Relevant Biomarkers in Medical Practices: An Analysis of the Needs Addressed by an International Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. Statistical Analysis
3. Results
3.1. Characteristics of Participating Physicians
3.2. Biomarkers Requirement for Obtaining Fast Results in Daily Practice
3.3. Details about the Biomarkers of Interest
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
- You are: medical doctor/resident
- You practice in: (country)
- Your age:
- What is your medical speciality?
- A biomarker is a measurable biological characteristic that can be measured in blood, urine, saliva, or any other sample (as biology routine). Which biomarkers would be of great benefit to the patient and my quality of care if in my daily practice you could obtain a quickly result in less than 5 min (Please name the biomarkers that would be relevant to your practice)?
- What would this change in your daily practice?
- Comments:
Appendix B
Public (N = 310) | Private (N = 198) | p * | |
---|---|---|---|
Age (years) | 38 ±11 | 37 ± 9 | 0.44 |
Status | 0.0004 *** | ||
Medical Doctor | 233 (75) | 174 (88) | |
Resident | 77 (25) | 24 (12) | |
Locality | <0.0001 *** | ||
France | 207 (67) | 169 (85) | |
Europe (about France) | 33 (11) | 14 (7) | |
USA | 50 (16) | 8 (4) | |
Other | 20 (6) | 7 (4) | |
Speciality | <0.0001 *** | ||
Emergency physician | 211 (68) | 13 (7) | |
General practice | 20 (6) | 142 (72) | |
Cardiologist | 6 (2) | 14 (7) | |
Other | 73 (24) | 29 (45) | |
Favorable physicians | 306 (99) | 191 (96) | 0.12 |
Cited biomarkers | |||
Troponin | 165 (53) | 92 (46) | 0.15 |
D-dimer | 80 (26) | 66 (33) | 0.07 |
Respiratory virus test | 27 (9) | 9 (5) | 0.08 |
Ionogramme | 43 (14) | 19 (10) | 0.17 |
BNP or NT-proBNP | 41 (13) | 26 (13) | 1 |
Proteine sb100 | 14 (5) | 0 (0) | 0.001 *** |
Hemostase | 15 (5) | 10 (5) | 1 |
Blood cells count | 37 (12) | 52 (26) | <0.0001 *** |
hCG | 25 (8) | 24 (12) | 0.16 |
Creatinine and urea | 68 (22) | 26 (13) | 0.01 *** |
PCR | 91 (29) | 124 (63) | <0.0001 *** |
Procalcitonin | 33 (11) | 8 (4) | 0.01 *** |
Hepatic control | 11 (4) | 6 (3) | 0.81 |
Glycemia | 9 (3) | 10 (5) | 0.24 |
Blood gas and lactate | 39 (13) | 7 (4) | 0.0004 *** |
Don’t have an Interest | 9 (3) | 11 (6) | 0.16 |
Have a interest | |||
Improve practices | 192 (62) | 126 (64) | 0.71 |
Time gains and Fluidification | 159 (51) | 93 (47) | 0.36 |
Fastly orientation | 96 (31) | 75 (38) | 0.12 |
Variable | France (N = 376) | Hors France (N = 132) | p * |
---|---|---|---|
Age (years) | 35 ± 9 | 46 ± 11 | <0.001 *** |
Status | 0.02 *** | ||
Medical doctor | 292 (78) | 115 (87) | |
Resident | 84 (22) | 17 (13) | |
Medical speciality | <0.0001 *** | ||
Emergency physician | 137 (36) | 87 (66) | |
General practice | 153 (41) | 9 (7) | |
Cardiologist | 16 (4) | 4 (3) | |
Other | 70 (19) | 32 (24) | |
Activity | <0.0001 *** | ||
Public | 207 (55) | 103 (78) | |
Private | 139 (37) | 11 (8) | |
Mixed | 30 (8) | 18 (14) | |
Favorable physicians | 369 (98) | 128 (97) | 0.49 |
Cited biomarkers | |||
Hepatic control | 11 (3) | 6 (5) | 0.40 |
hCG | 36 (10) | 13 (10) | 1 |
Ionogramme | 46 (12) | 16 (12) | 1 |
Proteine sb100 | 11 (3) | 3 (2) | 1 |
Troponin | 192 (51) | 65 (49) | 0.76 |
D-dimer | 123 (33) | 23 (17) | 0.001 *** |
Hemostase | 20 (5) | 5 (4) | 0.64 |
BNP or NT-proBNP | 46 (12) | 21 (16) | 0.30 |
Glycemia | 10 (3) | 9 (7) | 0.06 |
Blood gas and lactate | 29 (8) | 17 (13) | 0.08 |
PCR | 190 (51) | 25 (19) | <0.0001 *** |
Blood cells count | 74 (20) | 15 (11) | 0.03 *** |
Respiratory virus test | 22 (6) | 14 (11) | 0.08 |
Creatinine and urea | 72 (19) | 22 (17) | 0.60 |
Procalcitonin | 22 (6) | 19 (14) | 0.005 |
Don’t have an Interest | 9 (2) | 11 (8) | 0.01 |
Have a interest | |||
Improve practices | 234 (62) | 84 (64) | 0.83 |
Time gains and Fluidification | 200 (53) | 52 (39) | 0.01 |
Fast orientation | 129 (34) | 42 (32) | 0.67 |
Demographic Characteristics | Biomarker | p * | OR ** | p ** | |
---|---|---|---|---|---|
Troponine quoted | Troponine non quoted | ||||
(N = 257) | (N = 251) | ||||
Age (years) | 37 ± 10 | 38 ± 11 | 0.41 | 1.01 (0.98–1.03) | 0.71 |
Status | 0.15 | ||||
Medical doctor | 199 (77) | 208 (83) | Réf. | - | |
Resident | 58 (23) | 43 (17) | 0.82 (0.48–1.42) | 0.48 | |
Speciality | <0.0001 *** | ||||
Emergency physician | 79 (31) | 83 (33) | Réf. | - | |
General practice | 152 (59) | 72 (29) | 3.58 (1.82–7.03) | <0.0001 *** | |
Other | 26 (10) | 96 (38) | 0.36 (0.19–0.68) | <0.0001 *** | |
Activity | 0.15 | ||||
Public | 165 (64) | 145 (68) | Réf. | - | |
Private or mixed | 92 (36) | 106 (42) | 1.55 (0.86–2.79) | 0.14 | |
Locality | 0.47 | ||||
France | 192 (75) | 184 (73) | Réf. | - | |
Europe (about France) | 20 (8) | 27 (11) | 0.95 (0.45–2.02) | 0.40 | |
USA | 33 (13) | 25 (10) | 0.63 (0.32–1.25) | 0.55 | |
Other | 12 (5) | 15 (6) | 0.50 (0.21–1.19) | 0.24 | |
Respiratory virus test quoted | Respiratory virus test non-quoted | ||||
(N = 38) | (N = 472) | ||||
Age (years) | 40 ± 11 | 38 ± 10 | 0.22 | 1.01 (0.97–1.05) | 0.65 |
Status | 0.51 | ||||
Medical doctor | 31 (86) | 376 (80) | Réf. | - | |
Resident | 5 (14) | 96 (20) | 1.54 (0.51–4.68) | 0.45 | |
Speciality | 0.95 | ||||
Emergency physician | 11 (31) | 151 (32) | Réf. | - | |
General practice | 17 (46) | 207 (44) | 0.34 (0.11–1.02) | 0.10 | |
Other | 8 (22) | 114 (24) | 0.48 (0.15–1.48) | 0.66 | |
Activity | 0.08 | ||||
Public | 27 (75) | 283 (60) | Réf. | - | |
Private or mixed | 9 (25) | 189 (40) | 0.28 (0.10–0.81) | 0.02 *** | |
Locality | 0.03 | ||||
France | 22 (61) | 354 (75) | Réf. | - | |
Europe (about France) | 2 (6) | 45 (10) | 0.64 (0.13–3.08) | 0.17 | |
USA | 7 (19) | 51 (11) | 1.96 (0.67–5.78) | 0.46 | |
Other | 5 (14) | 22 (5) | 3.47 (1.11–10.82) | 0.048 *** | |
D-dimers quoted | D-dimers non-quoted | ||||
(N = 146) | (N = 362) | ||||
Age (years) | 37 ± 10 | 48 ± 11 | 0.24 | 1.02 (0.99–1.05) | 0.15 |
Status | 0.33 | ||||
Medical doctor | 113 (77) | 294 (81) | Réf. | - | |
Resident | 33 (23) | 68 (19) | 0.76 (0.43–1.35) | 0.35 | |
Speciality | <0.0001 | ||||
Emergency physician | 61 (42) | 101 (28) | Réf. | - | |
General practice | 73 (50) | 151 (42) | 1.50 (0.71–3.15) | 0.31 | |
Other | 12 (8) | 110 (30) | 0.24 (0.11–0.53) | <0.0001 *** | |
Activity | 0.07 | ||||
Public | 80 (55) | 230 (64) | Réf. | - | |
Private or mixed | 66 (45) | 132 (36) | 1.63 (0.83–3.21) | 0.16 | |
Locality | 0.01 | ||||
France | 123 (84) | 253 (70) | Réf. | - | |
Europe (about France) | 7 (5) | 40 (11) | 0.43 (0.17–1.09) | 0.18 | |
USA | 11 (8) | 47 (13) | 0.32 (0.14–0.70) | 0.001 | |
Other | 5 (3) | 22 (6) | 0.38 (0.14–1.08) | 0.28 | |
BNP/NT-proBNP quoted | BNP/NT-proBNP non-quoted | ||||
(N = 67) | (N = 441) | ||||
Age (years) | 39 ± 11 | 38 ± 10 | 0.30 | 1.02 (0.99–1.05) | 0.26 |
Status | 0.41 | ||||
Medical doctor | 51 (76) | 356 (81) | Réf. | - | |
Resident | 16 (24) | 85 (19) | 0.63 (0.31–1.3) | 0.21 | |
Speciality | 0.51 | ||||
Emergency physician | 18 (27) | 144 (33) | Réf. | - | |
General practice | 31 (51) | 190 (43) | 2 (0.78–5.13) | 0.09 | |
Other | 15 (22) | 107 (24) | 1.1 (0.46–2.66) | 0.47 | |
Activity | 1 | ||||
Public | 41 (61) | 269 (61) | Réf. | – | |
Private or mixed | 26 (39) | 172 (39) | 1.61 (0.73–3.56) | 0.24 | |
Locality | 0.18 | ||||
France | 46 (69) | 330 (75) | Réf. | - | |
Europe (about France) | 11 (16) | 36 (8) | 1.89 (0.82–4.4) | 0.07 | |
USA | 6 (9) | 52 (12) | 0.59 (0.22–1.63) | 0.14 | |
Other | 4 (6) | 23 (5) | 1.03 (0.33–3.20) | 0.98 | |
PCR quoted | PCR non-quoted | ||||
(N = 215) | (N = 293) | ||||
Age (years) | 35 ± 8 | 40 ± 11 | <0.001 | 0.97 (0.94–0.99) | 0.03 *** |
Status | 0.02 | ||||
Medical doctor | 162 (75) | 245 (84) | Réf. | - | |
Resident | 53 (25) | 48 (16) | 0.72 (0.40–1.27) | 0.26 | |
Speciality | <0.001 | ||||
Emergency physician | 120 (56) | 42 (14) | Réf. | - | |
General practice | 65 (30) | 159 (54) | 0.30 (0.15–0.60) | 0.01 *** | |
Other | 30 (14) | 92 (31) | 0.17 (0.09–0.33) | <0.0001 *** | |
Activity | <0.001 | ||||
Public | 91 (42) | 219 (75) | Réf. | - | |
Private or mixed | 124 (58) | 74 (25) | 1.85 (1.001–3.41) | 0.049 ** | |
Locality | <0.001 | ||||
France | 190 (88) | 186 (63) | Réf. | - | |
Europe (about France) | 15 (7) | 32 (11) | 1.22 (0.58–2.58) | 0.31 | |
USA | 7 (3) | 51 (17) | 0.32 (0.13–0.78) | 0.01 *** | |
Other | 3 (1) | 24 (8) | 0.19 (0.05–0.68) | 0.04 *** | |
PCT quoted | PCT non-quoted | ||||
(N = 41) | (N = 467) | ||||
Age (years) | 48 ± 10 | 38 ± 10 | 0.68 | 0.99 (0.95–1.03) | 0.57 |
Status | 0.42 | ||||
Medical doctor | 31 (76) | 376 (81) | Réf. | - | |
Resident | 10 (24) | 91 (19) | 0.84 (0.34–2.1) | 0.71 | |
Speciality | 0.07 | ||||
Emergency physician | 7 (17) | 155 (33) | Réf. | - | |
General practice | 24 (59) | 200 (43) | 1.07 (0.33–3.41) | 0.99 | |
Other | 10 (24) | 112 (24) | 1.13 (0.35–3.64) | 0.84 | |
Activity | 0.01 | ||||
Public | 33 (80) | 277 (59) | Réf. | - | |
Private or mixed | 8 (20) | 190 (41) | 0.46 (0.16–1.30) | 0.14 | |
Locality | 0.01 | ||||
France | 22 (54) | 354 (76) | Réf. | - | |
Europe (about France) | 6 (15) | 41 (9) | 2.37 (0.82–6.88) | 0.72 | |
USA | 9 (22) | 49 (10) | 2.84 (1.07–7.54) | 0.03 *** | |
Other | 4 (10) | 23 (5) | 2.65 (0.81–8.66) | 0.56 | |
Creatinin/urea quoted | Creatinin/urea non-quoted | ||||
(N = 94) | (N = 414) | ||||
Age (years) | 37 ± 9 | 38 ± 11 | 0.58 | 0.99 (0.96–1.02) | 0.34 |
Status | 0.48 | ||||
Medical doctor | 78 (83) | 329 (79) | Réf. | - | |
Resident | 16 (17) | 85 (21) | 1.75 (0.88–3.46) | 0.11 | |
Speciality | 0.22 | ||||
Emergency physician | 23 (24) | 139 (34) | Réf. | - | |
General practice | 47 (50) | 177 (53) | 1.12 (0.49–2.53) | 0.87 | |
Other | 24 (26) | 98 (24) | 1.13 (0.52–2.48) | 0.81 | |
Activity | 0.01 | ||||
Public | 68 (72) | 242 (58) | Réf. | - | |
Private or mixte | 26 (28) | 172 (42) | 0.51 (0.25–1.04) | 0.07 | |
Locality | 0.97 | ||||
France | 72 (77) | 304 (73) | Réf. | - | |
Europe (about France) | 8 (9) | 39 (9) | 0.86 (0.36–2.04) | 0.88 | |
USA | 10 (11) | 48 (12) | 0.76 (0.33–1.72) | 0.83 | |
Other | 4 (4) | 23 (6) | 0.68 (0.22–2.07) | 0.67 | |
BCC quoted | BCC non-quoted | ||||
(N = 89) | (N = 419) | ||||
Age (years) | 36 ± 9 | 38 ± 11 | 0.16 | 0.99 (0.97–1.03) | 0.80 |
Status | 0.99 | ||||
Medical doctor | 72 (81) | 335 (80) | Réf. | - | |
Resident | 1 (19) | 84 (20) | 1.01 (0.51–2) | 0.97 | |
Speciality | <0.0001 | ||||
Emergency physician | 49 (55) | 113 (27) | Réf. | - | |
General practice | 27 (30) | 197 (47) | 0.46 (0.20–1.07) | 0.51 | |
Other | 13 (15) | 109 (26) | 0.35 (0.16–0.77) | 0.03 *** | |
Activity | <0.0001 | ||||
Public | 37 (42) | 273 (65) | Réf. | - | |
Private or mixed | 52 (58) | 146 (35) | 1.47 (0.71–3.06) | 0.30 | |
Locality | 0.21 | ||||
France | 74 (83) | 302 (72) | Réf. | - | |
Europe (about France) | 6 (7) | 41 (10) | 1.01 (0.38–2.73) | 0.58 | |
USA | 7 (8) | 51 (12) | 0.93 (0.36–2.41) | 0.73 | |
Other | 2 (2) | 25 (6) | 0.46 (0.10–2.05) | 0.32 | |
Ionogram quoted | Ionogram non-quoted | ||||
(N = 62) | (N = 446) | ||||
Age (years) | 40 ± 11 | 38 ± 10 | 0.13 | 1.03 (0.99–1.16) | 0.11 |
Status | 0.50 | ||||
Medical doctor | 52 (84) | 355 (80) | Réf. | - | |
Resident | 10 (16) | 91 (20) | 1.09 (0.48–2.48) | 0.84 | |
Speciality | 0.45 | ||||
Emergency physician | 18 (29) | 144 (32) | Réf. | - | |
General practice | 32 (52) | 192 (43) | 0.77 (0.3–1.98) | 0.91 | |
Other | 12 (19) | 110 (25) | 0.64 (0.25–1.64) | 0.39 | |
Activity | 0.17 | ||||
Public | 43 (69) | 267 (60) | Réf. | - | |
Private or mixed | 19 (31) | 179 (40) | 0.54 (0.23–1.27) | 0.16 | |
Locality | 0.15 | ||||
France | 46 (74) | 330 (74) | Réf. | - | |
Europe (about France) | 2 (3) | 45 (10) | 0.25 (0.05–1.1) | 0.09 | |
USA | 11 (18) | 47 (11) | 1.09 (0.46–2.56) | 0.17 | |
Other | 3 (5) | 24 (5) | 0.72 (0.20–2.55) | 0.87 | |
PCT quoted | PCT non-quoted | ||||
(N = 49) | (N = 459) | ||||
Age (years) | 39 ± 11 | 38 ± 10 | 0.26 | 1.01 (0.98–1.05) | 0.46 |
Status | 0.19 | ||||
Medical doctor | 43 (88) | 364 (79) | Réf. | - | |
Resident | 6 (12) | 95 (21) | 1.53 (0.57–4.08) | 0.40 | |
Speciality | 0.24 | ||||
Emergency physician | 28 (37) | 144 (32) | Réf. | - | |
General practice | 24 (59) | 200 (44) | 1.96 (0.65–5.86) | 0.17 | |
Other | 7 (14) | 115 (25) | 0.71 (0.25–1.99) | 0.32 | |
Activity | 0.17 | ||||
Public | 25 (51) | 285 (62) | Réf. | - | |
Private or mixed | 24 (49) | 174 (38) | 2.39 (0.93–6.11) | 0.07 | |
Locality | 0.63 | ||||
France | 36 (73) | 340 (74) | Réf. | - | |
Europe (about France) | 3 (6) | 44 (10) | 0.65 (0.18–2.44) | 0.67 | |
USA | 8 (16) | 50 (11) | 1.08 (0.40–2.93) | 0.48 | |
Other | 2 (4) | 25 (5) | 0.63 (0.14–2.92) | 0.66 |
References
- Hoot, N.R.; Nathan, R.; Aronsky, D. Systematic Review of Emergency Department Crowding: Causes, Effects, and Solutions. Ann. Emerg. Med. 2008, 52, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Morley, C.; Unwin, M.; Peterson, G.M.; Stankovich, J.; Kinsman, L. Emergency Department Crowding: A Systematic Review of Causes, Consequences and Solutions. PLoS ONE 2018, 13, e0203316. [Google Scholar] [CrossRef]
- Asplin, B.R.; Magid, D.J.; Rhodes, K.V.; Solberg, L.I.; Lurie, N.; Camargo, C.A. A conceptual model of emergency department crowding. Ann. Emerg. Med. 2003, 42, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Kellermann, A.L. Crisis in the Emergency Department. N. Engl. J. Med. 2006, 335, 1300–1303. [Google Scholar] [CrossRef]
- DREES. La Médecine D’urgence 2018. Available online: https://drees.solidarites-sante.gouv.fr/IMG/pdf/27-7.pdf (accessed on 1 December 2021).
- Comptes, C. Rapport Public Annuel 2019: Les Urgences Hospitalières 2019. Available online: https://www.ccomptes.fr/system/files/2019-02/08-urgences-hospitalieres-Tome-2.pdf (accessed on 1 December 2021).
- Thibon, E.B.X.; Blanchard, B.; Masia, T.; Palmier, L.; Tendron, L.; de La Coussaye, J.E.; Claret, P.G. Association between Mortality and Waiting Time in Emergency Room among Adults Hospitalized for Medical Etiologies. Ann. Fr. Med. Urgence 2019, 9, 229–234. [Google Scholar] [CrossRef]
- Eriksson, C.O.; Stoner, R.C.; Eden, K.B.; Newgard, C.D.; Guise, J.M. The Association between Hospital Capacity Strain and Inpatient Outcomes in Highly Developed Countries: A Systematic Review. J. Gen. Intern. Med. 2017, 32, 686–696. [Google Scholar] [CrossRef] [Green Version]
- Peltan, I.D.; Brown, S.M.; Bledsoe, J.R.; Sorensen, J.; Samore, M.H.; Allen, T.L.; Hough, C.L. ED Door-to-Antibiotic Time and Long-term Mortality in Sepsis. Chest 2019, 155, 938–946. [Google Scholar] [CrossRef]
- Claret, P.G.; Bobbia, X.; Roger, C.; Sebbane, M.; de La Coussaye, J.E. Review of point-of-care testing and biomarkers of cardiovascular diseases in emergency and prehospital medicine. Acta Cardiol. 2015, 70, 510–515. [Google Scholar] [CrossRef]
- Yan, C.Z.Y.; Hill, M.D.; Mann, B.; Jeerakathil, T.; Kamal, N.; Amlani, S.; Chuck, A.W. Health Technology Optimization Analysis: Conceptual Approach and Illustrative Application. MDM Policy Pract. 2018, 3, 2381468318774804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidelines on Management of Acute Myocardial Infarction in Patients Presenting with ST-Segment Elevation. 2017. Available online: https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines/Acute-Myocardial-Infarction-in-patients-presenting-with-ST-segment-elevation-Ma (accessed on 1 December 2021).
- Guidelines on Non-ST-Segment Elevation Acute Coronary Syndromes; ESC Guidelines; ESC: Brussels, Belgium, 2020.
- Bonnanni, E.; Dupont, Y.; Rerbal, D. Biologie Délocalisée des Urgences 2014. Available online: https://www.sfmu.org/upload/70_formation/02_eformation/02_congres/Urgences/urgences2014/donnees/pdf/086.pdf (accessed on 1 December 2021).
- Konstantinides, S.V.; Meyer, G.; Becattini, C.; Bueno, H.; Geersing, G.J.; Harjola, V.P.; Huisman, M.V.; Humbert, M.; Jennings, C.S.; Jiménez, D.; et al. 2019 ESC Guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): The Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur. Respir. J. 2019, 9, 1901647. [Google Scholar]
- Wells, P.S.; Anderson, D.R.; Rodger, M.; Forgie, M.; Kearon, C.; Dreyer, J.; Kovacs, G.; Mitchell, M.; Lewandowski, B.; Kovacs, M.J. Evaluation of D-Dimer in the Diagnosis of Suspected Deep-Vein Thrombosis. N. Engl. J. Med. 2003, 349, 1227–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fedullo, P.F.; Tapson, V.F. The Evaluation of Suspected Pulmonary Embolism. N. Engl. J. Med. 2003, 349, 1247–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, T.; Sui, Z.; Huang, Z.; Xie, J.; Wen, K.; Zhang, Y.; Huang, W.; Mi, W.; Peng, K.; Dai, X.; et al. Point-of-care test system for detection of immunoglobulin-G and -M against nucleocapsid protein and spike glycoprotein of SARS-CoV-2. Sens. Actuators B Chem. 2021, 331, 129415. [Google Scholar] [CrossRef]
- Wang, S.; Ai, Z.; Zhang, Z.; Tang, M.; Zhang, N.; Liu, F.; Han, G.; Hong, S.L.; Liu, K. Simultaneous and automated detection of influenza A virus hemagglutinin H7 and H9 based on magnetism and size mediated microfluidic chip. Sens. Actuators B Chem. 2020, 308, 127675. [Google Scholar] [CrossRef] [PubMed]
- Geersing, G.J.; Janssen, K.J.M.; Oudega, R.; Bax, L.; Hoes, A.W.; Reitsma, J.B.; Moons, K.G.M. Excluding venous thromboembolism using point of care D-dimer testsin outpatients: A diagnostic meta-analysis. BMJ 2009, 339, b2990. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, C.E.S.G.J.; Slhessarenko, N.; Scartezini, M.; Franca, C.N.; Colombini, M.P.; Berlitz, F.; Machado, A.M.O.; Campana, G.A.; Faulhaber, A.C.L.; Galoro, C.A.; et al. Point-of-Care Testing: General Aspects. Clin. Lab. 2018, 64, 19. [Google Scholar] [CrossRef]
- El-Osta, A.W.M.; Pizzo, E.; Verhoef, T.; Dickie, C.; Ni, M.Z.; Huddy, J.R.; Soljak, M.; Hanna, G.B.; Majeed, A. Does use of point-of-care testing improve cost-effectiveness of the NHS Health Check programme in the primary care setting? A cost-minimisation analysis. BMJ Open 2017, 7, e015494. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Torrente-Rodríguez, R.M.; Wang, M.; Gao, W. The Era of Digital Health: A Review of Portable and Wearable Affinity Biosensors. Bioelectronics 2020, 30, 1906713. [Google Scholar] [CrossRef]
- Sarangadharan, I.; Regmi, A.; Chen, Y.W.; Hsu, C.P.; Chen, P.C.; Chang, W.H.; Lee, G.Y.; Chyi, J.I.; Shiesh, S.C.; Lee, G.B.; et al. High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT). Biosens. Bioelectron. 2018, 100, 282–289. [Google Scholar] [CrossRef]
- Chekin, F.; Vasilescu, A.; Jijie, R.; Singh, S.K.; Kurungot, S.; Iancu, M.; Badea, G.; Boukherroub, R.; Szunerits, S. Sensitive electrochemical detection of cardiac troponin I in serum and saliva by nitrogen-doped porous reduced graphene oxide electrode. Sens. Actuators B Chem. 2018, 262, 180–187. [Google Scholar] [CrossRef]
- Caragher, T.E.; Fernandez, B.B.; Jacobs, F.L.; Barr, L.A. Evaluation of quantitative cardiac biomarker point-of-care testing in the emergency department. J. Emerg. Med. 2002, 22, 1–7. [Google Scholar] [CrossRef]
- Goodacre, S.W.; Bradburn, M.; Cross, E.; Collinson, P.; Gray, A.; Hall, A.S. The Randomised Assessment of Treatment using Panel Assay of Cardiac Markers (RATPAC) trial: A randomised controlled trial of point-of-care cardiac markers in the emergency department. Heart Br. Card. Soc. 2011, 97, 190–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, A.J.; Ardise, J.; Gulla, J.; Cangro, J. Point-of-care testing reduces length of stay in emergency department chest pain patients. Ann. Emerg. Med. 2005, 45, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Stengaard, C.; Thorsted Sørensen, J.; Terkelsen, C.J. Præhospital biomarkøranalyse forbedrer diagnostikken ved mistanke om akut myokardieinfarkt [Prehospital point of care testing of biomarkers has diagnostic value in relation to acute myocardial infarction]. Ugeskr. Laeger 2013, 175, 186–189. [Google Scholar]
- Venturini, J.M.; Stake, C.E.; Cichon, M.E. Prehospital point-of-care testing for troponin: Are the results reliable? Prehosp. Emerg. Care 2013, 17, 88–91. [Google Scholar] [CrossRef] [PubMed]
Characteristics | n | Mean ± SD/n (%) | Min–Max | |
---|---|---|---|---|
Age (years) | 508 | 38 ± 10 | 22–74 | |
Status | 508 | |||
Medical doctor | 407 (80) | |||
Resident | 101 (20) | |||
Speciality | 508 | |||
Emergency physician | 224 (44) | |||
General practice | 162 (32) | |||
Cardiologist | 20 (4) | |||
Other | 27 (5) | |||
Location | 508 | |||
France | 376 (74) | |||
USA | 58 (11) | |||
Europe (excluding France) | 47 (9) | |||
Other | 27 (5) | |||
Activity | 508 | |||
Public practice | 310 (61) | |||
Private or mixed practice | 198 (39) |
n | Outcome N (%) | |
---|---|---|
Favorable physicians | 508 | 497 (98) |
Cited biomarkers | ||
Troponin | 257 (51) | |
CRP | 215 (42) | |
D-dimer | 146 (29) | |
Creatinine and urea | 94 (19) | |
Blood cell count | 89 (18) | |
BNP or N-terminal (NT)-proBNP | 67 (13) | |
Ionogramme | 62 (12) | |
hCG | 49 (10) | |
Blood gas and lactate | 46 (9) | |
Procalcitonin | 41 (8) | |
Respiratory virus test | 36 (7) | |
Hemostase | 25 (5) | |
Glycemia | 19 (4) | |
Hepatic control | 17 (3) | |
Oncology biomarkers | 14 (3) | |
S100B protein | 14 (3) | |
Urinary cells | 13 (3) |
Demographic Characteristics | Biomarker | p * | OR ** | p ** | |
---|---|---|---|---|---|
Troponin quoted (N = 257) | Troponin non-quoted (N = 251) | ||||
Age (years) | 37 ± 10 | 38 ± 11 | 0.41 | 1.01 (0.98–1.03) | 0.71 |
MD | 199 (77) | 208 (83) | Réf. | - | |
Resident | 58 (23) | 43 (17) | 0.82 (0.48–1.42) | 0.48 | |
EM | 79 (31) | 83 (33) | Réf. | - | |
GP | 152 (59) | 72 (29) | 3.58 (1.82–7.03) | <0.0001 *** | |
Other | 26 (10) | 96 (38) | 0.36 (0.19–0.68) | <0.0001 *** | |
Public | 165 (64) | 145 (68) | Réf. | - | |
Private | 92 (36) | 106 (42) | 1.55 (0.86–2.79) | 0.14 | |
France | 192 (75) | 184 (73) | Réf. | - | |
Europe (excluding France) | 20 (8) | 27 (11) | 0.95 (0.45–2.02) | 0.40 | |
USA | 33 (13) | 25 (10) | 0.63 (0.32–1.25) | 0.55 | |
Other | 12 (5) | 15 (6) | 0.50 (0.21–1.19) | 0.24 | |
D-dimer quoted (N = 146) | D-dimer non-quoted (N = 362) | ||||
Age (years) | 37 ± 10 | 48 ± 11 | 0.24 | 1.02 (0.99–1.05) | 0.15 |
MD | 113 (77) | 294 (81) | Réf. | – | |
Resident | 33 (23) | 68 (19) | 0.76 (0.43–1.35) | 0.35 | |
EM | 61 (42) | 101 (28) | Réf. | – | |
GP | 73 (50) | 151 (42) | 1.50 (0.71–3.15) | 0.31 | |
other | 12 (8) | 110 (30) | 0.24 (0.11–0.53) | <0.0001 *** | |
Public | 80 (55) | 230 (64) | Réf. | – | |
Private or mixed | 66 (45) | 132 (36) | 1.63 (0.83–3.21) | 0.16 | |
France | 123 (84) | 253 (70) | Réf. | – | |
Europe (excluding France) | 7 (5) | 40 (11) | 0.43 (0.17–1.09) | 0.18 | |
USA | 11 (8) | 47 (13) | 0.32 (0.14–0.70) | 0.001 | |
Other | 5 (3) | 22 (6) | 0.38 (0.14–1.08) | 0.28 | |
BNP/NT-proBNP quoted (N = 67) | BNP/NT-proBNP non-quoted (N = 441) | ||||
Age (years) | 39 +/− 11 | 38 +/− 10 | 0.30 | 1.02 (0.99–1.05) | 0.26 |
MD | 51 (76) | 356 (81) | Réf. | - | |
Resident | 16 (24) | 85 (19) | 0.63 (0.31–1.3) | 0.21 | |
EM | 18 (27) | 144 (33) | Réf. | - | |
GP | 31 (51) | 190 (43) | 2 (0.78–5.13) | 0.09 | |
other | 15 (22) | 107 (24) | 1.1 (0.46–2.66) | 0.47 | |
Public | 41 (61) | 269 (61) | Réf. | - | |
Private | 26 (39) | 172 (39) | 1.61 (0.73–3.56) | 0.24 | |
France | 46 (69) | 330 (75) | Réf. | - | |
Europe (excluding France) | 11 (16) | 36 (8) | 1.89 (0.82–4.4) | 0.07 | |
USA | 6 (9) | 52 (12) | 0.59 (0.22–1.63) | 0.14 | |
Other | 4 (6) | 23 (5) | 1.03 (0.33–3.20) | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abensur Vuillaume, L.; Leichle, T.; Le Borgne, P.; Grajoszex, M.; Goetz, C.; Voss, P.L.; Ougazzaden, A.; Salvestrini, J.-P.; d’Ortho, M.-P. Relevant Biomarkers in Medical Practices: An Analysis of the Needs Addressed by an International Survey. J. Pers. Med. 2022, 12, 106. https://doi.org/10.3390/jpm12010106
Abensur Vuillaume L, Leichle T, Le Borgne P, Grajoszex M, Goetz C, Voss PL, Ougazzaden A, Salvestrini J-P, d’Ortho M-P. Relevant Biomarkers in Medical Practices: An Analysis of the Needs Addressed by an International Survey. Journal of Personalized Medicine. 2022; 12(1):106. https://doi.org/10.3390/jpm12010106
Chicago/Turabian StyleAbensur Vuillaume, Laure, Thierry Leichle, Pierrick Le Borgne, Mathieu Grajoszex, Christophe Goetz, Paul L Voss, Abdallah Ougazzaden, Jean-Paul Salvestrini, and Marie-Pia d’Ortho. 2022. "Relevant Biomarkers in Medical Practices: An Analysis of the Needs Addressed by an International Survey" Journal of Personalized Medicine 12, no. 1: 106. https://doi.org/10.3390/jpm12010106
APA StyleAbensur Vuillaume, L., Leichle, T., Le Borgne, P., Grajoszex, M., Goetz, C., Voss, P. L., Ougazzaden, A., Salvestrini, J.-P., & d’Ortho, M.-P. (2022). Relevant Biomarkers in Medical Practices: An Analysis of the Needs Addressed by an International Survey. Journal of Personalized Medicine, 12(1), 106. https://doi.org/10.3390/jpm12010106