Association of Preoperative Prognostic Nutritional Index and Postoperative Acute Kidney Injury in Patients Who Underwent Hepatectomy for Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design & Patient Population
2.2. Anesthetic & Surgical Technique
2.3. Clinical Data Collection and Outcome Assessments
2.4. Primary and Secondary Outcomes
2.5. Statistical Analysis
3. Results
3.1. Primary Outcomes
3.2. Secondary Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peres, L.A.; Bredt, L.C.; Cipriani, R.F. Acute renal injury after partial hepatectomy. World J. Hepatol. 2016, 8, 891–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bressan, A.K.; James, M.T.; Dixon, E.; Bathe, O.F.; Sutherland, F.R.; Ball, C.G. Acute kidney injury following resection of hepatocellular carcinoma: Prognostic value of the acute kidney injury network criteria. Can. J. Surg. 2018, 61, E11–E16. [Google Scholar] [CrossRef] [PubMed]
- Slankamenac, K.; Breitenstein, S.; Held, U.; Beck-Schimmer, B.; Puhan, M.A.; Clavien, P.A. Development and validation of a prediction score for postoperative acute renal failure following liver resection. Ann. Surg. 2009, 250, 720–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobson, C.; Ozrazgat-Baslanti, T.; Kuxhausen, A.; Thottakkara, P.; Efron, P.A.; Moore, F.A.; Moldawer, L.L.; Segal, M.S.; Bihorac, A. Cost and Mortality Associated With Postoperative Acute Kidney Injury. Ann. Surg. 2015, 261, 1207–1214. [Google Scholar] [CrossRef]
- Bihorac, A.; Yavas, S.; Subbiah, S.; Hobson, C.E.; Schold, J.D.; Gabrielli, A.; Layon, A.J.; Segal, M.S. Long-term risk of mortality and acute kidney injury during hospitalization after major surgery. Ann. Surg. 2009, 249, 851–858. [Google Scholar] [CrossRef]
- Chertow, G.M.; Burdick, E.; Honour, M.; Bonventre, J.V.; Bates, D.W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 2005, 16, 3365–3370. [Google Scholar] [CrossRef] [Green Version]
- Palomba, H.; Castro, I.; Yu, L.; Burdmann, E.A. The duration of acute kidney injury after cardiac surgery increases the risk of long-term chronic kidney disease. J. Nephrol. 2017, 30, 567–572. [Google Scholar] [CrossRef]
- Lim, C.; Audureau, E.; Salloum, C.; Levesque, E.; Lahat, E.; Merle, J.C.; Compagnon, P.; Dhonneur, G.; Feray, C.; Azoulay, D. Acute kidney injury following hepatectomy for hepatocellular carcinoma: Incidence, risk factors and prognostic value. HPB 2016, 18, 540–548. [Google Scholar] [CrossRef] [Green Version]
- Saner, F. Kidney failure following liver resection. Transplant. Proc. 2008, 40, 1221–1224. [Google Scholar] [CrossRef]
- Slankamenac, K.; Beck-Schimmer, B.; Breitenstein, S.; Puhan, M.A.; Clavien, P.A. Novel prediction score including pre- and intraoperative parameters best predicts acute kidney injury after liver surgery. World J. Surg. 2013, 37, 2618–2628. [Google Scholar] [CrossRef] [Green Version]
- Tomozawa, A.; Ishikawa, S.; Shiota, N.; Cholvisudhi, P.; Makita, K. Perioperative risk factors for acute kidney injury after liver resection surgery: An historical cohort study. Can. J. Anaesth. 2015, 62, 753–761. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Xia, Y.; Li, S.; Cheng, X.; Hu, S.; Gao, Y.; Zhou, X.; Wang, G.; Zheng, Q. A retrospective pilot study to examine the potential of aspartate aminotransferase to alanine aminotransferase ratio as a predictor of postoperative acute kidney injury in patients with hepatocellular carcinoma. Ann. Clin. Biochem. 2019, 56, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, L.; Wang, G.; Cheng, X.; Hu, S.; Ke, W.; Li, M.; Zhang, Y.; Song, Z.; Zheng, Q. A new plasma biomarker enhance the clinical prediction of postoperative acute kidney injury in patients with hepatocellular carcinoma. Clin. Chim. Acta 2017, 475, 128–136. [Google Scholar] [CrossRef]
- Onodera, T.; Goseki, N.; Kosaki, G. Prognostic nutritional index in gastrointestinal surgery of malnourished cancer patients. Nihon Geka Gakkai Zasshi 1984, 85, 1001–1005. [Google Scholar]
- Cheng, Y.L.; Sung, S.H.; Cheng, H.M.; Hsu, P.F.; Guo, C.Y.; Yu, W.C.; Chen, C.H. Prognostic Nutritional Index and the Risk of Mortality in Patients With Acute Heart Failure. J. Am. Heart Assoc. 2017, 6. [Google Scholar] [CrossRef]
- Hu, Y.; Cao, Q.; Wang, H.; Yang, Y.; Xiong, Y.; Li, X.; Zhou, Q. Prognostic nutritional index predicts acute kidney injury and mortality of patients in the coronary care unit. Exp. Ther. Med. 2021, 21, 123. [Google Scholar] [CrossRef]
- Salati, M.; Filippi, R.; Vivaldi, C.; Caputo, F.; Leone, F.; Salani, F.; Cerma, K.; Aglietta, M.; Fornaro, L.; Sperti, E.; et al. The prognostic nutritional index predicts survival and response to first-line chemotherapy in advanced biliary cancer. Liver Int. 2020, 40, 704–711. [Google Scholar] [CrossRef]
- Zencirkiran Agus, H.; Kahraman, S. Prognostic nutritional index predicts one-year outcome in heart failure with preserved ejection fraction. Acta Cardiol. 2020, 75, 450–455. [Google Scholar] [CrossRef]
- Pinato, D.J.; North, B.V.; Sharma, R. A novel, externally validated inflammation-based prognostic algorithm in hepatocellular carcinoma: The prognostic nutritional index (PNI). Br. J. Cancer 2012, 106, 1439–1445. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, X.; Xiao, L.; Long, G.; Yao, L.; Wang, Z.; Zhou, L. Prognostic Nutritional Index and Systemic Immune-Inflammation Index Predict the Prognosis of Patients with HCC. J. Gastrointest. Surg. 2021, 25, 421–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Germain, T.; Favelier, S.; Cercueil, J.P.; Denys, A.; Krausé, D.; Guiu, B. Liver segmentation: Practical tips. Diagn. Interv. Imaging 2014, 95, 1003–1016. [Google Scholar] [CrossRef] [Green Version]
- Vibert, E.; Perniceni, T.; Levard, H.; Denet, C.; Shahri, N.K.; Gayet, B. Laparoscopic liver resection. Br. J. Surg. 2006, 93, 67–72. [Google Scholar] [CrossRef]
- Hwang, D.W.; Han, H.S.; Yoon, Y.S.; Cho, J.Y.; Kwon, Y.; Kim, J.H.; Park, J.S.; Yoon, D.S.; Choi, I.S.; Ahn, K.S.; et al. Laparoscopic major liver resection in Korea: A multicenter study. J. Hepatobiliary Pancreat. Sci. 2013, 20, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Section 2: AKI Definition. Kidney Int. Suppl. 2012, 2, 19–36. [CrossRef] [Green Version]
- Rahbari, N.N.; Garden, O.J.; Padbury, R.; Brooke-Smith, M.; Crawford, M.; Adam, R.; Koch, M.; Makuuchi, M.; Dematteo, R.P.; Christophi, C.; et al. Posthepatectomy liver failure: A definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery 2011, 149, 713–724. [Google Scholar] [CrossRef]
- Henriksen, J.H.; Bendtsen, F.; Gerbes, A.L.; Christensen, N.J.; Ring-Larsen, H.; Sørensen, T.I. Estimated central blood volume in cirrhosis: Relationship to sympathetic nervous activity, beta-adrenergic blockade and atrial natriuretic factor. Hepatology 1992, 16, 1163–1170. [Google Scholar] [CrossRef]
- Henriksen, J.H.; Bendtsen, F.; Sørensen, T.I.; Stadeager, C.; Ring-Larsen, H. Reduced central blood volume in cirrhosis. Gastroenterology 1989, 97, 1506–1513. [Google Scholar] [CrossRef]
- Kanda, M.; Fujii, T.; Kodera, Y.; Nagai, S.; Takeda, S.; Nakao, A. Nutritional predictors of postoperative outcome in pancreatic cancer. Br. J. Surg. 2011, 98, 268–274. [Google Scholar] [CrossRef]
- Mohri, Y.; Inoue, Y.; Tanaka, K.; Hiro, J.; Uchida, K.; Kusunoki, M. Prognostic nutritional index predicts postoperative outcome in colorectal cancer. World J. Surg. 2013, 37, 2688–2692. [Google Scholar] [CrossRef]
- Nakatani, M.; Migita, K.; Matsumoto, S.; Wakatsuki, K.; Ito, M.; Nakade, H.; Kunishige, T.; Kitano, M.; Kanehiro, H. Prognostic significance of the prognostic nutritional index in esophageal cancer patients undergoing neoadjuvant chemotherapy. Dis. Esophagus. 2017, 30, 1–7. [Google Scholar] [CrossRef]
- Yu, J.; Hong, B.; Park, J.Y.; Hwang, J.H.; Kim, Y.K. Impact of Prognostic Nutritional Index on Postoperative Pulmonary Complications in Radical Cystectomy: A Propensity Score-Matched Analysis. Ann. Surg. Oncol. 2021, 28, 1859–1869. [Google Scholar] [CrossRef] [PubMed]
- Min, J.Y.; Woo, A.; Chae, M.S.; Hong, S.H.; Park, C.S.; Choi, J.H.; Chung, H.S. Predictive Impact of Modified-Prognostic Nutritional Index for Acute Kidney Injury within 1-week after Living Donor Liver Transplantation. Int. J. Med. Sci. 2020, 17, 82–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, M.T.; Grams, M.E.; Woodward, M.; Elley, C.R.; Green, J.A.; Wheeler, D.C.; de Jong, P.; Gansevoort, R.T.; Levey, A.S.; Warnock, D.G.; et al. A Meta-analysis of the Association of Estimated GFR, Albuminuria, Diabetes Mellitus, and Hypertension With Acute Kidney Injury. Am. J. Kidney Dis. 2015, 66, 602–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patschan, D.; Müller, G.A. Acute Kidney Injury in Diabetes Mellitus. Int. J. Nephrol. 2016, 2016, 6232909. [Google Scholar] [CrossRef] [Green Version]
- Kashy, B.K.; Podolyak, A.; Makarova, N.; Dalton, J.E.; Sessler, D.I.; Kurz, A. Effect of hydroxyethyl starch on postoperative kidney function in patients having noncardiac surgery. Anesthesiology 2014, 121, 730–739. [Google Scholar] [CrossRef] [Green Version]
- Myburgh, J.A.; Finfer, S.; Bellomo, R.; Billot, L.; Cass, A.; Gattas, D.; Glass, P.; Lipman, J.; Liu, B.; McArthur, C.; et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N. Engl. J. Med. 2012, 367, 1901–1911. [Google Scholar] [CrossRef] [Green Version]
- Schortgen, F.; Brochard, L. Colloid-induced kidney injury: Experimental evidence may help to understand mechanisms. Crit. Care 2009, 13, 130. [Google Scholar] [CrossRef]
- Kaufmann, M.A.; Castelli, I.; Pargger, H.; Drop, L.J. Nitric oxide dose-response study in the isolated perfused rat kidney after inhibition of endothelium-derived relaxing factor synthesis: The role of serum albumin. J. Pharmacol. Exp. Ther. 1995, 273, 855–862. [Google Scholar]
- Lee, E.H.; Baek, S.H.; Chin, J.H.; Choi, D.K.; Son, H.J.; Kim, W.J.; Hahm, K.D.; Sim, J.Y.; Choi, I.C. Preoperative hypoalbuminemia is a major risk factor for acute kidney injury following off-pump coronary artery bypass surgery. Intensive Care Med. 2012, 38, 1478–1486. [Google Scholar] [CrossRef]
- Li, N.; Qiao, H.; Guo, J.F.; Yang, H.Y.; Li, X.Y.; Li, S.L.; Wang, D.X.; Yang, L. Preoperative hypoalbuminemia was associated with acute kidney injury in high-risk patients following non-cardiac surgery: A retrospective cohort study. BMC Anesthesiol. 2019, 19, 171. [Google Scholar] [CrossRef] [Green Version]
- Gamba, G.; Contreras, A.M.; Cortés, J.; Nares, F.; Santiago, Y.; Espinosa, A.; Bobadilla, J.; Jiménez Sánchez, G.; López, G.; Valadez, A.; et al. Hypoalbuminemia as a risk factor for amikacin nephrotoxicity. Rev. Investig. Clin. 1990, 42, 204–209. [Google Scholar]
- Weller, S.; Varrier, M.; Ostermann, M. Lymphocyte Function in Human Acute Kidney Injury. Nephron 2017, 137, 287–293. [Google Scholar] [CrossRef]
- Aghdaii, N.; Ferasatkish, R.; Mohammadzadeh Jouryabi, A.; Hamidi, S.H. Significance of preoperative total lymphocyte count as a prognostic criterion in adult cardiac surgery. Anesth. Pain Med. 2014, 4, e20331. [Google Scholar] [CrossRef] [Green Version]
- Martina, M.N.; Noel, S.; Bandapalle, S.; Hamad, A.R.; Rabb, H. T lymphocytes and acute kidney injury: Update. Nephron Clin. Pract. 2014, 127, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Chen, G.; Li, Y.; Shi, Z.; He, L.; Zhou, D.; Lin, H. The Preoperative Prognostic Nutritional Index in Hepatocellular Carcinoma After Curative Hepatectomy: A Retrospective Cohort Study and Meta-Analysis. J. Investig. Surg. 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Imai, D.; Maeda, T.; Shimokawa, M.; Wang, H.; Yoshiya, S.; Takeishi, K.; Itoh, S.; Harada, N.; Ikegami, T.; Yoshizumi, T.; et al. Prognostic nutritional index is superior as a predictor of prognosis among various inflammation-based prognostic scores in patients with hepatocellular carcinoma after curative resection. Hepatol. Res. 2020, 50, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Okamura, Y.; Ashida, R.; Ito, T.; Sugiura, T.; Mori, K.; Uesaka, K. Preoperative neutrophil to lymphocyte ratio and prognostic nutritional index predict overall survival after hepatectomy for hepatocellular carcinoma. World J. Surg. 2015, 39, 1501–1509. [Google Scholar] [CrossRef]
- Salerno, F.; Borroni, G.; Moser, P.; Badalamenti, S.; Cassarà, L.; Maggi, A.; Fusini, M.; Cesana, B. Survival and prognostic factors of cirrhotic patients with ascites: A study of 134 outpatients. Am. J. Gastroenterol. 1993, 88, 514–519. [Google Scholar]
- Caraceni, P.; Riggio, O.; Angeli, P.; Alessandria, C.; Neri, S.; Foschi, F.G.; Levantesi, F.; Airoldi, A.; Boccia, S.; Svegliati-Baroni, G.; et al. Long-term albumin administration in decompensated cirrhosis (ANSWER): An open-label randomised trial. Lancet 2018, 391, 2417–2429. [Google Scholar] [CrossRef]
- Mano, Y.; Yoshizumi, T.; Yugawa, K.; Ohira, M.; Motomura, T.; Toshima, T.; Itoh, S.; Harada, N.; Ikegami, T.; Soejima, Y.; et al. Lymphocyte-to-Monocyte Ratio Is a Predictor of Survival After Liver Transplantation for Hepatocellular Carcinoma. Liver Transpl. 2018, 24, 1603–1611. [Google Scholar] [CrossRef]
Study Population (n = 817) | |
---|---|
Preoperative variables | |
Age; year | 62.60 ± 11.83 |
Sex; male | 512 (57.9) |
Weight; kg | 59.56 ± 9.84 |
BMI; kg m−2 | 22.90 ± 3.17 |
TNM staging | |
1 | 489 (59.9) |
2 | 48 (5.9) |
3A | 16 (2.0) |
3B | 5 (0.6) |
4A | 233 (28.5) |
4B | 26 (3.2) |
Number of tumors | |
Solitary | 715 (87.5) |
≥2 | 102 (12.5) |
Tumor size; cm | 4.99 ± 4.02 |
Lymph node invasion | |
0 | 567 (69.4) |
≥1 | 250 (30.6) |
Metastasis | 29 (3.5) |
DM | 50 (6.1) |
HTN | 56 (6.9) |
CAD | 6 (0.7) |
CVA | 2 (0.2) |
Liver cirrhosis | 298 (36.5) |
ICG R15 (n = 731) * | |
<10 | 233 (31.9) |
10–30 | 476 (65.1) |
≥30 | 20 (2.7) |
MELD scores | 7.19 ± 1.11 |
CTP scores | 5.29 ± 0.49 |
Laboratory variables | |
White blood cell | 5.46 ± 1.81 |
Hemoglobin | 13.94 ± 1.59 |
Platelet | 166.81 ± 70.17 |
Prothrombin time | 1.04 ± 0.08 |
Albumin (g·dL−1) | 3.78 ± 0.40 |
Creatinine (mg·dL−1) | 0.82 ± 0.16 |
eGFR (mL/min/1.73 m2) | 78.88 ± 8.86 |
Total bilirubin | 0.80 ± 0.38 |
AST | 42.24 ± 34.57 |
ALT | 38.35 ± 29.14 |
Sodium | 139.72 ± 2.56 |
PNI | 46.76 ± 5.64 |
Intraoperative variables | |
Operation time (min) | 269.18 ± 75.08 |
Type of liver resection | |
Minor surgery | 515 (63.0) |
Major surgery | 302 (37.0) |
Total fluids (mL/kg) | 40.09 ± 19.58 |
Crystalloids (mL/kg) | 34.96 ± 16.76 |
Colloids (mL/kg) | 5.13 ± 6.05 |
Colloid use | 446 (54.6) |
RBC transfusion | 64 (7.8) |
Units of infused RBC | 0.26 ± 1.29 |
Urine output (mL/kg/h) | 1.77 ± 1.16 |
Surgical outcomes | |
Postoperative AKI | 59 (7.2) |
grade 1 | 52 (6.4) |
grade 2 | 4 (0.5) |
grade 3 | 3 (0.4) |
Postoperative RRT | 8 (1.0) |
PHLF | 84 (10.3) |
Hospital stays | 20.69 ± 13.07 |
ICU admission | 61 (7.5) |
One-year mortality | 59 (7.2) |
Five-year mortality | 209 (25.6) |
Overall mortality | 272 (33.3) |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
PNI | 0.93 | 0.89–0.98 | 0.004 | 0.92 | 0.85–0.99 | 0.021 |
Age (years) | 1.02 | 0.99–1.04 | 0.261 | 1.01 | 0.98–1.04 | 0.496 |
Sex (male) | 1.81 | 0.76–4.30 | 0.178 | 2.06 | 0.81–5.26 | 0.130 |
BMI | 1.07 | 0.98–1.17 | 0.125 | 1.09 | 0.98–1.21 | 0.098 |
DM | 2.67 | 1.19–6.00 | 0.017 | 2.77 | 1.16–6.58 | 0.022 |
HTN | 1.60 | 0.66–3.91 | 0.300 | |||
MELD scores | 1.19 | 0.96–1.47 | 0.116 | 1.01 | 0.79–1.30 | 0.925 |
CTP scores | 1.52 | 0.93–2.47 | 0.090 | 0.92 | 0.46–1.83 | 0.803 |
TNM staging | 0.470 | 0.653 | ||||
1 | 1.00 (Ref.) | 1.00 (Ref.) | ||||
2 | 1.71 | 0.68–4.28 | 0.254 | 1.35 | 0.51–3.57 | 0.548 |
3 | 0.65 | 0.15–2.79 | 0558 | 0.54 | 0.12–2.44 | 0.425 |
4A | 0.67 | 0.34–1.30 | 0.237 | 0.55 | 0.27–1.14 | 0.111 |
4B | 1.09 | 0.25–4.80 | 0.913 | 0.63 | 0.13–3.09 | 0.570 |
Operation time (min) | 1.01 | 1.00–1.01 | < 001 | 1.00 | 1.00–1.01 | 0.061 |
Type of liver resection | 0.957 | |||||
Minor surgery | 1.00 (Ref.) | |||||
Major surgery | 1.02 | 0.59–1.76 | ||||
Total fluids (mL/kg) | 1.02 | 1.00–1.03 | 0.005 | 1.00 | 0.98–1.02 | 0.778 |
Synthetic colloid use | 2.16 | 1.21–3.87 | 0.009 | 1.99 | 1.05–3.80 | 0.036 |
Urine output (mL/kg/h) | 0.82 | 0.63–1.07 | 0.152 | |||
RBC transfusion | 1.20 | 1.06–1.36 | 0.005 | 1.18 | 0.45–3.08 | 0.737 |
Albumin (g·dL−1) | 0.33 | 0.17–0.62 | < 001 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
PNI | 0.85 | 0.81–0.89 | <001 | 0.87 | 0.81–0.94 | <001 |
Age (years) | 1.00 | 0.97–1.02 | 0.916 | |||
Sex (male) | 1.00 | 0.97–1.02 | 0.916 | |||
BMI | 0.89 | 0.81–0.97 | 0.011 | 0.96 | 0.87–1.06 | 0.422 |
DM | 1.19 | 0.43–3.28 | 0.738 | |||
HTN | 0.70 | 0.22–2.22 | 0.547 | |||
MELD scores | 1.19 | 0.98–1.45 | 0.088 | 0.94 | 0.74–1.20 | 0.635 |
CTP scores | 2.45 | 1.70–3.52 | <001 | 0.97 | 0.49–1.94 | 0.936 |
TNM staging | <001 | <001 | ||||
1 | 1.00 (Ref.) | 1.00 (Ref.) | ||||
2 | 2.35 | 0.52–10.65 | 0.270 | 2.36 | 0.52–10.79 | 0.270 |
3 | 3.92 | 1.23–12.55 | 0.022 | 3.67 | 1.14–11.81 | 0.030 |
4A | 10.37 | 5.13–20.96 | <001 | 8.85 | 4.29–18.22 | <001 |
4B | 19.14 | 7.58–48.30 | <001 | 9.26 | 3.42–25.11 | <001 |
Operation time (min) | 1.00 | 1.00–1.00 | 0.028 | 1.00 | 1.00–1.00 | 0.713 |
Total fluids (mL/kg) | 1.02 | 1.00–1.03 | <001 | 1.00 | 0.99–1.02 | 0.548 |
Synthetic colloid use | 0.88 | 0.51–1.54 | 0.662 | |||
Urine output (mL/kg/h) | 1.07 | 0.87–1.31 | 0.515 | |||
RBC transfusion | 1.29 | 1.19–1.41 | <001 | 1.03 | 0.44–2.43 | 0.948 |
Univariate | Multivariate | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
PNI | 0.91 | 0.88–0.93 | <001 | 0.93 | 0.90–0.97 | <001 |
Age (years) | 0.99 | 0.98–1.00 | 0.196 | |||
Sex (male) | 1.00 | 0.69–1.44 | 0.995 | |||
BMI | 0.93 | 0.89–0.98 | 0.004 | 0.97 | 0.92–1.02 | 0.238 |
DM | 1.20 | 0.71–2.02 | 0.505 | |||
HTN | 0.78 | 0.44–1.40 | 0.411 | |||
MELD scores | 1.22 | 1.10–1.35 | <001 | 1.16 | 1.03–1.30 | 0.015 |
CTP scores | 1.80 | 1.42–2.28 | <001 | 0.96 | 0.68–1.35 | 0.824 |
TNM staging | <001 | <001 | ||||
1 | 1.00 (Ref.) | 1.00 (Ref.) | ||||
2 | 2.02 | 1.14–3.57 | 0.016 | 1.91 | 1.07–3.40 | 0.028 |
3 | 2.04 | 1.09–3.84 | 0.027 | 1.87 | 0.99–3.53 | 0.056 |
4A | 3.47 | 2.57–4.70 | <001 | 3.73 | 2.72–5.11 | <001 |
4B | 7.28 | 4.18–12.67 | <001 | 3.35 | 1.80–6.22 | <001 |
Operation time (min) | 1.00 | 1.00–1.01 | <001 | 1.00 | 1.00–1.00 | 0.387 |
Total fluids (mL/kg) | 1.02 | 1.01–1.02 | <001 | 1.01 | 1.00–1.02 | 0.088 |
Synthetic colloid use | 1.32 | 1.00–1.74 | 0.048 | 1.48 | 1.08–2.03 | 0.015 |
Urine output (mL/kg/h) | 1.15 | 1.04–1.28 | 0.010 | 1.01 | 0.90–1.14 | 0.873 |
RBC transfusion | 3.67 | 2.60–5.20 | <001 | 1.61 | 1.00–2.60 | 0.053 |
Univariate | Multivariate * | |||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
AKI | 0.93 (0.89–0.98) | 0.004 | 0.92 (0.85–0.99) | 0.021 |
Postoperative RRT | 0.82 (0.73–0.93) | 0.002 | 0.76 (0.60–0.98) | 0.032 |
PHLF | 0.88 (0.84–0.91) | <0.001 | 0.94 (0.88–1.00) | 0.065 |
ICU admission | 1.02 (0.97–1.06) | 0.519 | 1.05 (0.99–1.12) | 0.120 |
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
One-year mortality | 0.85 (0.81–0.89) | <001 | 0.87 (0.81–0.94) | <001 |
Five-year mortality | 0.91 (0.88–0.93) | <001 | 0.93 (0.90–0.97) | <001 |
Overall mortality | 0.91 (0.85–0.96) | 0.002 | 0.87 (0.79–0.97) | 0.010 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sim, J.H.; Jun, I.-G.; Moon, Y.-J.; Jeon, A.R.; Kim, S.-H.; Kim, B.; Song, J.-G. Association of Preoperative Prognostic Nutritional Index and Postoperative Acute Kidney Injury in Patients Who Underwent Hepatectomy for Hepatocellular Carcinoma. J. Pers. Med. 2021, 11, 428. https://doi.org/10.3390/jpm11050428
Sim JH, Jun I-G, Moon Y-J, Jeon AR, Kim S-H, Kim B, Song J-G. Association of Preoperative Prognostic Nutritional Index and Postoperative Acute Kidney Injury in Patients Who Underwent Hepatectomy for Hepatocellular Carcinoma. Journal of Personalized Medicine. 2021; 11(5):428. https://doi.org/10.3390/jpm11050428
Chicago/Turabian StyleSim, Ji Hoon, In-Gu Jun, Young-Jin Moon, A Rom Jeon, Sung-Hoon Kim, Bomi Kim, and Jun-Gol Song. 2021. "Association of Preoperative Prognostic Nutritional Index and Postoperative Acute Kidney Injury in Patients Who Underwent Hepatectomy for Hepatocellular Carcinoma" Journal of Personalized Medicine 11, no. 5: 428. https://doi.org/10.3390/jpm11050428
APA StyleSim, J. H., Jun, I. -G., Moon, Y. -J., Jeon, A. R., Kim, S. -H., Kim, B., & Song, J. -G. (2021). Association of Preoperative Prognostic Nutritional Index and Postoperative Acute Kidney Injury in Patients Who Underwent Hepatectomy for Hepatocellular Carcinoma. Journal of Personalized Medicine, 11(5), 428. https://doi.org/10.3390/jpm11050428