TPMT*3C as a Predictor of 6-Mercaptopurine-Induced Myelotoxicity in Thai Children with Acute Lymphoblastic Leukemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Protocol
2.2. Sample and Data Collection
2.3. TPMT, ITPA, and MRP4 Genotyping
2.4. Statistical Analysis
3. Results
3.1. Patient Demographics and Clinical Characteristics
3.2. Genotype and Allele Frequencies
3.3. Association between Genetic Variants and 6-MP-Induced Myelotoxicity and Hepatotoxicity in the Treatment of Childhood ALL
3.4. Association between Genetic Variants and 6-MP Dose Intensity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Inaba, H.; Greaves, M.; Mullighan, C.G. Acute lymphoblastic leukaemia. Lancet 2013, 381, 1943–1955. [Google Scholar] [CrossRef] [Green Version]
- Hunger, S.P.; Mullighan, C.G. Acute Lymphoblastic Leukemia in Children. N Engl. J. Med. 2015, 373, 1541–1552. [Google Scholar] [CrossRef] [Green Version]
- Terwilliger, T.; Abdul-Hay, M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood. Cancer. J. 2017, 7, e577. [Google Scholar] [CrossRef] [Green Version]
- Mei, L.; Ontiveros, E.P.; Griffiths, E.A.; Thompson, J.E.; Wang, E.S.; Wetzler, M. Pharmacogenetics predictive of response and toxicity in acute lymphoblastic leukemia therapy. Blood Rev. 2015, 29, 243–249. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, R.R.; Cole, P.D. Pharmacogenetic Predictors of Treatment-Related Toxicity Among Children With Acute Lymphoblastic Leukemia. Curr. Hematol. Malig. Rep. 2017, 12, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Rudin, S.; Marable, M.; Huang, R.S. The Promise of Pharmacogenomics in Reducing Toxicity During Acute Lymphoblastic Leukemia Maintenance Treatment. Genom. Proteom. Bioinform. 2017, 15, 82–93. [Google Scholar] [CrossRef]
- Peregud-Pogorzelski, J.; Tetera-Rudnicka, E.; Kurzawski, M.; Brodkiewicz, A.; Adrianowska, N.; Mlynarski, W.; Januszkiewicz, D.; Drozdzik, M. Thiopurine S-methyltransferase (TPMT) polymorphisms in children with acute lymphoblastic leukemia, and the need for reduction or cessation of 6-mercaptopurine doses during maintenance therapy: The Polish multicenter analysis. Pediatr. Blood Cancer 2011, 57, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Adam de Beaumais, T.; Fakhoury, M.; Medard, Y.; Azougagh, S.; Zhang, D.; Yakouben, K.; Jacqz-Aigrain, E. Determinants of mercaptopurine toxicity in paediatric acute lymphoblastic leukemia maintenance therapy. Br. J. Clin. Pharmacol. 2011, 71, 575–584. [Google Scholar] [CrossRef] [Green Version]
- Hawwa, A.F.; Millership, J.S.; Collier, P.S.; Vandenbroeck, K.; McCarthy, A.; Dempsey, S.; Cairns, C.; Collins, J.; Rodgers, C.; McElnay, J.C. Pharmacogenomic studies of the anticancer and immunosuppressive thiopurines mercaptopurine and azathioprine. Br. J. Clin. Pharmacol. 2008, 66, 517–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan Rosalina, W.R.; Teh, L.K.; Mohamad, N.; Nasir, A.; Yusoff, R.; Baba, A.A.; Salleh, M.Z. Polymorphism of ITPA 94C>A and risk of adverse effects among patients with acute lymphoblastic leukaemia treated with 6-mercaptopurine. J. Clin. Pharm. Ther. 2012, 37, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Puangpetch, A.; Tiyasirichokchai, R.; Pakakasama, S.; Wiwattanakul, S.; Anurathapan, U.; Hongeng, S.; Sukasem, C. NUDT15 genetic variants are related to thiopurine-induced neutropenia in Thai children with acute lymphoblastic leukemia. Pharmacogenomics 2020, 21, 403–410. [Google Scholar] [CrossRef]
- Marinaki, A.M.; Ansari, A.; Duley, J.A.; Arenas, M.; Sumi, S.; Lewis, C.M.; El Shobowale-Bakre, M.; Escuredo, E.; Fairbanks, L.D.; Sanderson, J.D. Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics 2004, 14, 181–187. [Google Scholar] [CrossRef]
- Krishnamurthy, P.; Schwab, M.; Takenaka, K.; Nachagari, D.; Morgan, J.; Leslie, M.; Du, W.; Boyd, K.; Cheok, M.; Nakauchi, H.; et al. Transporter-mediated protection against thiopurine-induced hematopoietic toxicity. Cancer Res. 2008, 68, 4983–4989. [Google Scholar] [CrossRef] [Green Version]
- Ban, H.; Andoh, A.; Imaeda, H.; Kobori, A.; Bamba, S.; Tsujikawa, T.; Sasaki, M.; Saito, Y.; Fujiyama, Y. The multidrug-resistance protein 4 polymorphism is a new factor accounting for thiopurine sensitivity in Japanese patients with inflammatory bowel disease. J. Gastroenterol. 2010, 45, 1014–1021. [Google Scholar] [CrossRef]
- Surapolchai, P.; Pakakasama, S.; Sirachainan, N.; Anurathapan, U.; Songdej, D.; Chuansumrit, A.; Hongeng, S. Comparative outcomes of Thai children with acute lymphoblastic leukemia treated with two consecutive protocols: 11-year experience. Leuk Lymphoma 2012, 53, 891–900. [Google Scholar] [CrossRef]
- Surapolchai, P.; Anurathapan, U.; Sermcheep, A.; Pakakasama, S.; Sirachainan, N.; Songdej, D.; Pongpitcha, P.; Hongeng, S. Long-Term Outcomes of Modified St Jude Children’s Research Hospital Total Therapy XIIIB and XV Protocols for Thai Children With Acute Lymphoblastic Leukemia. Clin. Lymphoma Myeloma Leuk 2019, 19, 497–505. [Google Scholar] [CrossRef]
- Zhang, J.P.; Zhou, S.F.; Chen, X.; Huang, M. Determination of intra-ethnic differences in the polymorphisms of thiopurine S-methyltransferase in Chinese. Clin. Chim. Acta. 2006, 365, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Collie-Duguid, E.S.; Pritchard, S.C.; Powrie, R.H.; Sludden, J.; Collier, D.A.; Li, T.; McLeod, H.L. The frequency and distribution of thiopurine methyltransferase alleles in Caucasian and Asian populations. Pharmacogenetics 1999, 9, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.G.; Lee, L.S.; Chen, C.M.; Shih, M.C.; Wu, M.C.; Tsai, F.J.; Liang, D.C. Molecular analysis of thiopurine S-methyltransferase alleles in South-east Asian populations. Pharmacogenetics 2002, 12, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Vannaprasaht, S.; Angsuthum, S.; Avihingsanon, Y.; Sirivongs, D.; Pongskul, C.; Makarawate, P.; Praditpornsilpa, K.; Tassaneeyakul, W.; Tassaneeyakul, W. Impact of the heterozygous TPMT*1/*3C genotype on azathioprine-induced myelosuppression in kidney transplant recipients in Thailand. Clin. Ther. 2009, 31, 1524–1533. [Google Scholar] [CrossRef]
- Srimartpirom, S.; Tassaneeyakul, W.; Kukongviriyapan, V.; Tassaneeyakul, W. Thiopurine S-methyltransferase genetic polymorphism in the Thai population. Br. J. Clin. Pharmacol. 2004, 58, 66–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hongeng, S.; Sasanakul, W.; Chuansumrit, A.; Pakakasama, S.; Chattananon, A.; Hathirat, P. Frequency of thiopurine S-methyltransferase genetic variation in Thai children with acute leukemia. Med. Pediatr. Oncol. 2000, 35, 410–414. [Google Scholar] [CrossRef]
- Kham, S.K.; Soh, C.K.; Liu, T.C.; Chan, Y.H.; Ariffin, H.; Tan, P.L.; Yeoh, A.E. Thiopurine S-methyltransferase activity in three major Asian populations: A population-based study in Singapore. Eur. J. Clin. Pharmacol. 2008, 64, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, G.; Sinha, R.; Naithani, R.; Chandgothia, M. Thiopurine S-methyltransferase gene polymorphism and 6-mercaptopurine dose intensity in Indian children with acute lymphoblastic leukemia. Leuk. Res. 2010, 34, 1023–1026. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Manabe, A.; Fukushima, H.; Suzuki, R.; Nakadate, H.; Kondoh, K.; Nakamura, K.; Koh, K.; Fukushima, T.; Tsuchida, M.; et al. Multidrug resistance protein 4 (MRP4) polymorphisms impact the 6-mercaptopurine dose tolerance during maintenance therapy in Japanese childhood acute lymphoblastic leukemia. Pharmacogenomics J. 2015, 15, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, C.M.; Mendes, M.A.; Ma, J.D. Thiopurine methyltransferase (TPMT) genotyping to predict myelosuppression risk. PLoS Curr. 2011, 3, Rrn1236. [Google Scholar] [CrossRef] [PubMed]
- Relling, M.V.; Gardner, E.E.; Sandborn, W.J.; Schmiegelow, K.; Pui, C.H.; Yee, S.W.; Stein, C.M.; Carrillo, M.; Evans, W.E.; Hicks, J.K.; et al. Clinical pharmacogenetics implementation consortium guidelines for thiopurine methyltransferase genotype and thiopurine dosing: 2013 update. Clin. Pharmacol. Ther. 2013, 93, 324–325. [Google Scholar] [CrossRef] [Green Version]
- Ebbesen, M.S.; Nygaard, U.; Rosthøj, S.; Sørensen, D.; Nersting, J.; Vettenranta, K.; Wesenberg, F.; Kristinsson, J.; Harila-Saari, A.; Schmiegelow, K. Hepatotoxicity During Maintenance Therapy and Prognosis in Children With Acute Lymphoblastic Leukemia. J. Pediatr. Hematol. Oncol. 2017, 39, 161–166. [Google Scholar] [CrossRef]
- Relling, M.V.; Hancock, M.L.; Rivera, G.K.; Sandlund, J.T.; Ribeiro, R.C.; Krynetski, E.Y.; Pui, C.H.; Evans, W.E. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J. Natl. Cancer. Inst. 1999, 91, 2001–2008. [Google Scholar] [CrossRef]
- Nielsen, S.N.; Grell, K.; Nersting, J.; Abrahamsson, J.; Lund, B.; Kanerva, J.; Jónsson Ó, G.; Vaitkeviciene, G.; Pruunsild, K.; Hjalgrim, L.L.; et al. DNA-thioguanine nucleotide concentration and relapse-free survival during maintenance therapy of childhood acute lymphoblastic leukaemia (NOPHO ALL2008): A prospective substudy of a phase 3 trial. Lancet Oncol. 2017, 18, 515–524. [Google Scholar] [CrossRef]
Risk Classification | RAMA ALL Protocol Details | Chemotherapy in Maintenance Phase |
---|---|---|
Low |
|
|
Standard | All cases of T-cell ALL and those of B-cell precursor ALL that do not meet the criteria for low risk or high-risk group |
|
High |
|
Characteristics | n |
---|---|
Age at diagnosis, years (mean ± SD) | 6.11 ± 3.86 |
Gender (n, %) | |
Male | 63 (54.78) |
Female | 52 (45.22) |
Risk group (n, %) | |
High | 14 (12.17) |
Standard | 50 (43.48) |
Low | 51 (44.35) |
Genes/SNPs | Genotype | Genotype Frequency n (%) | MAF | p-Value |
---|---|---|---|---|
TPMT 719A > G (rs1142345, *3C) | AA (*1/*1) AG (*1/*3C) | 102 (88.70) 13 (11.30) | G = 0.057 | 1.000 |
ITPA 94C > A (rs1127354) | CC CA AA | 75 (65.22) 36 (31.30) 4 (3.48) | A = 0.191 | 1.000 |
ITPA 123G > A (rs13830) | GG GA AA | 73 (63.48) 38 (33.04) 4 (3.48) | A = 0.200 | 1.000 |
MRP4 912C > A (rs2274407) | CC CA | 88 (76.52) 27 (23.48) | A = 0.117 | 0.355 |
MRP4 2269G > A (rs3765534) | GG GA | 104 (90.43) 11 (9.57) | A = 0.048 | 1.000 |
Gene/SNPs | Genotype n (%) | WBC Weeks 1–8 | WBC Weeks 9–24 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 (WBC < 2000 cell/mm3) | Model 2 (WBC < 1000 cell/mm3) | Model 1 (WBC < 2000 cell/mm3) | Model 2 (WBC < 1000 cell/mm3) | ||||||||||
Toxic | Non-Toxic | p-Value | Toxic | Non-Toxic | p-Value | Toxic | Non-Toxic | p-Value | Toxic | Non-Toxic | p-Value | ||
TPMT*3C 719A > G | |||||||||||||
AA (*1/*1) | 87 (87) | 39 (44.83) | 48 (55.17) | 0.031 | 6 (6.90) | 81 (93.10) | 1.000 | 58 (66.67) | 29 (33.33) | 0.101 | 19 (21.84) | 68 (78.16) | 1.000 |
AG (*1/*3C) | 13 (13) | 10 (76.92) | 3 (23.08) | 1 (7.69) | 12 (92.31) | 12 (92.31) | 1 (7.69) | 2 (15.38) | 11 (84.62) | ||||
ITPA 94C > A | |||||||||||||
CC | 65 (65) | 33 (51.52) | 32 (48.48) | 0.814 | 4 (6.06) | 61 (93.94) | 0.760 | 45 (68.18) | 20 (31.82) | 1.000 | 11 (16.67) | 54 (83.33) | 0.325 |
CA | 31 (31) | 13 (41.94) | 18 (58.06) | 3 (9.67) | 28 (90.32) | 22 (70.96) | 9 (29.03) | 9 (29.03) | 22 (70.96) | ||||
AA | 4 (4) | 2 (50) | 2 (50) | 0 (0) | 4 (100) | 3 (75) | 1 (25) | 0 (0) | 4 (100) | ||||
ITPA 123G > A | |||||||||||||
GG | 63 (63) | 31 (49.20) | 32 (50.80) | 0.935 | 3 (4.84) | 60 (95.16) | 0.425 | 43 (67.74) | 20 (32.26) | 0.923 | 12 (19.35) | 51 (80.65) | 0.668 |
GA | 33 (33) | 15 (45.45) | 18 (54.54) | 4 (12.12) | 29 (87.87) | 24 (72.72) | 9 (27.27) | 8 (24.24) | 25 (75.75) | ||||
AA | 4 (4) | 2 (50) | 2 (50) | 0 (0) | 4 (100) | 3 (75) | 1 (25) | 0 (0) | 4 (100) | ||||
MRP4 912 C > A | |||||||||||||
CC | 80 (80) | 40 (50) | 40 (50) | 0.764 | 7 (8.75) | 73 (91.25) | 0.339 | 56 (70) | 24 (30) | 1.000 | 19 (23.75) | 61 (76.25) | 0.348 |
CA | 20 (20) | 9 (45) | 11 (55) | 0 (0) | 20 (100) | 14 (70) | 6 (30) | 2 (10) | 18 (90) | ||||
MRP4 2269G > A | |||||||||||||
GG | 92 (92) | 46 (50) | 46 (50) | 0.717 | 7 (7.61) | 85 (92.39) | 1.000 | 66 (71.74) | 26 (28.26) | 0.236 | 20 (21.74) | 72 (78.26) | 1.000 |
GA | 8 (8) | 3 (37.50) | 5 (62.50) | 0 (0) | 8 (100) | 4 (50) | 4 (50) | 1 (12.50) | 7 (87.50) |
Gene/SNPs | Genotype n (%) | ANC Weeks 1–8 | ANC Weeks 9–24 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 (ANC < 1000 cell/mm3) | Model 2 (ANC < 500 cell/mm3) | Model 1 (ANC < 1000 cell/mm3) | Model 2 (ANC < 500 cell/mm3) | ||||||||||
Toxic | Non-Toxic | p-Value | Toxic | Non-Toxic | p-Value | Toxic | Non-Toxic | p-Value | Toxic | Non-Toxic | p-Value | ||
TPMT*3C 719A > G | |||||||||||||
AA (*1/*1) | 87 (87) | 49 (56.32) | 38 (43.68) | 0.549 | 19 (21.84) | 68 (78.16) | 0.014 | 57 (65.52) | 30 (34.48) | 0.215 | 40 (45.98) | 47 (54.02) | 0.543 |
AG (*1/*3C) | 13 (13) | 9 (69.23) | 4 (30.77) | 7 (53.85) | 6 (46.15) | 11 (84.62) | 2 (15.38) | 7 (53.85) | 6 (46.15) | ||||
ITPA 94C > A | |||||||||||||
CC | 65 (65) | 40 (60.61) | 25 (39.39) | 0.354 | 16 (25.76) | 49 (74.27) | 0.590 | 44 (66.67) | 21 (33.33) | 1.000 | 30 (46.97) | 35 (53.03) | 0.816 |
CA | 31 (31) | 18 (58.06) | 14 (41.93) | 9 (29.03) | 22 (70.96) | 21 (67.74) | 10 (32.26) | 15 (48.38) | 16 (51.62) | ||||
AA | 4 (4) | 3 (75) | 1 (25) | 0 (0) | 4 (100) | 3 (75) | 1 (25) | 1 (25) | 3 (75) | ||||
ITPA 123G > A | |||||||||||||
GG | 63 (63) | 39 (61.29) | 24 (38.71) | 0.314 | 15 (24.19) | 47 (75.81) | 0.546 | 43 (67.74) | 20 (32.26) | 1.000 | 30 (48.39) | 33 (51.61) | 0.818 |
GA | 33 (33) | 18 (54.54) | 15 (45.45) | 10 (30.30) | 23 (69.69) | 22 (66.67) | 11 (33.33) | 15 (45.45) | 18 (54.54) | ||||
AA | 4 (4) | 1 (25) | 3 (75) | 0 (0) | 4 (100) | 3 (75) | 1 (25) | 1 (25) | 3 (75) | ||||
MRP4 912 C > A | |||||||||||||
CC | 80 (80) | 54 (58.70) | 38 (41.30) | 0.213 | 23 (25) | 69 (75) | 0.387 | 52 (65) | 28 (35) | 0.186 | 35 (43.75) | 45 (56.25) | 0.322 |
CA | 20 (20) | 4 (50) | 4 (50) | 3 (37.50) | 5 (62.50) | 11 (55) | 9 (45) | 8 (40) | 12 (60) | ||||
MRP4 2269G > A | |||||||||||||
GG | 92 (92) | 54 (93.10) | 38 (90.48) | 0.717 | 22 (88) | 70 (93.33) | 0.409 | 64 (69.57) | 28 (30.43) | 0.264 | 45 (48.91) | 47 (51.09) | 0.282 |
GA | 8 (8) | 4 (6.9) | 4 (9.52) | 3 (12) | 5 (6.67) | 4 (50) | 4 (50) | 2 (25) | 6 (75) |
Gene/SNPs | Genotype n (%) | PLT Weeks 1–8 | PLT Weeks 9–24 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 (PLT < 50,000 cell/mm3) | Model 2 (PLT < 25,000 cell/mm3) | Model 1 (PLT < 50,000 cell/mm3) | Model 2 (PLT < 25,000 cell/mm3) | ||||||||||
Toxic | Non-Toxic | p-Value | Toxic | Non-Toxic | p-Value | Toxic | Non-Toxic | p-Value | Toxic | Non-Toxic | p-Value | ||
TPMT*3C 719A > G | |||||||||||||
AA (*1/*1) | 87 (87) | 6 (6.90) | 81 (93.10) | 1.000 | 3 (3.45) | 84 (96.55) | 0.432 | 24 (27.59) | 63 (72.41) | 0.014 | 3 (3.45) | 84 (96.55) | 0.432 |
AG (*1/*3C) | 13 (13) | 1 (7.69) | 12 (92.31) | 1 (7.69) | 12 (92.31) | 8 (61.54) | 5 (38.46) | 1 (7.69) | 12 (92.31) | ||||
ITPA 94C > A | |||||||||||||
CC | 65 (65) | 7 (10.61) | 58 (89.39) | 0.132 | 3 (4.55) | 62 (95.45) | 1.000 | 20 (30.30) | 45 (69.70) | 0.789 | 2 (3.03) | 63 (96.97) | 0.655 |
CA | 31 (31) | 0 (0) | 31 (100) | 1 (2.94) | 30 (97.06) | 10 (35.29) | 21 (64.71) | 2 (5.88) | 29 (94.12) | ||||
AA | 4 (4) | 0 (0) | 4 (100) | 0 (0) | 4 (100) | 2 (50) | 2 (50) | 0 (0) | 4 (100) | ||||
ITPA 123G > A | |||||||||||||
GG | 63 (63) | 7 (11.29) | 56 (88.71) | 0.133 | 3 (4.84) | 60 (95.16) | 1.000 | 19 (30.65) | 44 (69.35) | 0.685 | 2 (3.23) | 61 (94.74) | 0.666 |
GA | 33 (33) | 0 (0) | 33 (100) | 1 (2.63) | 32 (97.37) | 11 (34.21) | 22 (65.79) | 2 (50) | 31 (32.29) | ||||
AA | 4 (4) | 0 (0) | 4 (100) | 0 (0) | 4 (100) | 2 (50) | 2 (50) | 0 (0) | 4 (100) | ||||
MRP4 912 C > A | |||||||||||||
CC | 80 (80) | 7 (8.75) | 73 (91.25) | 0.339 | 4 (5) | 76 (95) | 0.581 | 28 (35) | 52 (65) | 0.285 | 3 (3.75) | 77 (96.25) | 1.000 |
CA | 20 (20) | 0 (0) | 20 (100) | 0 (0) | 20 (100) | 4 (20) | 16 (80) | 1 (5) | 19 (95) | ||||
MRP4 2269G > A | |||||||||||||
GG | 92 (92) | 7 (7.61) | 85 (92.39) | 1.000 | 4 (4.35) | 88 (95.65) | 1.000 | 30 (32.61) | 62 (67.39) | 1.000 | 3 (3.26) | 89 (96.74) | 0.287 |
GA | 8 (8) | 0 (0) | 8 (100) | 0 (0) | 8 (100) | 2 (25) | 6 (75) | 1 (12.50) | 7 (87.50) |
Gene/SNPs | Genotype | Liver Weeks 1–8 | Liver Weeks 9–24 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n (%) | AST | ALT | AST | ALT | |||||||||
Toxic | Non-Toxic | p-Value | Toxic | Non-Toxic | p-Value | Toxic | Non-Toxic | p-Value | Toxic | Non-Toxic | p-Value | ||
TPMT*3C 719A > G | |||||||||||||
AA (*1/*1) | 86 (87.75) | 9 (10.47) | 77 (89.53) | 1.000 | 22 (25.58) | 64 (72.42) | 0.063 | 19 (22.09) | 67 (77.91) | 0.115 | 28 (32.56) | 58 (67.44) | 1.000 |
AG (*1/*3C) | 12 (12.25) | 1 (8.33) | 11 (91.67) | 0 (0) | 12 (100) | 0 (0) | 12 (100) | 4 (33.33) | 8 (66.67) | ||||
ITPA 94C > A | |||||||||||||
CC | 64 (65.30) | 9 (14.06) | 55 (85.94) | 0.158 | 15 (23.44) | 49 (76.56) | 0.805 | 15 (23.44) | 49 (76.56) | 0.191 | 21 (32.81) | 43 (67.19) | 1.000 |
CA + AA | 34 (34.70) | 1 (2.94) | 33 (97.05) | 7 (20.59) | 27 (79.41) | 4 (11.76) | 30 (88.24) | 11 (32.35) | 23 (67.65) | ||||
ITPA 123G > A | |||||||||||||
GG | 62 (63.26) | 9 (14.52) | 53 (85.48) | 0.087 | 14 (22.58) | 48 (77.42) | 1.000 | 15 (24.19) | 47 (75.81) | 0.184 | 20 (32.26) | 42 (67.74) | 1.000 |
GA + AA | 36 (36.74) | 1 (2.78) | 35 (97.22) | 8 (22.22) | 28 (77.78) | 4 (11.11) | 32 (88.89) | 12 (33.33) | 24 (66.67) | ||||
MRP4_C912 C > A | |||||||||||||
CC | 78 (79.59) | 9 (11.54) | 69 (88.46) | 0.682 | 17 (21.79) | 61 (78.21) | 0.768 | 13 (16.67) | 65 (83.33) | 0.209 | 24 (30.77) | 54 (69.23) | 0.436 |
CA | 20 (20.41) | 1 (5) | 19 (95) | 5 (25) | 15 (75) | 6 (30) | 14 (70) | 8 (40) | 12 (60) | ||||
MRP4_2269G > A | |||||||||||||
GG | 91 (92.85) | 10 (10.99) | 81 (89.01) | 1.000 | 19 (20.88) | 72 (79.12) | 0.186 | 18 (19.78) | 73 (80.22) | 1.000 | 31 (34.07) | 60 (65.93) | 0.421 |
GA | 7 (7.15) | 0 (0) | 7 (100) | 3 (42.85) | 4 (5.25) | 1 (14.29) | 6 (85.71) | 1 (14.29) | 6 (85.71) |
Gene/SNPs | n (%) |
8 Weeks (Dose Intensity, %) | p-Value | 9–24 Weeks (Dose Intensity, %) | p-Value | An Average of 24 Weeks (Dose Intensity, %) | p-Value |
TPMT*3C | |||||||
AA (*1/*1) | 102 (88.69) | 66.67 (57.07–100) | 0.852 | 66.67 (47.60–85.63) | 0.641 | 66.67 (52.40–88.09) | 0.754 |
AG (*1/*3C) | 13 (11.31) | 66.67 (47.61–100) | 66.67 (41.68–83.33) | 66.67 (44.40–91.66) | |||
ITPA_94C > A | |||||||
CC | 75 (65.22) | 66.67 (57.07–98.8) | 0.882 | 66.07 (47.60–85.69) | 0.783 | 66.67 (52.40–87.50) | 0.800 |
AC | 36 (31.30) | 66.67 (52.40–109) | 66.67 (47.60–76.13) | 66.67 (52.27–90.40) | |||
AA | 4 (3.48) | 83.33 (63.07–100) | 69.0 (55.94–92.83) | 76.17 (59.50–96.41) | |||
ITPA_123G > A | |||||||
GG | 73 (63.48) | 66.67 (57.07–97.60) | 0.882 | 66.67 (47.60–85.73) | 0.783 | 66.67 (52.36–86.91) | 0.800 |
GA | 38 (33.04) | 66.67 (52.40–110) | 66.67 (47.60–76.03) | 66.67 (52.35–88.66) | |||
AA | 4 (3.48) | 89.0 (63.07–100) | 89.0 (55.94–92.8) | 76.17 (59.30–9.641) | |||
MRP4_912C > T | |||||||
CC | 88 (76.52) | 69.0 (57.07–100) | 0.593 | 66.67 (52.43–89.82) | 0.902 | 66.67 (47.60–85.06) | 0.830 |
CT | 27 (23.48) | 66.67 (52.40–100) | 66.63 (66.03–83.33) | 66.67 (47.60–85.60) | |||
MRP4_2269G > A | |||||||
GG | 104 (90.43) | 71.45 (61.87–133) | 0.006 | 66.67 (47.60–85.73) | 0.074 | 66.67 (54.73–91.24) | 0.020 |
GA | 11 (9.57) | 52.40 (47.60–85.73) | 47.60 (38.09–66.67) | 52.40 (45.25–71.43) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jantararoungtong, T.; Wiwattanakul, S.; Tiyasirichokchai, R.; Prommas, S.; Sukprasong, R.; Koomdee, N.; Jinda, P.; Rachanakul, J.; Nuntharadthanaphong, N.; Pakakasama, S.; et al. TPMT*3C as a Predictor of 6-Mercaptopurine-Induced Myelotoxicity in Thai Children with Acute Lymphoblastic Leukemia. J. Pers. Med. 2021, 11, 783. https://doi.org/10.3390/jpm11080783
Jantararoungtong T, Wiwattanakul S, Tiyasirichokchai R, Prommas S, Sukprasong R, Koomdee N, Jinda P, Rachanakul J, Nuntharadthanaphong N, Pakakasama S, et al. TPMT*3C as a Predictor of 6-Mercaptopurine-Induced Myelotoxicity in Thai Children with Acute Lymphoblastic Leukemia. Journal of Personalized Medicine. 2021; 11(8):783. https://doi.org/10.3390/jpm11080783
Chicago/Turabian StyleJantararoungtong, Thawinee, Supaporn Wiwattanakul, Rawiporn Tiyasirichokchai, Santirhat Prommas, Rattanaporn Sukprasong, Napatrupron Koomdee, Pimonpan Jinda, Jiratha Rachanakul, Nutthan Nuntharadthanaphong, Samart Pakakasama, and et al. 2021. "TPMT*3C as a Predictor of 6-Mercaptopurine-Induced Myelotoxicity in Thai Children with Acute Lymphoblastic Leukemia" Journal of Personalized Medicine 11, no. 8: 783. https://doi.org/10.3390/jpm11080783
APA StyleJantararoungtong, T., Wiwattanakul, S., Tiyasirichokchai, R., Prommas, S., Sukprasong, R., Koomdee, N., Jinda, P., Rachanakul, J., Nuntharadthanaphong, N., Pakakasama, S., Anurathapan, U., Hongeng, S., & Sukasem, C. (2021). TPMT*3C as a Predictor of 6-Mercaptopurine-Induced Myelotoxicity in Thai Children with Acute Lymphoblastic Leukemia. Journal of Personalized Medicine, 11(8), 783. https://doi.org/10.3390/jpm11080783