Identification of Adolescents with Adiposities and Elevated Blood Pressure and Implementation of Preventive Measures Warrants the Use of Multiple Clinical Assessment Tools
Abstract: Background
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Measurements
2.3.1. Total Adiposity
2.3.2. Abdominal Adiposity
2.4. Blood Pressure Measurement
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zayed, A.A.; Beano, A.M.; Haddadin, F.I.; Radwan, S.S.; Allauzy, S.A.; Alkhayyat, M.M.; Al-Dahabrah, Z.A.; Al-Hasan, Y.G.; Yousef, A.-M.F. Prevalence of short stature, underweight, overweight, and obesity among school children in Jordan. BMC Public Health 2016, 16, 1040. [Google Scholar] [CrossRef] [Green Version]
- Tchernof, A.; Després, J.-P. Pathophysiology of human visceral obesity: An update. Physiol. Rev. 2013. [Google Scholar] [CrossRef]
- Wang, S.; Ren, J. Obesity paradox in aging: From prevalence to pathophysiology. Progress Cardiovasc. Dis. 2018, 61, 182–189. [Google Scholar] [CrossRef]
- Albuquerque, D.; Nóbrega, C.; Samouda, H.; Manco, L. Assessment of obesity and abdominal obesity among Portuguese children. Acta Med. Portuguesa 2012, 25, 169–173. [Google Scholar]
- Bendor, C.D.; Bardugo, A.; Pinhas-Hamiel, O.; Afek, A.; Twig, G. Cardiovascular morbidity, diabetes and cancer risk among children and adolescents with severe obesity. Cardiovasc. Diabetol. 2020, 19, 79. [Google Scholar] [CrossRef]
- Branca, F.; Nikogosian, H.; Lobstein, T. The Challenge Obesity in the WHO European Region and the Strategies for Response: Summary; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Güngör, N.K. Overweight and obesity in children and adolescents. J. Clin. Res. Pediatr. Endocrinol. 2014, 6, 129. [Google Scholar] [CrossRef] [PubMed]
- Chait, A.; den Hartigh, L.J. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Prastowo, N.A.; Haryono, I.R. Elevated blood pressure and its relationship with bodyweight and anthropometric measurements among 8–11-year-old Indonesian school children. J. Public Health Res. 2020, 9, 1723. [Google Scholar] [CrossRef]
- Lande, M.B.; Carson, N.L.; Roy, J.; Meagher, C.C. Effects of childhood primary hypertension on carotid intima media thickness: A matched controlled study. Hypertension 2006, 48, 40–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Must, A.; Jacques, P.F.; Dallal, G.E.; Bajema, C.J.; Dietz, W.H. Long-term morbidity and mortality of overweight adolescents: A follow-up of the Harvard Growth Study of 1922 to 1935. N. Engl. J. Med. 1992, 327, 1350–1355. [Google Scholar] [CrossRef] [PubMed]
- Freedman, D.S.; Mei, Z.; Srinivasan, S.R.; Berenson, G.S.; Dietz, W.H. Cardiovascular risk factors and excess adiposity among overweight children and adolescents: The Bogalusa Heart Study. J. Pediatr. 2007, 150, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Stamler, J.; Stamler, R.; Neaton, J.D. Blood pressure, systolic and diastolic, and cardiovascular risks: US population data. Arch. Int. Med. 1993, 153, 598–615. [Google Scholar] [CrossRef]
- Freedman, D.S.; Dietz, W.H.; Srinivasan, S.R.; Berenson, G.S. The relation of overweight to cardiovascular risk factors among children and adolescents: The Bogalusa Heart Study. Pediatrics 1999, 103, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Genovesi, S.; Giussani, M.; Pieruzzi, F.; Vigorita, F.; Arcovio, C.; Cavuto, S.; Stella, A. Results of blood pressure screening in a population of school-aged children in the province of Milan: Role of overweight. J. Hypertens. 2005, 23, 493–497. [Google Scholar] [CrossRef]
- Wang, M.; Kelishadi, R.; Khadilkar, A.; Hong, Y.M.; Nawarycz, T.; Krzywińska-Wiewiorowska, M.; Aounallah-Skhiri, H.; Motlagh, M.E.; Kim, H.S.; Khadilkar, V. Body mass index percentiles and elevated blood pressure among children and adolescents. J. Human Hypertens. 2020, 34, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual; Human Kinetics Books: Champaign, IL, USA, 1988. [Google Scholar]
- Jebb, S.; McCarthy, D.; Fry, T.; Prentice, A. New body fat reference curves for children. Int. J. Obes. 2006, 30, A156–A157. [Google Scholar]
- Siegel, M.J.; Hildebolt, C.F.; Bae, K.T.; Hong, C.; White, N.H. Total and intraabdominal fat distribution in preadolescents and adolescents: Measurement with MR imaging. Radiology 2007, 242, 846–856. [Google Scholar] [CrossRef]
- Pandit, D.S.; Khadilkar, A.V.; Chiplonkar, S.A.; Khadilkar, V.V.; Kinare, A.S. Arterial stiffness in obese children: Role of adiposity and physical activity. Indian J. Endocrinol. Metabol. 2014, 18, 70. [Google Scholar]
- Umer, A.; Kelley, G.A.; Cottrell, L.E.; Giacobbi, P.; Innes, K.E.; Lilly, C.L. Childhood obesity and adult cardiovascular disease risk factors: A systematic review with meta-analysis. BMC Public Health 2017, 17, 683. [Google Scholar] [CrossRef] [Green Version]
- Kelishadi, R.; Heshmat, R.; Ardalan, G.; Qorbani, M.; Taslimi, M.; Poursafa, P.; Keramatian, K.; Taheri, M.; Motlagh, M.-E. First report on simplified diagnostic criteria for pre-hypertension and hypertension in a national sample of adolescents from the Middle East and North Africa: The CASPIAN-III study. J. Pediatr. 2014, 90, 85–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alp, H.; Karaarslan, S.; Eklioğlu, B.S.; Atabek, M.E.; Altın, H.; Baysal, T. Association between nonalcoholic fatty liver disease and cardiovascular risk in obese children and adolescents. Canadian J. Cardiol. 2013, 29, 1118–1125. [Google Scholar] [CrossRef]
- Gupta, P.P.; Fonarow, G.C.; Horwich, T.B. Obesity and the obesity paradox in heart failure. Canadian J. Cardiol. 2015, 31, 195–202. [Google Scholar] [CrossRef]
- Appel, L.J.; Brands, M.W.; Daniels, S.R.; Karanja, N.; Elmer, P.J.; Sacks, F.M. Dietary approaches to prevent and treat hypertension: A scientific statement from the American Heart Association. Hypertension 2006, 47, 296–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whelton, P.K.; He, J.; Cutler, J.A.; Brancati, F.L.; Appel, L.J.; Follmann, D.; Klag, M.J. Effects of oral potassium on blood pressure: Meta-analysis of randomized controlled clinical trials. JAMA 1997, 277, 1624–1632. [Google Scholar] [CrossRef] [PubMed]
- Whelton, S.P.; Hyre, A.D.; Pedersen, B.; Yi, Y.; Whelton, P.K.; He, J. Effect of dietary fiber intake on blood pressure: A meta-analysis of randomized, controlled clinical trials. LWW 2005, 2005, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Witham, M.D.; Nadir, M.A.; Struthers, A.D. Effect of vitamin D on blood pressure: A systematic review and meta-analysis. J. Hypertens. 2009, 27, 1948–1954. [Google Scholar] [CrossRef]
- Fisher, N.D.; Hollenberg, N.K. Aging and vascular responses to flavanol-rich cocoa. J. Hypertens. 2006, 24, 1575–1580. [Google Scholar] [CrossRef] [Green Version]
- Karim, M.; McCormick, K.; Kappagoda, C.T. Effects of cocoa extracts on endothelium-dependent relaxation. J. Nutr. 2000, 130, 2105S–2108S. [Google Scholar] [CrossRef]
- Taubert, D.; Roesen, R.; Schömig, E. Effect of cocoa and tea intake on blood pressure: A meta-analysis. Arch. Int. Med. 2007, 167, 626–634. [Google Scholar] [CrossRef] [Green Version]
- Pausova, Z.; Mahboubi, A.; Abrahamowicz, M.; Leonard, G.T.; Perron, M.; Richer, L.; Veillette, S.; Gaudet, D.; Paus, T. Sex differences in the contributions of visceral and total body fat to blood pressure in adolescence. Hypertension 2012, 59, 572–579. [Google Scholar] [CrossRef] [Green Version]
- Pazin, D.C.; da Luz Kaestner, T.L.; Olandoski, M.; Baena, C.P.; de Azevedo Abreu, G.; Kuschnir, M.C.C.; Bloch, K.V.; Faria-Neto, J.R. Association Between Abdominal Waist Circumference and Blood Pressure In Brazilian Adolescents With Normal Body Mass Index: Waist circumference and blood pressure in Adolescents. Glob. Heart 2020, 15. [Google Scholar] [CrossRef] [Green Version]
- Poirier, P.; Giles, T.D.; Bray, G.A.; Hong, Y.; Stern, J.S.; Pi-Sunyer, F.X.; Eckel, R.H. Obesity and cardiovascular disease: Pathophysiology, evaluation, and effect of weight loss: An update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006, 113, 898–918. [Google Scholar]
- Reddy, P.; Lent-Schochet, D.; Ramakrishnan, N.; McLaughlin, M.; Jialal, I. Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clin. Chim. Acta 2019, 496, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Tsioufis, C.; Kordalis, A.; Flessas, D.; Anastasopoulos, I.; Tsiachris, D.; Papademetriou, V.; Stefanadis, C. Pathophysiology of resistant hypertension: The role of sympathetic nervous system. Int. J. Hypertens. 2011, 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Li, H.; Xia, N. The Interplay Between Adipose Tissue and Vasculature: Role of Oxidative Stress in Obesity. Front. Cardiovasc. Med. 2021, 8, 131. [Google Scholar] [CrossRef]
- Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821–1830. [Google Scholar] [CrossRef] [PubMed]
- Dinh, Q.N.; Drummond, G.R.; Sobey, C.G.; Chrissobolis, S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. BioMed Res. Int. 2014, 2014. [Google Scholar] [CrossRef] [Green Version]
- Landsberg, L.; Aronne, L.J.; Beilin, L.J.; Burke, V.; Igel, L.I.; Lloyd-Jones, D.; Sowers, J. Obesity-related hypertension: Pathogenesis, cardiovascular risk, and treatment—A position paper of the The Obesity Society and the American Society of Hypertension. Obesity 2013, 21, 8–24. [Google Scholar] [CrossRef] [PubMed]
- Ke, C.; Zhu, X.; Zhang, Y.; Shen, Y. Metabolomic characterization of hypertension and dyslipidemia. Metabolomics 2018, 14, 117. [Google Scholar] [CrossRef]
- Artwohl, M.; Roden, M.; Waldhäusl, W.; Freudenthaler, A.; Baumgartner-Parzer, S.M. Free fatty acids trigger apoptosis and inhibit cell cycle progression in human vascular endothelial cells. FASEB J. 2004, 18, 146–148. [Google Scholar] [CrossRef] [Green Version]
- Boden, G.; She, P.; Mozzoli, M.; Cheung, P.; Gumireddy, K.; Reddy, P.; Xiang, X.; Luo, Z.; Ruderman, N. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-κB pathway in rat liver. Diabetes 2005, 54, 3458–3465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgartner, R.N.; Ross, R.; Heymsfield, S.B. Does adipose tissue influence bioelectric impedance in obese men and women? J. Appl. Physiol. 1998, 84, 257–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beechy, L.; Galpern, J.; Petrone, A.; Das, S.K. Assessment tools in obesity—Psychological measures, diet, activity, and body composition. Physiol. Behav. 2012, 107, 154–171. [Google Scholar] [CrossRef]
- Das, S.K. Body composition measurement in severe obesity. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 602–606. [Google Scholar] [CrossRef] [Green Version]
- Duren, D.L.; Sherwood, R.J.; Czerwinski, S.A.; Lee, M.; Choh, A.C.; Siervogel, R.M.; Chumlea, W.C. Body composition methods: Comparisons and interpretation. J. Diabetes Sci. Technol. 2008, 2, 1139–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variable | n (%) |
---|---|
Region | |
Northern Jordan | 363 (35.1) |
Mid-Jordan | 508 (49.1) |
Southern Jordan | 164 (15.8) |
School grade | |
7th | 181 (17.5) |
8th | 230 (22.2) |
9th | 224 (21.6) |
10th | 220 (21.3) |
11th | 180 (17.4) |
Father educational level † | |
Illiterate | 23 (2.2) |
≤12 years | 538 (52.0) |
>12 years | 474 (45.8) |
Mother educational level † | |
Illiterate | 17 (1.6) |
≤12 years | 576 (55.7) |
>12 years | 442 (42.7) |
Family Income (JD) * | |
≤300 | 176 (17.0) |
301–499 | 297 (28.7) |
500–799 | 234 (22.6) |
≥800 | 296 (28.6) |
Cigarette smoking | |
Yes | 243 (23.5) |
No | 792 (76.5) |
Frequency of Eating Different Food/Week | Mean ± SD | p-Value | Frequency of Eating Different Food/Week | Mean ± SD | p-Value |
---|---|---|---|---|---|
Vegetable | Nuts | ||||
Daily | 121.25 a ± 13.22 | 0.008 | Daily | 120.63 ± 13.11 | 0.162 |
4–6 | 123.78 b ± 13.38 | 4–6 | 122.90 ± 13.93 | ||
1–3 | 123.08 b ± 13.29 | 1–3 | 123.38 ± 13.29 | ||
No | 128.40 c ± 16.77 | No | 123.91 ± 13.65 | ||
Fruit | Chocolate | 0.013 | |||
Daily | 121.07 a ± 13.22 | 0.033 | Daily | 121.81 a ± 13.23 | |
4–6 | 122.79 b ± 13.18 | 4–6 | 121.07 a ± 12.66 | ||
1–3 | 124.22 b ± 13.76 | 1–3 | 124.56 b ± 13.89 | ||
No | 125.21 c ± 15.28 | No | 124.59 c ± 14.31 | ||
Milk and dairy products | Soda | ||||
Daily | 121.76 ± 12.89 | 0.113 | Daily | 122.90 ± 12.65 | 0.198 |
4–6 | 122.27 ± 13.46 | 4–6 | 122.03 ± 13.41 | ||
1–3 | 124.31 ± 13.75 | 1–3 | 123.24 ± 13.71 | ||
No | 122.82 ± 14.48 | No | 122.59 ± 15.42 | ||
Meat | Canned fruit juice | ||||
Daily | 121.69 ± 12.71 | 0.061 | Daily | 122.28 ± 12.82 | 0.187 |
4–6 | 122.55 ± 12.81 | 4–6 | 121.22 ± 13.44 | ||
1–3 | 122.59 ± 13.68 | 1–3 | 123.05 ± 13.64 | ||
No | 126.36 ± 15.70 | No | 125.03 ± 15.29 | ||
Fish | Legumes | ||||
Daily | 122.04 ± 18.14 | 0.898 | Daily | 122.05 ± 12.98 | 0.337 |
4–6 | 121.62 ± 12.81 | 4–6 | 121.72 ± 13.59 | ||
1–3 | 122.53 ± 13.43 | 1–3 | 123.34 ± 13.60 | ||
No | 123.96 ± 13.52 | No | 124.31 ± 13.24 |
Multivariate Analysis | ||||||
---|---|---|---|---|---|---|
Variables | Pre-SHTN ‡ OR (95% CI) | p-Value | Stage 1 SHTN ‡ OR (95% CI) | p-Value | Stage 2 SHTN ‡ OR (95% CI) | p-Value |
Body Mass Index * | ||||||
Overweight | 2.3 (1.4, 3.8) | 0.001 | 1.8 (1.01, 3.1) | 0.047 | 3.2 (2.1, 5.1) | <0.001 |
Obesity | 2.7 (1.6, 4.5) | <0.001 | 2.7 (1.6, 4.6) | <0.001 | 7.1 (4.7, 10.9) | <0.001 |
Waist circumferences | ||||||
≥90th percentile | 2.3 (1, 5.5) | 0.049 | 5 (2.3, 10.6) | <0.001 | 8.6 (4.5, 16.4) | <0.001 |
Total Fat † | ||||||
Over fat | 1.5 (0.8, 3.1) | 0.209 | 1.1 (0.5, 2.4) | 0.757 | 1.9 (1, 3.3) | 0.032 |
Obese | 2 (1.2, 3.4) | 0.009 | 2.2 (1.3, 3.8) | 0.004 | 3.5 (2.3, 5.5) | <0.001 |
Trunk Fat | ||||||
≥90th percentile | 1.6 (0.8, 3.2) | 0.195 | 4 (2.2, 7.1) | <0.001 | 5.5(3.4, 9.1) | <0.001 |
Visceral Fat | ||||||
≥90th percentile | 1.8 (0.7, 4.6) | 0.237 | 4.2 (1.9, 9.4) | <0.001 | 7.2 (3.7, 14.1) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bawadi, H.; Kassab, M.; Zanabili, A.H.; Tayyem, R. Identification of Adolescents with Adiposities and Elevated Blood Pressure and Implementation of Preventive Measures Warrants the Use of Multiple Clinical Assessment Tools. J. Pers. Med. 2021, 11, 873. https://doi.org/10.3390/jpm11090873
Bawadi H, Kassab M, Zanabili AH, Tayyem R. Identification of Adolescents with Adiposities and Elevated Blood Pressure and Implementation of Preventive Measures Warrants the Use of Multiple Clinical Assessment Tools. Journal of Personalized Medicine. 2021; 11(9):873. https://doi.org/10.3390/jpm11090873
Chicago/Turabian StyleBawadi, Hiba, Manal Kassab, Abdel Hadi Zanabili, and Reema Tayyem. 2021. "Identification of Adolescents with Adiposities and Elevated Blood Pressure and Implementation of Preventive Measures Warrants the Use of Multiple Clinical Assessment Tools" Journal of Personalized Medicine 11, no. 9: 873. https://doi.org/10.3390/jpm11090873