Is There an Optimal Timing of Adductor Canal Block for Total Knee Arthroplasty?—A Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations DESA, Population Division. World Population Ageing 2019: Highlights; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Loeser, R.F.; Collins, J.A.; Diekman, B.O. Ageing and the Pathogenesis of Osteoarthritis. Nat. Rev. Rheumatol. 2016, 12, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Fransen, M.; Bridgett, L.; March, L.; Hoy, D.; Penserga, E.; Brooks, P. The Epidemiology of Osteoarthritis in Asia. Int. J. Rheum. Dis. 2011, 14, 113–121. [Google Scholar] [CrossRef]
- National Development Council. Population Projections for Republic of China (Taiwan); Taiwan, 2014–2060. p. 2014. Available online: https://eng.stat.gov.tw/ct.asp?xItem=10007&CtNode=2203&mp=5 (accessed on 16 May 2021).
- Lin, F.H.; Chen, H.C.; Lin, C.; Chiu, Y.L.; Lee, H.S.; Chang, H.; Huang, G.S.; Chang, H.L.; Yeh, S.J.; Su, W.; et al. The Increase in Total Knee Replacement Surgery in Taiwan: A 15-Year Retrospective Study. Medicine 2018, 97, e11749. [Google Scholar] [CrossRef]
- Sloan, M.; Premkumar, A.; Sheth, N.P. Projected Volume of Primary Total Joint Arthroplasty in the US, 2014 to 2030. J. Bone Jt. Surg. Am. 2018, 100, 1455–1460. [Google Scholar] [CrossRef]
- Papas, P.V.; Cushner, F.D.; Scuderi, G.R. The History of Knee Arthroplasty. Tech. Orthop. 2018, 33, 2–6. [Google Scholar] [CrossRef]
- Font-Rodriguez, D.E.; Scuderi, G.R.; Insall, J.N. Survivorship of Cemented Total Knee Arthroplasty. Clin. Orthop. Relat. Res. 1997, 345, 79–86. [Google Scholar] [CrossRef]
- Sizer, S.C.; Cherian, J.J.; Elmallah, R.D.; Pierce, T.P.; Beaver, W.B.; Mont, M.A. Predicting Blood Loss in Total Knee and Hip Arthroplasty. Orthop. Clin. 2015, 46, 445–459. [Google Scholar] [CrossRef]
- Husted, H.; Lunn, T.H.; Troelsen, A.; Gaarn-Larsen, L.; Kristensen, B.B.; Kehlet, H. Why Still in Hospital After Fast-Track Hip and Knee Arthroplasty? Acta Orthop. 2011, 82, 679–684. [Google Scholar] [CrossRef]
- Parvizi, J.; Miller, A.G.; Gandhi, K. Multimodal Pain Management after Total Joint Arthroplasty. J. Bone Jt. Surg. Am. 2011, 93, 1075–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lund, J.; Jenstrup, M.T.; Jaeger, P.; Sørensen, A.M.; Dahl, J.B. Continuous Adductor-Canal-Blockade for Adjuvant Post-Operative Analgesia after Major Knee Surgery: Preliminary Results. Acta Anaesthesiol. Scand. 2010, 55, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Kolli, S.; Malik, M.F. The Adductor Canal Block: A Clinical Review. Curr. Anesthesiol. Rep. 2019, 9, 291–294. [Google Scholar] [CrossRef]
- Schnabel, A.; Reichl, S.U.; Weibel, S.; Zahn, P.K.; Kranke, P.; Pogatzki-Zahn, E.; Meyer-Frießem, C.H. Adductor Canal Blocks for Postoperative Pain Treatment in Adults Undergoing Knee Surgery. Cochrane Database Syst. Rev. 2019. [Google Scholar] [CrossRef]
- Wu, S.C.; Hsu, C.Y.; Lu, H.F.; Chen, C.C.; Hou, S.Y.; Poon, Y.Y. Earlier Is Better? Timing of Adductor Canal Block for Arthroscopic Knee Surgery under General Anesthesia: A Retrospective Cohort Study. Int. J. Environ. Res. Public Health 2021, 18, 3945. [Google Scholar] [CrossRef]
- Back, I.N. Palliative Medicine Handbook, 3rd ed.; BPM Books: Cardiff, Wales, UK, 2001. [Google Scholar]
- Carr, A.J.; Robertsson, O.; Graves, S.; Price, A.J.; Arden, N.K.; Judge, A.; Beard, D.J. Knee Replacement. Lancet 2012, 379, 1331–1340. [Google Scholar] [CrossRef]
- Blakeney, W.; Beaulieu, Y.; Puliero, B.; Kiss, M.O.; Vendittoli, P.A. Bone Resection for Mechanically Aligned Total Knee Arthroplasty Creates Frequent Gap Modifications and Imbalances. Knee Surg. Sports Traumatol. Arthrosc. 2020, 28, 1532–1541. [Google Scholar] [CrossRef]
- Osei, D.A.; Rebehn, K.A.; Boyer, M.I. Soft-Tissue Defects after Total Knee Arthroplasty: Management and Reconstruction. J. Am. Acad. Orthop. Surg. 2016, 24, 769–779. [Google Scholar] [CrossRef] [Green Version]
- Kayani, B.; Konan, S.; Pietrzak, J.R.T.; Haddad, F.S. Iatrogenic Bone and Soft Tissue Trauma in Robotic-Arm Assisted Total Knee Arthroplasty Compared with Conventional Jig-Based Total Knee Arthroplasty: A Prospective Cohort Study and Validation of a New Classification System. J. Arthroplast. 2018, 33, 2496–2501. [Google Scholar] [CrossRef]
- Jiang, X.; Wang, Q.Q.; Wu, C.A.; Tian, W. Analgesic Efficacy of Adductor Canal Block in Total Knee Arthroplasty: A Meta-Analysis and Systematic Review. Orthop. Surg. 2016, 8, 294–300. [Google Scholar] [CrossRef]
- Tan, Z.; Kang, P.; Pei, F.; Shen, B.; Zhou, Z.; Yang, J. A Comparison of Adductor Canal Block and Femoral Nerve Block After Total-Knee Arthroplasty Regarding Analgesic Effect, Effectiveness of Early Rehabilitation, and Lateral Knee Pain Relief in the Early Stage. Medicine 2018, 97, e13391. [Google Scholar] [CrossRef]
- Sehmbi, H.; Brull, R.; Shah, U.J.; El-Boghdadly, K.; Nguyen, D.; Joshi, G.P.; Abdallah, F.W. Evidence Basis for Regional Anesthesia in Ambulatory Arthroscopic Knee Surgery and Anterior Cruciate Ligament Reconstruction: Part II: Adductor Canal Nerve Block-A Systematic Review and Meta-Analysis. Anesth. Analg. 2019, 128, 223–238. [Google Scholar] [CrossRef]
- Burckett-St Laurant, D.; Peng, P.; Girón Arango, L.; Niazi, A.U.; Chan, V.W.; Agur, A.; Perlas, A. The Nerves of the Adductor Canal and the Innervation of the Knee: An Anatomic Study. Reg. Anesth. Pain Med. 2016, 41, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Bijker, J.B.; Gelb, A.W. Review Article: The Role of Hypotension in Perioperative Stroke. Can. J. Anaesth. 2013, 60, 159–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bijker, J.B.; Persoon, S.; Peelen, L.M.; Moons, K.G.; Kalkman, C.J.; Kappelle, L.J.; van Klei, W.A. Intraoperative Hypotension and Perioperative Ischemic Stroke After General Surgery: A Nested Case-Control Study. Anesthesiology 2012, 116, 658–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayar, U.; Basaran, M.; Atasoy, N.; Ayoglu, H.; Sade, H.; Altunkaya, H. Comparison of Satisfaction and Pain Relief Between Patients-Controlled Analgesia and Interval Analgesia After Laparoscopic Ovarian Cystectomy. J. Psychosom. Obstet. Gynecol. 2008, 29, 139–145. [Google Scholar] [CrossRef]
- Metry, A.A.; Wahba, R.M.; Nakhla, G.M.; Abdelmalek, F.A.; Ragaei, M.Z.; Fahmy, N.G. Comparative Study Between Preemptive and Postoperative Intra-Articular Injection of Levobupivacaine and Tramadol for Control of Postoperative Pain. Anesth. Essays Res. 2019, 13, 84–90. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, J.; Wang, X.Q.; Wang, X.L.; Wu, Y.; Chen, C.C.; Zhang, H.Y.; Zhang, Z.W.; Fan, K.Y.; Zhu, Q.; et al. Effect of Joint Mobilization Techniques for Primary Total Knee Arthroplasty: Study Protocol for a Randomized Controlled Trial. Medicine 2017, 96, e8827. [Google Scholar] [CrossRef]
- Brosseau, L.; Milne, S.; Wells, G.; Tugwell, P.; Robinson, V.; Casimiro, L.; Pelland, L.; Noel, M.J.; Davis, J.; Drouin, H. Efficacy of Continuous Passive Motion Following Total Knee Arthroplasty: A Metaanalysis. J. Rheumatol. 2004, 31, 2251–2264. [Google Scholar]
- Harvey, L.A.; Brosseau, L.; Herbert, R.D. Continuous Passive Motion Following Total Knee Arthroplasty in People with Arthritis. Cochrane Database Syst. Rev. 2014, CD004260. [Google Scholar] [CrossRef]
- Chen, M.C.; Lin, C.C.; Ko, J.Y.; Kuo, F.C. The Effects of Immediate Programmed Cryotherapy and Continuous Passive Motion in Patients After Computer-Assisted Total Knee Arthroplasty: A Prospective, Randomized Controlled Trial. J. Orthop. Surg. Res. 2020, 15, 379. [Google Scholar] [CrossRef]
- Elmallah, R.K.; Cherian, J.J.; Pierce, T.P.; Jauregui, J.J.; Harwin, S.F.; Mont, M.A. New and Common Perioperative Pain Management Techniques in Total Knee Arthroplasty. J. Knee Surg. 2016, 29, 169–178. [Google Scholar] [CrossRef]
- Higashi, H.; Barendregt, J.J. Cost-Effectiveness of Total Hip and Knee Replacements for the Australian Population With Osteoarthritis: Discrete-Event Simulation Model. PLoS ONE 2011, 6, e25403. [Google Scholar] [CrossRef] [Green Version]
- Ethgen, O.; Bruyère, O.; Richy, F.; Dardennes, C.; Reginster, J.Y. Health-Related Quality of Life in Total Hip and Total Knee Arthroplasty. A Qualitative and Systematic Review of the Literature. J. Bone Jt. Surg. Am. 2004, 86, 963–974. [Google Scholar] [CrossRef]
- Desborough, J.P. The Stress Response to Trauma and Surgery. Br. J. Anaesth. 2000, 85, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Chernow, B.; Alexander, H.R.; Smallridge, R.C.; Thompson, W.R.; Cook, D.; Beardsley, D.; Fink, M.P.; Lake, C.R.; Fletcher, J.R. Hormonal Responses to Graded Surgical Stress. Arch. Intern. Med. 1987, 147, 1273–1278. [Google Scholar] [CrossRef]
- Ledowski, T. Objective Monitoring of Nociception: A Review of Current Commercial Solutions. Br. J. Anaesth. 2019, 123, e312–e321. [Google Scholar] [CrossRef]
Variables | Unit | N(%)/Median (IQR) | Group A (without ACB) | Group B (Preoperative ACB) | Group C (Postoperative ACB) | p Value |
---|---|---|---|---|---|---|
Sex | Female Male | 478 (73.3%) 174 (26.7%) | 200 (71.2%) 81 (28.8%) | 165 (74.3%) 57 (25.7%) | 113 (75.8%) 36 (24.2%) | 0.533 |
Age | years | 70.0 (65.0–75.0) | 70.0 (64.0–74.5) | 70.0 (65.0–75.0) | 70.5 (64.5–76.0) | 0.093 |
Weight | kg | 67.0 (59.0–76.0) | 67.0 (60.0–77.0) | 67.0 (59.0–77.0) | 67.0 (59.0–74.0) | 0.319 |
ASA Physical Status | I II III | 1 (0.2%) 401 (61.5%) 250 (38.3%) | 0 (0.0%) 165 (58.7%) 116 (41.3%) | 0 (0.0%) 133 (59.9%) 89 (40.1%) | 1 (0.7%) 103 (69.1%) 45 (30.2%) | 0.123 |
Anesthesia Time | hour | 3.08 (2.83–3.50) | 3.09 (2.88–3.58) | 3.08 (2.82–3.45) | 3.08 (2.80–3.50) | 0.079 |
Hypertension | Yes | 392 (60.1%) | 174 (61.9%) | 131 (59.0%) | 87 (58.4%) | 0.711 |
Diabetes | Yes | 158 (24.2%) | 76 (27.0%) | 54 (24.3%) | 28 (18.8%) | 0.164 |
COPD | Yes | 4 (0.6%) | 2 (0.7%) | 1 (0.5%) | 1 (0.7%) | 0.925 |
CAD | Yes | 16 (2.5%) | 10 (3.6%) | 2 (0.9%) | 4 (2.7%) | 0.120 |
CHF | Yes | 1 (0.2%) | 0 (0.0%) | 1 (0.5%) | 0 (0.0%) | 0.342 |
CVA | Yes | 11 (1.7%) | 6 (2.1%) | 2 (0.9%) | 3 (2.0%) | 0.497 |
ESRD | Yes | 12 (1.8%) | 6 (2.1%) | 5 (2.3%) | 1 (0.7%) | 0.404 |
Cancer | Yes | 34 (5.2%) | 18 (6.4%) | 9 (4.1%) | 7 (4.7%) | 0.474 |
Variables | Unit | N(%)/Median (IQR) | Group A (without ACB) | Group B (Preoperative ACB) | Group C (Postoperative ACB) | p Value |
---|---|---|---|---|---|---|
Intraoperative | ||||||
Sevoflurane | mL/kg/h | 0.20 (0.17–0.25) | 0.21 (0.17–0.26) | 0.20 (0.17–0.25) | 0.21 (0.17–0.26) | 0.519 |
Opioid (MME) | mg/kg/h | 0.074 (0.056–0.095) | 0.078 (0.059–0.098) | 0.065 (0.048–0.088) | 0.078 (0.062–0.092) | <0.001 |
↑>30% SBP | Yes | 399 (61.2%) | 190 (67.6%) | 117 (52.7%) | 92 (61.7%) | 0.003 |
PACU | ||||||
Opioid (MME) | mg/kg | 0.0 (0.0–0.044) | 0.0 (0.0–0.048) | 0.0 (0.0–0.043) | 0.0 (0.0–0.040) | 0.089 |
Pain VAS | 0–10 | 3.0 (2.0–3.0) | 4.0 (4.0–4.0) | 2.0 (2.0–2.0) | 1.0 (1.0–1.0) | <0.001 |
Satisfaction | 1–5 | 5.0 (4.0–5.0) | 4.0 (4.0–4.0) | 4.0 (4.0–5.0) | 5.0 (4.0–5.0) | <0.001 |
In Ward | ||||||
Opioid (MME) | mg/kg | 0.118 (0.107–0.129) | 0.134 (0.113–0.156) | 0.110 (0.101–0.139) | 0.104 (0.087–0.121) | 0.045 |
Parecoxib 40 mg | Yes | 636 (97.5%) | 271 (96.4%) | 218 (98.2%) | 147 (98.6%) | 0.179 |
Pain VAS at Rest | 0–10 | 2.0 (1.0–3.0) | 3.0 (3.0–5.0) | 2.0 (1.0–2.0) | 1.0 (1.0–2.0) | <0.001 |
Pain VAS at CPM | 0–10 | 2.0 (2.0–3.0) | 3.0 (3.0–5.0) | 2.0 (2.0–3.0) | 2.0 (1.0–2.0) | <0.001 |
Intolerant CPM Pain on 1st Time | 188 (28.2%) | 98 (34.9%) | 60 (27.0%) | 30 (20.1%) | 0.004 | |
Satisfaction | 1–5 | 5.0 (4.0–5.0) | 5.0 (4.0–5.0) | 5.0 (4.0–5.0) | 5.0 (4.0–5.0) | 0.95 |
Length of Stay | days | 4.0 (3.5–5.0) | 4.5 (3.5–5.0) | 4.0 (3.5–5.0) | 4.0 (3.5–5.0) | 0.006 |
Dizziness | Yes | 49 (7.5%) | 22 (7.8%) | 16 (7.2%) | 11 (7.4%) | 0.964 |
PON | Yes | 30 (4.6%) | 15 (5.3%) | 9 (4.1%) | 6 (4.0%) | 0.737 |
POV | Yes | 87 (13.3%) | 44 (15.7%) | 22 (9.9%) | 21 (14.1%) | 0.162 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poon, Y.-Y.; Yang, J.C.-S.; Chou, W.-Y.; Lu, H.-F.; Hung, C.-T.; Chin, J.-C.; Wu, S.-C. Is There an Optimal Timing of Adductor Canal Block for Total Knee Arthroplasty?—A Retrospective Cohort Study. J. Pers. Med. 2021, 11, 622. https://doi.org/10.3390/jpm11070622
Poon Y-Y, Yang JC-S, Chou W-Y, Lu H-F, Hung C-T, Chin J-C, Wu S-C. Is There an Optimal Timing of Adductor Canal Block for Total Knee Arthroplasty?—A Retrospective Cohort Study. Journal of Personalized Medicine. 2021; 11(7):622. https://doi.org/10.3390/jpm11070622
Chicago/Turabian StylePoon, Yan-Yuen, Johnson Chia-Shen Yang, Wen-Yi Chou, Hsiao-Feng Lu, Chao-Ting Hung, Jo-Chi Chin, and Shao-Chun Wu. 2021. "Is There an Optimal Timing of Adductor Canal Block for Total Knee Arthroplasty?—A Retrospective Cohort Study" Journal of Personalized Medicine 11, no. 7: 622. https://doi.org/10.3390/jpm11070622
APA StylePoon, Y.-Y., Yang, J. C.-S., Chou, W.-Y., Lu, H.-F., Hung, C.-T., Chin, J.-C., & Wu, S.-C. (2021). Is There an Optimal Timing of Adductor Canal Block for Total Knee Arthroplasty?—A Retrospective Cohort Study. Journal of Personalized Medicine, 11(7), 622. https://doi.org/10.3390/jpm11070622