | |||||||||||
Infection | 1.29% | 1.16% | 1.35% | 0 | 1.64% | 0 | 0 | 0 | 2.63% | 0 | 1.29% |
Malfunction | 0.31% | 0.39% | 0.68% | 0 | 3.28% | 0 | 4.16% | 0 | 2.63% | 14.29% | 0.54% |
Migration | 0.71% | 0 | 1.01% | 0 | 0 | 0 | 2.08% | 0 | 0 | 0 | 0.68% |
Deep vein thrombosis | 0.45% | 1.54% | 0.34% | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.51% |
Incidence | |||||||||||
Entry Vessel | Cephalic Vein | Thoracoacromial Vein | Internal Jugular Vein | Other | Greater Saphenous Vein | Total | |||||
Sum of catheter days | 1,188,218 | 180,844 | 145,804 | 23,159 | 38,196 | 8788 | 4945 | 0 | 8612 | 2142 | 1,600,708 |
Side/Total incidence | Right | Left | Right | Left | Right | Left | Right | Left | Right | Left | 0.057 |
Procedure related | |||||||||||
Rotation | 0.001 | 0 | 0 | 0 | 0.026 | 0 | 0 | 0 | 0 | 0 | 0.001 |
Late | |||||||||||
Infection | 0.024 | 0.017 | 0.027 | 0 | 0.026 | 0 | 0 | 0 | 0.116 | 0 | 0.024 |
Malfunction | 0.006 | 0.006 | 0.014 | 0 | 0.052 | 0 | 0.404 | 0 | 0.116 | 0.467 | 0.010 |
Migration | 0.013 | 0 | 0.021 | 0 | 0 | 0 | 0.202 | 0 | 0 | 0 | 0.012 |
Deep vein thrombosis | 0.008 | 0.022 | 0.007 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.009 |
Year | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | p Value a | |
Case Number | |||||||||
Vessel cutdown | 211 (65.7%) | 313 (59.5%) | 304 (61.3%) | 277 (60.8%) | 283 (66.4%) | 257 (60.9%) | 225 (74.3%) | 0.0146 | |
Wire assistance without puncture | 57 (17.8%) | 143 (27.2%) | 113 (22.8%) | 90 (19.7%) | 73 (17.1%) | 80 (19.0%) | 46 (15.2%) | 0.0014 | |
Wire assistance with puncture | 38 (11.8%) | 52 (9.9%) | 64 (12.9%) | 78 (17.1%) | 50 (11.7%) | 52 (12.3%) | 19 (6.3%) | 0.3424 | |
Wire and venogram assistance | |||||||||
a. Without puncture | 0 (0.00%) | 0 (0.00%) | 1 (0.2%) | 0 (0.0%) | 3 (0.7%) | 8 (1.9%) | 1 (0.3%) | - | |
b. Puncture | 0 (0.00%) | 0 (0.00%) | 1 (0.2%) | 3 (0.7%) | 9 (2.1%) | 15 (3.5%) | 9 (3.0%) | - | |
Echo guide puncture | 15 (4.7%) | 18 (3.4%) | 13 (2.6%) | 8 (1.7%) | 8 (1.9%) | 10 (2.4%) | 3 (1.0%) | 0.0027 | |
Year | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | p Value b | |
Operation Time | |||||||||
Vessel cutdown | 34.2 ± 10.5 | 28.9 ± 8.8 | 29.7 ± 10.2 | 28.5 ± 11.7 | 27.8 ± 10.3 | 22.8 ± 9.6 | 18.5 ± 7.5 | <0.0001 | |
Wire assistance without puncture | 38.8 ± 9.5 | 33.0 ± 9.3 | 31.7 ± 10.2 | 29.9 ± 11.2 | 29.0 ± 7.6 | 23.5 ± 9.4 | 20.4 ± 6.1 | <0.0001 | |
Wire assistance with puncture | 48.1 ± 11.2 | 45.1 ± 12.9 | 41.5 ± 15.4 | 38.8 ± 15.4 | 40.6 ± 16.2 | 36.1 ± 19.1 | 25.2 ± 7.0 | <0.0001 | |
Wire and venogram assistance | |||||||||
a. Without puncture | - | - | 43.0 * | - | 27.7 ± 11.0 | 33.9 ± 10.0 | 35.0 * | - | |
b. Puncture | - | - | 58.0 * | 70.7 ± 21.8 | 50.8 ± 15.1 | 45.9 ± 15.2 | 42.7 ± 14.9 | - | |
Echo guide puncture | 59.3 ± 23.0 | 61.0 ± 21.4 | 60.1 ± 7.6 | 67.7 ± 16.2 | 67.1 ± 22.6 | 53.3 ± 11.3 | 64.7 ± 20.1 | 0.9509 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-F.; Fu, J.-Y.; Wen, C.-T.; Chiu, C.-H.; Hsieh, M.-J.; Liu, Y.-H.; Liu, H.-P.; Wu, C.-Y. Long-Term Results of a Standard Algorithm for Intravenous Port Implantation. J. Pers. Med. 2021, 11, 344. https://doi.org/10.3390/jpm11050344
Wu C-F, Fu J-Y, Wen C-T, Chiu C-H, Hsieh M-J, Liu Y-H, Liu H-P, Wu C-Y. Long-Term Results of a Standard Algorithm for Intravenous Port Implantation. Journal of Personalized Medicine. 2021; 11(5):344. https://doi.org/10.3390/jpm11050344
Chicago/Turabian StyleWu, Ching-Feng, Jui-Ying Fu, Chi-Tsung Wen, Chien-Hung Chiu, Ming-Ju Hsieh, Yun-Hen Liu, Hui-Ping Liu, and Ching-Yang Wu. 2021. "Long-Term Results of a Standard Algorithm for Intravenous Port Implantation" Journal of Personalized Medicine 11, no. 5: 344. https://doi.org/10.3390/jpm11050344
APA StyleWu, C. -F., Fu, J. -Y., Wen, C. -T., Chiu, C. -H., Hsieh, M. -J., Liu, Y. -H., Liu, H. -P., & Wu, C. -Y. (2021). Long-Term Results of a Standard Algorithm for Intravenous Port Implantation. Journal of Personalized Medicine, 11(5), 344. https://doi.org/10.3390/jpm11050344