Cerebral Vasoreactivity Evaluated by Transcranial Color Doppler and Breath-Holding Test in Patients after SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Study
2.2. Methods
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics and Measured Variables
3.2. Disease Symptoms in a Group of Subjects after SARS-CoV-2 Infection
3.3. Comparison of Flow Velocities through Middle Cerebral Artery at Rest and after Breath-holding Test between Test Groups
3.4. Comparison of Velocities in Middle Cerebral Artery at Rest between Group of Subjects after SARS-CoV-2 Infection and Control Group
3.5. Comparison of Flow Velocities through Middle Cerebral Artery after a Breath-Holding Test between Group of Subjects after SARS-CoV-2 Infection and a Control Group
3.6. Comparison of Changes in Flow Velocities through Middle Cerebral Artery after Breath-Holding Test and Rest Period between Two Examined Groups and Breath Holding Index (BHI)
Mann–Whitney U Test
3.7. Correlation of Flow Velocities through Middle Cerebral Artery with Age of the Subjects in Each Group
3.8. Correlation of Changes in Flow Velocities Parameters through Middle Cerebral Artery in Relation to Time from Onset of Symptoms
3.9. Correlation of Flow Velocities through Middle Cerebral Artery with Gender of the Subjects after SARS-CoV-2 Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Desforges, M.; Le Coupanec, A.; Dubeau, P.; Bourgouin, A.; Lajoie, L.; Dubé, M.; Talbot, P.J. Human Coronaviruses and Other Respiratory Viruses: Underestimated Opportunistic Pathogens of the Central Nervous System? Viruses 2019, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, G.S.; Khanal, S.; Sharma, S.; Nepal, G. COVID-19: Current Understanding of Pathophysiology. J. Nepal Health Res. Counc. 2020, 18, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Yuki, K.; Fujiogi, M.; Koutsogiannaki, S. COVID-19 pathophysiology: A review. Clin. Immunol. 2020, 215, 108427. [Google Scholar] [CrossRef] [PubMed]
- Helms, J.; Kremer, S.; Merdji, H.; Clere-Jehl, R.; Schenck, M.; Kummerlen, C.; Collange, O.; Boulay, C.; Fafi-Kremer, S.; Ohana, M.; et al. Neurologic Features in Severe SARS-CoV-2 Infection. N. Engl. J. Med. 2020, 382, 2268–2270. [Google Scholar] [CrossRef]
- Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA Neurol. 2020, 77, 683. [Google Scholar] [CrossRef] [Green Version]
- Iadecola, C.; Anrather, J.; Kamel, H. Effects of COVID-19 on the Nervous System. Cell 2020, 183, 16–27.e1. [Google Scholar] [CrossRef]
- Baig, A.M.; Khaleeq, A.; Ali, U.; Syeda, H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host–Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem. Neurosci. 2020, 11, 995–998. [Google Scholar] [CrossRef] [Green Version]
- Paterson, R.W.; Brown, R.L.; Benjamin, L.; Nortley, R.; Wiethoff, S.; Bharucha, T.; Jayaseelan, D.L.; Kumar, G.; Raftopoulos, R.; Zambreanu, L.; et al. The emerging spectrum of COVID-19 neurology: Clinical, radiological and laboratory findings. Brain 2020, 143, 3104–3120. [Google Scholar] [CrossRef]
- Mohkhedkar, M.; Venigalla, S.S.K.; Janakiraman, V. Autoantigens That May Explain Postinfection Autoimmune Manifestations in Patients With Coronavirus Disease 2019 Displaying Neurological Conditions. J. Infect. Dis. 2021, 223, 536–537. [Google Scholar] [CrossRef]
- Levi, M.; Thachil, J.; Iba, T.; Levy, J.H. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020, 7, e438–e440. [Google Scholar] [CrossRef]
- Iba, T.; Connors, J.M.; Levy, J.H. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm. Res. 2020, 69, 1181–1189. [Google Scholar] [CrossRef]
- Hernández-Fernández, F.; Valencia, H.S.; Barbella-Aponte, R.A.; Collado-Jiménez, R.; Ayo-Martín, Ó.; Barrena, C.; Molina-Nuevo, J.D.; García-García, J.; Lozano-Setién, E.; Alcahut-Rodriguez, C.; et al. Cerebrovascular disease in patients with COVID-19: Neuroimaging, histological and clinical description. Brain 2020, 143. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Wang, E.Y.; Mao, T.; Klein, J.; Dai, Y.; Huck, J.D.; Liu, F.; Zheng, N.S.; Zhou, T.; Israelow, B.; Wong, P.; et al. Diverse Functional Autoantibodies in Patients with COVID-19. medRxiv 2020. [Google Scholar] [CrossRef]
- Garkowski, A.; Zajkowska, J.; Moniuszko, A.; Czupryna, P.; Pancewicz, S. Infectious causes of stroke. Lancet Infect. Dis. 2015, 15, 632. [Google Scholar] [CrossRef]
- Staszewski, J.; Skrobowska, E.; Piusińska-Macoch, R.; Brodacki, B.; Stępień, A. Cerebral and Extracerebral Vasoreactivity in Patients with Different Clinical Manifestations of Cerebral Small-Vessel Disease: Data from the Significance of Hemodynamic and Hemostatic Factors in the Course of Different Manifestations of Cerebral Small-Vessel Disease Study. J. Ultrasound Med. 2019, 38, 975–987. [Google Scholar] [CrossRef]
- Zavoreo, I.; Demarin, V. Breath holding index in the evaluation of cerebral vasoreactivity. Acta Clin. Croat. 2004, 43, 15–20. [Google Scholar]
- Sam, K.; Peltenburg, B.; Conklin, J.; Sobczyk, O.; Poublanc, J.; Crawley, A.P.; Mandell, D.M.; Venkatraghavan, L.; Duffin, J.; Fisher, J.A.; et al. Cerebrovascular reactivity and white matter integrity. Neurology 2016, 87, 2333–2339. [Google Scholar] [CrossRef] [Green Version]
- Markus, H.S.; Harrison, M.J. Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breath-holding as the vasodilatory stimulus. Stroke 1992, 23, 668–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavi, S.; Gaitini, D.; Milloul, V.; Jacob, G. Impaired cerebral CO2 vasoreactivity: Association with endothelial dysfunction. Am. J. Physiol. Circ. Physiol. 2006, 291, H1856–H1861. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Clinical Management of COVID-19. Available online: https://www.who.int/publications/i/item/clinical-management-of-covid-19 (accessed on 22 June 2020).
- Romero-Sánchez, C.M.; Díaz-Maroto, I.; Fernández-Díaz, E.; Sánchez-Larsen, Á.; Layos-Romero, A.; García-García, J.; González, E.; Redondo-Peñas, I.; Perona-Moratalla, A.B.; Del Valle-Pérez, J.A.; et al. Neurologic manifestations in hospitalized patients with COVID-19: The ALBACOVID registry. Neurology 2020, 95, e1060–e1070. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Laurent, S.; Onur, O.A.; Kleineberg, N.N.; Fink, G.R.; Schweitzer, F.; Warnke, C. A systematic review of neurological symptoms and complications of COVID-19. J. Neurol. 2021, 268, 392–402. [Google Scholar] [CrossRef] [PubMed]
- Birns, J.; Jarosz, J.; Markus, H.S.; Kalra, L. Cerebrovascular reactivity and dynamic autoregulation in ischaemic subcortical white matter disease. J. Neurol. Neurosurg. Psychiatry 2009, 80, 1093–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaslid, R.; Markwalder, T.-M.; Nornes, H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J. Neurosurg. 1982, 57, 769–774. [Google Scholar] [CrossRef]
- Widder, B. Cerebral vasoreactivity. In Cerebrovascular Ultrasound: Theory, Practice and Future Developments; Hennerici, M., Meairs, S., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 324–334. [Google Scholar]
- Settakis, G.; Lengyel, A.; Molnar, C.; Bereczki, D.; Csiba, L.; Fulesdi, B. Transcranial Doppler study of the cerebral hemodynamic changes during breath-holding and hyperventilation tests. J. Neuroimaging 2002, 12, 252–258. [Google Scholar] [CrossRef]
- Xia, H.; Lazartigues, E. Angiotensin-converting enzyme 2 in the brain: Properties and future directions. J. Neurochem. 2008, 107, 1482–1494. [Google Scholar] [CrossRef] [Green Version]
- Al-Ramadan, A.; Rabab’H, O.; Shah, J.; Gharaibeh, A. Acute and Post-Acute Neurological Complications of COVID-19. Neurol. Int. 2021, 13, 102–119. [Google Scholar] [CrossRef] [PubMed]
- Ivelja, M.P.; Ivic, I.; Dolic, K.; Mestrovic, A.; Perkovic, N.; Jankovic, S. Evaluation of cerebrovascular reactivity in chronic hepatitis C patients using transcranial color Doppler. PLoS ONE 2019, 14, e0218206. [Google Scholar] [CrossRef]
- Chow, F.C.; Boscardin, W.J.; Mills, C.; Ko, N.; Carroll, C.; Price, R.W.; Deeks, S.; Sorond, F.A.; Hsue, P.Y. Cerebral vasoreactivity is impaired in treated, virally suppressed HIV-infected individuals. AIDS 2016, 30, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Martinić-Popović, I.; Simundic, A.-M.; Dukic, L.; Lovrencic-Huzjan, A.; Popovic, A.; Šerić, V.; Basic-Kes, V.; Demarin, V. The association of inflammatory markers with cerebral vasoreactivity and carotid atherosclerosis in transient ischaemic attack. Clin. Biochem. 2014, 47, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Silvestrini, M.; Vernieri, F.; Pasqualetti, P.; Matteis, M.; Passarelli, F.; Troisi, E.; Caltagirone, C. Impaired Cerebral Vasoreactivity and Risk of Stroke in Patients With Asymptomatic Carotid Artery Stenosis. JAMA 2000, 283, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, A.; Conte, M.; Cavallaro, M.; Scarafile, R.; Riegler, L.; Cocchia, R.; Pezzullo, E.; Carbone, A.; Natale, F.; Santoro, G.; et al. Transcranial Doppler ultrasonography: From methodology to major clinical applications. World J. Cardiol. 2016, 8, 383–400. [Google Scholar] [CrossRef]
- Pindzola, R.R.; Balzer, J.R.; Nemoto, E.M.; Goldstein, S.; Yonas, H. Cerebrovascular reserve in patients with carotid occlusive disease assessed by stable xenon-enhanced ct cerebral blood flow and transcranial Doppler. Stroke 2001, 32, 1811–1817. [Google Scholar] [CrossRef] [Green Version]
- Schramm, P.; Klein, K.U.; Falkenberg, L.; Berres, M.; Closhen, D.; Werhahn, K.J.; David, M.; Werner, C.; Engelhard, K. Impaired cerebrovascular autoregulation in patients with severe sepsis and sepsis-associated delirium. Crit. Care 2012, 16, R181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, P.; Azevedo, E.; Sorond, F. Cerebral Autoregulation in Stroke. Curr. Atheroscler. Rep. 2018, 20, 37. [Google Scholar] [CrossRef]
- Diehl, R.R. Cerebral autoregulation studies in clinical practice. Eur. J. Ultrasound 2002, 16, 31–36. [Google Scholar] [CrossRef]
- Xiong, L.; Liu, X.; Shang, T.; Smielewski, P.; Donnelly, J.; Guo, Z.-N.; Yang, Y.; Leung, T.; Czosnyka, M.; Zhang, R.; et al. Impaired cerebral autoregulation: Measurement and application to stroke. J. Neurol. Neurosurg. Psychiatry 2017, 88, 520–531. [Google Scholar] [CrossRef]
- Li, Y.; Wang, M.; Zhou, Y.; Chang, J.; Xian, Y.; Mao, L.; Hong, C.; Chen, S.; Wang, Y.; Wang, H.; et al. Acute Cerebrovascular Disease Following COVID-19: A Single Center, Retrospective, Observational Study. Stroke Vasc. Neurol. 2020, 5, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Chazen, J.L.; Hartman, M.; Delgado, D.; Anumula, N.; Shao, H.; Mazumdar, M.; Segal, A.Z.; Kamel, H.; Leifer, D.; et al. Cerebrovascular reserve and stroke risk in patients with carotid stenosis or occlusion: A systematic review and meta-analysis. Stroke 2012, 43, 2884–2891. [Google Scholar] [CrossRef]
- Urbanova, B.S.; Schwabova, J.P.; Magerova, H.; Jansky, P.; Markova, H.; Vyhnalek, M.; Laczo, J.; Hort, J.; Tomek, A. Reduced Cerebrovascular Reserve Capacity as a Biomarker of Microangiopathy in Alzheimer’s Disease and Mild Cognitive Impairment. J. Alzheimer’s Dis. 2018, 63, 465–477. [Google Scholar] [CrossRef]
- Shim, Y.; Yoon, B.; Shim, D.S.; Kim, W.; An, J.-Y.; Yang, D.-W. Cognitive Correlates of Cerebral Vasoreactivity on Transcranial Doppler in Older Adults. J. Stroke Cerebrovasc. Dis. 2015, 24, 1262–1269. [Google Scholar] [CrossRef]
- Espino-Ojeda, A.; Martínez-Rodríguez, H.; Escamilla-Garza, J.; Canfield-Medina, H.; Saldívar-Dávila, S.; Góngora-Rivera, F. Cerebral vasoreactivity in Parkinson’s disease. J. Neurol. Sci. 2015, 357 (Suppl. 1), e264. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
Age from 30 to 65 years | Age under 30 and over 65 years |
Mild form of respiratory SARS-CoV-2 disease | Severe or critical form of SARS-CoV-2 pulmonary infection |
Non-specific neurological symptoms such as smell and taste dysfunction, vertigo, headache, dizziness or fatigue | Disturbance in consciousness, acute cerebrovascular disease (ischemic stroke, cerebral hemorrhage, subarachnoid hemorrhage), acute encephalopathy, encephalitis or meningitis, polyneuropathy, demyelinating spectrum of disease and seizures. |
SARS-CoV infection from 30 to 60 days before TCCD recording | More than 60 days from infection start and TCCD recording |
Treated exclusively with supportive therapy | Use of antibiotics, corticosteroids, oxygen for SARS-CoV-2 infection |
Diagnosis confirmed by a positive result of real-time reverse PCR test by nasal/pharyngeal swabs | History of uncontrolled hypertension, nonregulated diabetes mellitus, cerebrovascular disease, hematologic disease, atrial fibrillation, chronic heart disease or cancer |
Severe alcohol consumption (more than 10 drinks per week) | |
Stenosis of extracranial vertebrobasilar artery > 20% | |
Stenosis of extracranial carotid artery > 20%. | |
For control group negative real time reverese PCR test by nasal/pharyngeal swabs Negative serological IgM and IgG test on SARS-CoV-2 virus | Known occlusive disease of intracranial cerebral arteries |
No SARS-CoV-2 symptoms at all | Using anticoagulant drug, vasodilatory drugs, hormone replacement therapy, β-blocking agents, calcium channel blockers |
Subject Groups | ||||
---|---|---|---|---|
after SARS-CoV-2 Infection | Control Group | p | ||
gender | Male | 16 (64) | 17 (68) | 0.765 * |
Female | 9 (36) | 8 (32) | ||
diabetes | 4 (16) | 3 (12) | ||
hypertension | 3 (12) | 1 (4) | ||
hyperlipidemia | 1 (4) | 0 (0) | ||
alcohol | 1 (4) | 1 (4) | ||
smoking | 4 (16) | 3 (12) | ||
age (years) | 46.6 ± 8.5 | 45.7 ± 7.4 | 0.699 ** | |
BMI (kg/m2) | 25.6 ± 2.9 | 25 ± 2.8 | 0.477 ** | |
RR systolic (mmHg) | 126.7 ± 11.6 | 120.8 ± 13.1 | 0.099 ** | |
RR diastolic (mmHg) | 78.4 ± 9.6 | 74.6 ± 7.9 | 0.129 ** | |
Physical activity (minutes per week of moderate activity) | 179.3 ± 25 | 182 ± 15 | 0.639 ** |
Subject Groups | |||
---|---|---|---|
after SARS-CoV-2 Infection | Controls | p * | |
Subjects at rest | |||
PSV (cm/s) | 107 ± 12.7 (102–112) | 120 ± 5.5 (117–122) | <0.001 |
EDV (cm/s) | 51.9 ± 4.6 (50–54) | 56.5 ± 5.5 (54–59) | 0.002 |
MV (cm/s) | 72.1 ± 7.3 (69–75) | 81.3 ± 7.5 (78–84) | <0.001 |
RI | 0.53 ± 0.02 (0.50–0.53) | 0.55 ± 0.04 (0.53–0.57) | 0.003 |
PI | 0.77 ± 0.07 (0.74–0.79) | 0.78 ± 0.05 (0.78–0.76) | 0.396 |
Subjects after breath-holding test | |||
PSV (cm/s) | 122 ± 11.3 (117–127) | 162 ± 7.8 (158–165) | <0.001 |
EDV (cm/s) | 69.3 ± 3.5 (68–71) | 81 ± 5.5 (79–84) | <0.001 |
MV (cm/s) | 94.7 ± 8.6 (91–98) | 110.1 ± 5 (108–112) | <0.001 |
RI | 0.53 ± 0.02 (0.52–0.54) | 0.51 ± 0.01 (0.51.0.52) | <0.001 |
PI | 0.78 ± 0.08 (0.74–0.81) | 0.76 ± 0.04 (0.74–0.77) | 0.300 |
Symptoms in SARS-CoV-2 Group | ||
---|---|---|
Neurological Symptoms | SARS-CoV-2 | Control |
n | n | |
Anosmia | 14 (56) | 0 (0) |
Dysgeusia | 14 (56) | 0 (0) |
Dizziness | 10 (40) | 0 (0) |
Headache | 17 (68) | 0 (0) |
Fatigue | 18 (72) | 0 (0) |
Myalgia | 14 (56) | 0 (0) |
Symptoms of infective disease | ||
Fever | 25 (100) | 0 (0) |
Cough | 20 (80) | 0 (0) |
Sore throat | 10 (40) | 0 (0) |
Gastrointestinal symptoms | 2 (24) | 0 (0) |
Rash | 4 (8) | 0 (0) |
Dyspnea | 0 (0) | 0 (0) |
Subjects Groups | |||
---|---|---|---|
after SARS-CoV-2 Infection | Controls | p | |
Relative change of velocities parameters after breath-holding test compared to values at resting period (%) | |||
∆PSV (%) | 14 (11–19) | 34 (32–39) | <0.001 |
∆EDV (%) | 36 (30–38) | 42 (35–50) | 0.010 |
∆MV (%) | 31 (26–38) | 36 (25–41) | 0.222 |
∆RI (%) | 1.4 (−0.6 to 3.9) | −5 (−12 to −2) | <0.001 |
∆PI (%) | 2.3 (0–3.3) | −4 (−6 to 1.4) | 0.013 |
Breath holding index (BHI) | 0.426 (0.28–0.57) | 0.98 (0.81–1.12) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcic, M.; Marcic, L.; Marcic, B.; Capkun, V.; Vukojevic, K. Cerebral Vasoreactivity Evaluated by Transcranial Color Doppler and Breath-Holding Test in Patients after SARS-CoV-2 Infection. J. Pers. Med. 2021, 11, 379. https://doi.org/10.3390/jpm11050379
Marcic M, Marcic L, Marcic B, Capkun V, Vukojevic K. Cerebral Vasoreactivity Evaluated by Transcranial Color Doppler and Breath-Holding Test in Patients after SARS-CoV-2 Infection. Journal of Personalized Medicine. 2021; 11(5):379. https://doi.org/10.3390/jpm11050379
Chicago/Turabian StyleMarcic, Marino, Ljiljana Marcic, Barbara Marcic, Vesna Capkun, and Katarina Vukojevic. 2021. "Cerebral Vasoreactivity Evaluated by Transcranial Color Doppler and Breath-Holding Test in Patients after SARS-CoV-2 Infection" Journal of Personalized Medicine 11, no. 5: 379. https://doi.org/10.3390/jpm11050379
APA StyleMarcic, M., Marcic, L., Marcic, B., Capkun, V., & Vukojevic, K. (2021). Cerebral Vasoreactivity Evaluated by Transcranial Color Doppler and Breath-Holding Test in Patients after SARS-CoV-2 Infection. Journal of Personalized Medicine, 11(5), 379. https://doi.org/10.3390/jpm11050379