Escalation vs. Early Intense Therapy in Multiple Sclerosis
Abstract
:1. Introduction
1.1. Multiple Sclerosis: A General Overview
1.2. The Selection of the Objective in Clinical Trials
1.3. Classification of Disease Modifying Therapies
1.4. The Concept of Treatment Failure
2. Escalation Therapy
2.1. Definition
2.2. Trials That Support Escalation Therapy
2.2.1. Fingolimod
2.2.2. Alemtuzumab
2.2.3. Ocrelizumab
2.3. Summary
3. High-Efficacy Therapy
3.1. Definition
3.2. Results over Inflammatory Activity, Progression, and Safety
3.3. The Importance of Long-Terms Outcomes. Analysis of the Comparative Studies: Escalation vs. Early Intensive Treatment
4. Future Evidence
Author Contributions
Funding
Conflicts of Interest
References
- Lassmann, H.; Brück, W.; Lucchinetti, C.F. The Immunopathology of Multiple Sclerosis: An Overview. Brain Pathol. 2007, 17, 210–218. [Google Scholar] [CrossRef]
- Frischer, J.M.; Bramow, S.; Dal-Bianco, A.; Lucchinetti, C.F.; Rauschka, H.; Schmidbauer, M.; Laursen, H.; Sorensen, P.S.; Lassmann, H. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 2009, 132, 1175–1189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [Green Version]
- Tutuncu, M.; Tang, J.; Zeid, N.A.; Kale, N.; Crusan, D.J.; Atkinson, E.J.; Siva, A.; Pittock, S.J.; Pirko, I.; Keegan, B.M.; et al. Onset of progressive phase is an age-dependent clinical milestone in multiple sclerosis. Mult. Scler. J. 2013, 19, 188–198. [Google Scholar] [CrossRef]
- Tremlett, H.; Zhao, Y.; Rieckmann, P.; Hutchinson, M. New perspectives in the natural history of multiple sclerosis. Neurology 2010, 74, 2004–2015. [Google Scholar] [CrossRef] [PubMed]
- Confavreux, C.; Vukusic, S.; Moreau, T.; Adeleine, P. Relapses and progression of disability in Multiple Sclerosis. N. Engl. J. Med. 2000, 343, 1430–1438. [Google Scholar] [CrossRef] [PubMed]
- Shirani, A.; Okuda, D.; Stüve, O. Therapeutic Advances and Future Prospects in Progressive Forms of Multiple Sclerosis. Neurotherapeutics 2016, 13, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Novotna, M.; Soldán, M.M.P.; Zeid, N.A.; Kale, N.; Tutuncu, M.; Crusan, D.J.; Atkinson, E.J.; Siva, A.; Keegan, B.M.; Pirko, I.; et al. Poor early relapse recovery affects onset of progressive disease course in multiple sclerosis. Neurology 2015, 85, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Cree, B.A.C.; Gourraud, P.-A.; Oksenberg, J.R.; Bevan, C.; Crabtree-Hartman, E.; Gelfand, J.M.; Goodin, D.S.; Graves, J.; Green, A.J.; Mowry, E.; et al. Long-term evolution of multiple sclerosis disability in the treatment era. Ann. Neurol. 2016, 80, 499–510. [Google Scholar] [CrossRef]
- Cree, B.A.C.; Hollenbach, J.A.; Bove, R.; Kirkish, G.; Sacco, S.; Caverzasi, E.; Bischof, A.; Gundel, T.; Zhu, A.H.; Papinutto, N.; et al. Silent progression in disease activity–free relapsing multiple sclerosis. Ann. Neurol. 2019, 85, 653–666. [Google Scholar] [CrossRef]
- Scalfari, A.; Neuhaus, A.; Daumer, M.; Muraro, P.A.; Ebers, G.C. Onset of secondary progressive phase and long-term evolution of multiple sclerosis. J. Neurol. Neurosurg. Psychiatr. 2014, 85, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebers, G.C.; Heigenhauser, L.; Daumer, M.; Lederer, C.; Noseworthy, J.H. Disability as an outcome in MS clinical trials. Neurology 2008, 71, 624–631. [Google Scholar] [CrossRef]
- Silver, N.; Good, C.; Sormani, M.; MacManus, D.; Thompson, A.; Filippi, M.; Miller, D. A modified protocol to improve the detection of enhancing brain and spinal cord leasions in multiple sclerosis. J. Neurol. 2001, 248, 215–224. [Google Scholar] [CrossRef]
- Signori, A.; Gallo, F.; Bovis, F.; Di Tullio, N.; Maietta, I.; Sormani, M.P. Long-term impact of interferon or Glatiramer acetate in multiple sclerosis: A systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2016, 6, 57–63. [Google Scholar] [CrossRef]
- Sormani, M.P.; Rovaris, M.; Comi, G.; Filippi, M. A composite score to predict short-term disease activity in patients with relapsing-remitting MS. Neurology 2007, 69, 1230–1235. [Google Scholar] [CrossRef] [PubMed]
- Sormani, M.P.; de Stefano, N. Defining and scoring response to IFN-β in multiple sclerosis. Nat. Rev. Neurol. 2013, 9, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Gehr, S.; Kaiser, T.; Kreutz, R.; Ludwig, W.-D.; Paul, F. Suggestions for improving the design of clinical trials in multiple sclerosis—Results of a systematic analysis of completed phase III trials. EPMA J. 2019, 10, 425–436. [Google Scholar] [CrossRef] [Green Version]
- de Stefano, N.; Giorgio, A.; Battaglini, M.; Rovaris, M.; Sormani, M.P.; Barkhof, F.; Korteweg, T.; Enzinger, C.; Fazekas, F.; Calabrese, M.; et al. Assessing brain atrophy rates in a large population of untreated multiple sclerosis subtypes. Neurology 2010, 74, 1868–1876. [Google Scholar] [CrossRef]
- Kappos, L.; Wolinsky, J.S.; Giovannoni, G.; Arnold, D.L.; Wang, Q.; Bernasconi, C.; Model, F.; Koendgen, H.; Manfrini, M.; Belachew, S.; et al. Contribution of Relapse-Independent Progression vs Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurol. 2020, 77, 1132–1140. [Google Scholar] [CrossRef]
- Rotstein, D.L.; Healy, B.C.; Malik, M.T.; Chitnis, T.; Weiner, H.L. Evaluation of No Evidence of Disease Activity in a 7-Year Longitudinal Multiple Sclerosis Cohort. JAMA Neurol. 2015, 72, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, K.R.; Ontaneda, D. The Role of Advanced Magnetic Resonance Imaging Techniques in Multiple Sclerosis Clinical Trials. Neurotherapeutics 2017, 14, 905–923. [Google Scholar] [CrossRef]
- Kappos, L.; Freedman, M.S.; Polman, C.H.; Edan, G.; Hartung, H.-P.; Miller, D.H.; Montalban, X.; Barkhof, F.; Radü, E.-W.; Metzig, C.; et al. Long-term effect of early treatment with interferon beta-1b after a first clinical event suggestive of multiple sclerosis: 5-year active treatment extension of the phase 3 BENEFIT trial. Lancet Neurol. 2009, 8, 987–997. [Google Scholar] [CrossRef]
- Johnson, K.P.; Brooks, B.R.; Cohen, J.A.; Ford, C.C.; Goldstein, J.; Lisak, R.P.; Myers, L.W.; Panitch, H.S.; Rose, J.W.; Schiffer, R.B.; et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: Results of a phase III multicenter, double-blind, placebo-controlled trial. Neurology 1995, 45, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Avasarala, J. Anti-CD20 Cell Therapies in Multiple Sclerosis—A Fixed Dosing Schedule for Ocrelizumab is Overkill. Drug Target Insights 2017, 11, 10–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilpatrick, T.J.; Butzkueven, H. Immunosuppressive therapy is valuable in aggressive Multiple Sclerosis. J. Clin. Neurosci. 2000, 7, 561–563. [Google Scholar] [CrossRef]
- Perumal, J.; Reardon, J. Review of daclizumab and its therapeutic potential in the treatment of relapsing–remitting multiple sclerosis. Drug Des. Dev. Ther. 2013, 7, 1187–1193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCune, W.J.; Gonzalez-Rivera, T. Immunosuppressive Drug Therapy. Dubois’ Lupus Erythematosus Relat. Syndr. 2013, 2012, 609–625. [Google Scholar] [CrossRef]
- Byrne, E.; Panitch, H.; Coyle, P.; Goodin, D.; O’Connor, P.; Weinshenker, B.; Li, D.; Francis, G.; Chang, P.; Monaghan, E.; et al. Randomized, comparative study of interferon beta-1a treatment regimens in MS: The EVIDENCE trial. Neurology 2003, 60, 1872–1873. [Google Scholar] [CrossRef]
- O’Connor, P.; Comi, G.; Freedman, M.S.; Miller, A.E.; Kappos, L.; Bouchard, J.-P.; Lebrun-Frenay, C.; Mares, J.; Benamor, M.; Thangavelu, K.; et al. Long-term safety and efficacy of teriflunomide. Neurology 2016, 86, 920–930. [Google Scholar] [CrossRef] [Green Version]
- Gold, R.; Kappos, L.; Arnold, D.L.; Bar-Or, A.; Giovannoni, G.; Selmaj, K.; Tornatore, C.; Sweetser, M.T.; Yang, M.S.M.; Sheikh, S.I.; et al. Placebo-Controlled Phase 3 Study of Oral BG-12 for Relapsing Multiple Sclerosis. N. Engl. J. Med. 2012, 367, 1098–1107. [Google Scholar] [CrossRef] [Green Version]
- Kappos, L.; O’Connor, P.; Radue, E.-W.; Polman, C.; Hohlfeld, R.; Selmaj, K.; Ritter, S.; Schlosshauer, R.; Von Rosenstiel, P.; Zhang-Auberson, L.; et al. Long-term effects of fingolimod in multiple sclerosis: The randomized FREEDOMS extension trial. Neurology 2015, 84, 1582–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comi, G.; Cook, S.D.; Giovannoni, G.; Rammohan, K.; Rieckmann, P.; Sorensen, P.S.; Vermersch, P.; Hamlett, A.C.; Viglietta, V.; Greenberg, S.J. MRI outcomes with cladribine tablets for multiple sclerosis in the CLARITY study. J. Neurol. 2013, 260, 1136–1146. [Google Scholar] [CrossRef]
- Freedman, M.S. Treatment options for patients with multiple sclerosis who have a suboptimal response to interferon-β therapy. Eur. J. Neurol. 2013, 21, 377-e20. [Google Scholar] [CrossRef]
- Coles, A.J.; Twyman, C.L.; Arnold, D.L.; Cohen, J.A.; Confavreux, C.; Fox, E.J.; Hartung, H.-P.; Havrdova, E.K.; Selmaj, K.W.; Weiner, H.L.; et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: A randomised controlled phase 3 trial. Lancet 2012, 380, 1829–1839. [Google Scholar] [CrossRef]
- Gajofatto, A.; Benedetti, M.D. Treatment strategies for multiple sclerosis: When to start, when to change, when to stop? World J. Clin. Cases 2015, 3, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Huygens, S.; Versteegh, M. Modeling the Cost-Utility of Treatment Sequences for Multiple Sclerosis. Value Health 2021, 24, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- O’Rourke, K.E.T.; Hutchinson, M. Stopping beta-interferon therapy in multiple sclerosis: An analysis of stopping patterns. Mult. Scler. J. 2005, 11, 46–50. [Google Scholar] [CrossRef]
- Waubant, E.; Vukusic, S.; Gignoux, L.; Durand-Dubief, F.; Achiti, I.; Blanc, S.; Renoux, C.; Confavreux, C. Clinical characteristics of responders to interferon therapy for relapsing MS. Neurology 2003, 61, 184–189. [Google Scholar] [CrossRef]
- Río, J.; Nos, C.; Tintore, M.; Borrás, C.; Galan, I.; Comabella, M.; Montalban, X. Assessment of different treatment failure criteria in a cohort of relapsing-remitting multiple sclerosis patients treated with interferon β: Implications for clinical trials. Ann. Neurol. 2002, 52, 400–406. [Google Scholar] [CrossRef]
- Sormani, M.P.; Gasperini, C.; Romeo, M.; Rio, J.; Calabrese, M.; Cocco, E.; Enzingher, C.; Fazekas, F.; Filippi, M.; Gallo, A.; et al. Assessing response to interferon-β in a multicenter dataset of patients with MS. Neurology 2016, 87, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajofatto, A.; Bacchetti, P.; Grimes, B.; High, A.; Waubant, E. Switching first-line disease-modifying therapy after failure: Impact on the course of relapsing–remitting multiple sclerosis. Mult. Scler. J. 2009, 15, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, V.; Comi, G. Induction versus escalation therapy. Neurol. Sci. 2005, 26, s193–s199. [Google Scholar] [CrossRef]
- Brown, W.; Coles, A.; Horakova, D.; Havrdova, E.; Izquierdo, G.; Prat, A.; Girard, M.; Duquette, P.; Trojano, M.; Lugaresi, A.; et al. Association of Initial Disease-Modifying Therapy with Later Conversion to Secondary Progressive Multiple Sclerosis. JAMA J. Am. Med Assoc. 2019, 321, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Fernández, O.; DelVecchio, M.; Edan, G.; Fredrikson, S.; Gionvannoni, G.; Hartung, H.-P.; Havrdova, E.K.; Kappos, L.; Pozzilli, C.; Soerensen, P.S.; et al. Survey of diagnostic and treatment practices for multiple sclerosis in Europe. Eur. J. Neurol. 2017, 24, 516–522. [Google Scholar] [CrossRef]
- Cohen, J.A.; Barkhof, F.; Comi, G.; Hartung, H.-P.; Khatri, B.O.; Montalban, X.; Pelletier, J.; Capra, R.; Gallo, P.; Izquierdo, G.; et al. Oral Fingolimod or Intramuscular Interferon for Relapsing Multiple Sclerosis. N. Engl. J. Med. 2010, 362, 402–415. [Google Scholar] [CrossRef]
- Cohen, J.A.; Coles, A.J.; Arnold, D.L.; Confavreux, C.; Fox, E.J.; Hartung, H.-P.; Havrdova, E.; Selmaj, K.W.; Weiner, H.L.; Fisher, E.; et al. Alemtuzumab versus interferon beta 1a as fi rst-line treatment for patients with relapsing-remitting multiple sclerosis: A randomised controlled phase 3 trial. Lancet 2012, 380, 1819–1828. [Google Scholar] [CrossRef]
- Coles, A.J.; Cohen, J.A.; Fox, E.J.; Giovannoni, G.; Hartung, H.-P.; Havrdova, E.; Schippling, S.; Selmaj, K.W.; Traboulsee, A.; Compston, D.A.S. Alemtuzumab CARE-MS II 5-year Efficacy and safety findings. Neurology 2017, 89, 1117–1126. [Google Scholar] [CrossRef] [Green Version]
- Hauser, S.L.; Bar-Or, A.; Comi, G.; Giovannoni, G.; Hartung, H.-P.; Hemmer, B.; Lublin, F.; Montalban, X.; Rammohan, K.W.; Selmaj, K.; et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N. Engl. J. Med. 2017, 376, 221–234. [Google Scholar] [CrossRef]
- Simpson, A.; Mowry, E.M.; Newsome, S.D. Early Aggressive Treatment Approaches for Multiple Sclerosis. Curr. Treat. Options Neurol. 2021, 23, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, S.; Pontecorvo, S.; Tortorella, C.; Gasperini, C. Induction treatment strategy in multiple sclerosis: A review of past experiences and future perspectives. Mult. Scler. Demyelinating Disord. 2018, 3, 5. [Google Scholar] [CrossRef]
- Stankiewicz, J.M.; Weiner, H.L. An argument for broad use of high efficacy treatments in early multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2019, 7, e636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Comi, G. Induction vs. escalating therapy in Multiple Sclerosis: Practical implications. Neurol. Sci. 2008, 29, 253–255. [Google Scholar] [CrossRef]
- Fenu, G.; Lorefice, L.; Frau, F.; Coghe, G.; Marrosu, M.; Cocco, E. Induction and escalation therapies in multiple sclerosis. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2015, 14, 26–34. [Google Scholar] [CrossRef]
- Rieckmann, P. Concepts of induction and escalation therapy in multiple sclerosis. J. Neurol. Sci. 2009, 277, S42–S45. [Google Scholar] [CrossRef]
- Wingerchuk, D.M.; Carter, J.L. Multiple Sclerosis: Current and Emerging Disease-Modifying Therapies and Treatment Strategies. Mayo Clin. Proc. 2014, 89, 225–240. [Google Scholar] [CrossRef] [Green Version]
- Freedman, M.S. Induction vs. escalation of therapy for relapsing Multiple Sclerosis: The evidence. Neurol. Sci. 2008, 29, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Coyle, P.K. Commentary: The Multiple Sclerosis Controversy: Is It Escalation or Induction High Efficacy? Neurotherapeutics 2020, 17, 971–972. [Google Scholar] [CrossRef]
- Buron, M.D.; Chalmer, T.A.; Sellebjerg, F.; Barzinji, I.; Christensen, J.R.; Christensen, M.K.; Hansen, V.; Illes, Z.; Jensen, H.B.; Kant, M.; et al. Initial high-efficacy disease-modifying therapy in multiple sclerosis. Neurology 2020, 95, e1041–e1051. [Google Scholar] [CrossRef]
- Harding, K.; Williams, O.; Willis, M.; Hrastelj, J.; Rimmer, A.; Joseph, F.; Tomassini, V.; Wardle, M.; Pickersgill, T.; Robertson, N.; et al. Clinical Outcomes of Escalation vs Early Intensive Disease-Modifying Therapy in Patients with Multiple Sclerosis. JAMA Neurol. 2019, 76, 536–541. [Google Scholar] [CrossRef]
- He, A.; Merkel, B.; Brown, W.; Ryerson, L.Z.; Kister, I.; Malpas, C.B.; Sharmin, S.; Horakova, D.; Havrdova, E.K.; Spelman, T.; et al. Timing of high-efficacy therapy for multiple sclerosis: A retrospective observational cohort study. Lancet Neurol. 2020, 19, 307–316. [Google Scholar] [CrossRef]
- Iaffaldano, P.; Lucisano, G.; Caputo, F.; Paolicelli, D.; Patti, F.; Zaffaroni, M.; Morra, V.B.; Pozzilli, C.; De Luca, G.; Inglese, M.; et al. Long-term disability trajectories in relapsing multiple sclerosis patients treated with early intensive or escalation treatment strategies. Ther. Adv. Neurol. Disord. 2021, 14, 17562864211019574. [Google Scholar] [CrossRef]
- Prosperini, L.; Mancinelli, C.R.; Solaro, C.M.; Nociti, V.; Haggiag, S.; Cordioli, C.; De Giglio, L.; De Rossi, N.; Galgani, S.; Rasia, S.; et al. Induction Versus Escalation in Multiple Sclerosis: A 10-Year Real World Study. Neurotherapeutics 2020, 17, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Merkel, B.; Butzkueven, H.; Traboulsee, A.L.; Havrdova, E.K.; Kalincik, T. Timing of high-efficacy therapy in relapsing-remitting multiple sclerosis: A systematic review. Autoimmun. Rev. 2017, 16, 658–665. [Google Scholar] [CrossRef] [PubMed]
- Le Page, E.; Edan, G. Induction or escalation therapy for patients with multiple sclerosis? Rev. Neurol. 2018, 174, 449–457. [Google Scholar] [CrossRef]
- Horáková, D.; Boster, A.; Bertolotto, A.; Freedman, M.S.; Firmino, I.; Cavalier, S.J.; Jacobs, A.K.; Thangavelu, K.; Daizadeh, N.; Poole, E.M.; et al. Proportion of alemtuzumab-treated patients converting from relapsing-remitting multiple sclerosis to secondary progressive multiple sclerosis over 6 years. Mult. Scler. J. Exp. Transl. Clin. 2020, 6, 2055217320972137. [Google Scholar] [CrossRef]
- Kalincik, T.; Brown, W.; Robertson, N.; Willis, M.; Scolding, N.; Rice, C.; Wilkins, A.; Pearson, O.; Ziemssen, T.; Hutchinson, M.; et al. Treatment effectiveness of alemtuzumab compared with natalizumab, fingolimod, and interferon beta in relapsing-remitting multiple sclerosis: A cohort study. Lancet Neurol. 2017, 16, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Granqvist, M.; Boremalm, M.; Poorghobad, A.; Svenningsson, A.; Salzer, J.; Frisell, T.; Piehl, F. Comparative Effectiveness of Rituximab and Other Initial Treatment Choices for Multiple Sclerosis. JAMA Neurol. 2018, 75, 320–327. [Google Scholar] [CrossRef] [Green Version]
- Casanova, B.; Jarque, I.; Gascón, F.; Hernández-Boluda, J.C.; Pérez-Miralles, F.; De La Rubia, J.; Alcalá, C.; Sanz, J.; Mallada, J.; Cervelló, A.; et al. Autologous hematopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: Comparison with secondary progressive multiple sclerosis. Neurol. Sci. 2017, 38, 1213–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simonsen, C.S.; Flemmen, H.Ø.; Broch, L.; Brunborg, C.; Berg-Hansen, P.; Moen, S.M.; Celius, E.G. Early High Efficacy Treatment in Multiple Sclerosis Is the Best Predictor of Future Disease Activity Over 1 and 2 Years in a Norwegian Population-Based Registry. Front. Neurol. 2021, 12, 1009. [Google Scholar] [CrossRef] [PubMed]
Early Intensive Therapy (EIT): | |
---|---|
Induction Treatment | Mitoxantrone Cyclophosphamide Stem Cell transplantation Alemtuzumab Cladribine * |
Sustained High-Efficacy Treatment | Natalizumab Fingolimod * Anti-CD20 treatment |
Beneficial Long-Term Outcomes of EIT vs. Escalation | ||
---|---|---|
Observational Studies | Follow-Up | Outcomes |
Buron et al. [58] | 4 years | Lower risk of 6 month EDSS worsening and of first relapse |
Harding et al. [59] | 5 years | Lower increase in EDSS Longer Median time to sustained accumulation of disability |
He et al. [60] | 6–10 years | Early HET within 2 years of disease onset is associated with lower hazard of disability progression and lower disability accumulation at 6 to 10 years of follow-up compared to late HET |
Iaffaldano et al. [61] | 10 years | Lower disability progression measured by mean annual EDSS change compared to baseline value in all time points, including at 5 and 10 years. |
Brown et al. [46] | 5.8 years | Lower risk of conversion to SPMS |
Prosperini et al. [62] | 10 years | Lower proportion of patients reached the milestone of EDSS 6 at 10 years |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Casanova, B.; Quintanilla-Bordás, C.; Gascón, F. Escalation vs. Early Intense Therapy in Multiple Sclerosis. J. Pers. Med. 2022, 12, 119. https://doi.org/10.3390/jpm12010119
Casanova B, Quintanilla-Bordás C, Gascón F. Escalation vs. Early Intense Therapy in Multiple Sclerosis. Journal of Personalized Medicine. 2022; 12(1):119. https://doi.org/10.3390/jpm12010119
Chicago/Turabian StyleCasanova, Bonaventura, Carlos Quintanilla-Bordás, and Francisco Gascón. 2022. "Escalation vs. Early Intense Therapy in Multiple Sclerosis" Journal of Personalized Medicine 12, no. 1: 119. https://doi.org/10.3390/jpm12010119
APA StyleCasanova, B., Quintanilla-Bordás, C., & Gascón, F. (2022). Escalation vs. Early Intense Therapy in Multiple Sclerosis. Journal of Personalized Medicine, 12(1), 119. https://doi.org/10.3390/jpm12010119