Association of the Estimated Pulse Wave Velocity with Cardio-Vascular Disease Outcomes among Men and Women Aged 40–69 Years in the Korean Population: An 18-Year Follow-Up Report on the Ansung–Ansan Cohort in the Korean Genome Environment Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Consent
2.3. Lifestyle, Physical Activity, and Medical History Assessment and Physical Examination
2.4. Outcome Definition
2.5. ePWV Calculation
age2 − 2.6207705511664 × 10−5 × age2 × MBP + 3.1762450559276 × 10−3 × age × MBP −
1.83215068503821 × 10−2 × MBP
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. ePWV and Cardiovascular Events
3.3. ePWV and Cardiovascular Events According to Sex
3.4. Incremental Value of the ePWV in Predicting Cardiovascular Events
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angoff, R.; Mosarla, R.C.; Tsao, C.W. Aortic Stiffness: Epidemiology, Risk Factors, and Relevant Biomarkers. Front. Cardiovasc. Med. 2021, 8, 709396. [Google Scholar] [CrossRef] [PubMed]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of Cardiovascular Events and All-Cause Mortality With Arterial Stiffness: A Systematic Review and Meta-Analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Boutouyrie, P.; Asmar, R.; Gautier, I.; Laloux, B.; Guize, L.; Ducimetiere, P.; Benetos, A. Aortic Stiffness Is an Independent Predictor of All-Cause and Cardiovascular Mortality in Hypertensive Patients. Hypertension 2001, 37, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Reference Values for Arterial Stiffness’ Collaboration. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘Establishing normal and reference values’. Eur. Heart J. 2010, 31, 2338–2350. [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Ben-Shlomo, Y.; Spears, M.; Boustred, C.; May, M.; Anderson, S.; Benjamin, E.; Boutouyrie, P.; Cameron, J.; Chen, C.-H.; Cruickshank, J.K.; et al. Aortic Pulse Wave Velocity Improves Cardiovascular Event Prediction. J. Am. Coll. Cardiol. 2014, 63, 636–646. [Google Scholar] [CrossRef]
- Greve, S.V.; Blicher, M.K.; Kruger, R.; Sehestedt, T.; Gram-Kampmann, E.; Rasmussen, S.; Vishram, J.K.; Boutouyrie, P.; Laurent, S.; Olsen, M.H. Estimated carotid–femoral pulse wave velocity has similar predictive value as measured carotid–femoral pulse wave velocity. J. Hypertens. 2016, 34, 1279–1289. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Terentes-Printzios, D.; Laurent, S.; Nilsson, P.M.; Protogerou, A.D.; Aznaouridis, K.; Xaplanteris, P.; Koutagiar, I.; Tomiyama, H.; Yamashina, A.; et al. Association of Estimated Pulse Wave Velocity With Survival: A Secondary Analysis of SPRINT. JAMA Netw. Open 2019, 2, e1912831. [Google Scholar] [CrossRef]
- Jae, S.Y.; Heffernan, K.S.; Park, J.B.; Kurl, S.; Kunutsor, S.K.; Kim, J.-Y.; Laukkanen, J.A. Association between estimated pulse wave velocity and the risk of cardiovascular outcomes in men. Eur. J. Prev. Cardiol. 2020, 28, e25–e27. [Google Scholar] [CrossRef]
- Kim, Y.; Han, B.-G.; KoGES group. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2016, 46, e20. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Shin, J.; Kim, G.-H.; Park, S.; Ihm, S.-H.; Kim, H.C.; Kim, K.-I.; Kim, J.H.; Lee, J.H.; Park, J.-M.; et al. 2018 Korean Society of Hypertension Guidelines for the management of hypertension: Part II-diagnosis and treatment of hypertension. Clin. Hypertens. 2019, 25, 20. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Seung-Hyun Committee of Clinical Practice Guidelines, Korean Diabetes Association; Kim, B.-Y.; Kang, E.S.; Noh, J.; Kim, S.-K.; Park, S.-O.; Hur, K.Y.; Chon, S.; Moon, M.K.; et al. 2019 Clinical Practice Guidelines for Type 2 Diabetes Mellitus in Korea. Diabetes Metab. J. 2019, 43, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Rhee, E.-J.; Kim, H.C.; Kim, J.H.; Lee, E.Y.; Kim, B.J.; Kim, E.M.; Song, Y.; Lim, J.H.; Kim, H.J.; Choi, S.; et al. 2018 Guidelines for the management of dyslipidemia. Korean J. Intern. Med. 2019, 34, 723–771. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F.; Chronic Kidney Disease Epidemiology Collaboration. Using Standardized Serum Creatinine Values in the Modification of Diet in Renal Disease Study Equation for Estimating Glomerular Filtration Rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Lee, S.Y.; Park, H.S.; Kim, D.J.; Han, J.H.; Kim, S.M.; Cho, G.J.; Kim, D.Y.; Kwon, H.-S.; Kim, S.R.; Lee, C.B.; et al. Appropriate waist circumference cutoff points for central obesity in Korean adults. Diabetes Res. Clin. Pract. 2007, 75, 72–80. [Google Scholar] [CrossRef]
- Goff, D.C., Jr.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2014, 129 (Suppl. S2), S49–S73. [Google Scholar] [CrossRef]
- Haibe-Kains, B.; Desmedt, C.; Sotiriou, C.; Bontempi, G. A comparative study of survival models for breast cancer prognostication based on microarray data: Does a single gene beat them all? Bioinformatics 2008, 24, 2200–2208. [Google Scholar] [CrossRef]
- Oh, Y.S. Arterial stiffness and hypertension. Clin. Hypertens. 2018, 24, 17. [Google Scholar] [CrossRef]
- Baumann, M.; Wassertheurer, S.; Suttmann, Y.; Burkhardt, K.; Heemann, U. Aortic pulse wave velocity predicts mortality in chronic kidney disease stages 2–4. J. Hypertens. 2014, 32, 899–903. [Google Scholar] [CrossRef]
- Feistritzer, H.; Klug, G.; Reinstadler, S.J.; Reindl, M.; Niess, L.; Nalbach, T.; Kremser, C.; Mayr, A.; Metzler, B. Prognostic Value of Aortic Stiffness in Patients After ST-Elevation Myocardial Infarction. J. Am. Heart Assoc. 2017, 6, e005590. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, G.F.; Hwang, S.-J.; Vasan, R.S.; Larson, M.; Pencina, M.J.; Hamburg, N.; Vita, J.; Levy, D.; Benjamin, E. Arterial Stiffness and Cardiovascular Events. Circulation 2010, 121, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Prenner, S.B.; Chirinos, J.A. Arterial stiffness in diabetes mellitus. Atherosclerosis 2015, 238, 370–379. [Google Scholar] [CrossRef]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension global hypertension practice guidelines. J. Hypertens. 2020, 38, 982–1004. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardio-vascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC). Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Tzoulaki, I.; Siontis, K.C.; Evangelou, E.; Ioannidis, J.P.A. Bias in Associations of Emerging Biomarkers With Cardiovascular Disease. JAMA Intern. Med. 2013, 173, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Xaplanteris, P.; Vlachopoulos, C.; Protogerou, A.D.; Aznaouridis, K.; Terentes-Printzios, D.; Argyris, A.A.; Tentolouris, N.; Sfikakis, P.P.; Tousoulis, D. A clinical score for prediction of elevated aortic stiffness. J. Hypertens. 2019, 37, 339–346. [Google Scholar] [CrossRef]
- Greve, S.V.; Blicher, M.K.; Kruger, R.; Sehestedt, T.; Gram-Kampmann, E.M.; Rasmussen, S.; Vishram, J.K.; Boutouyrie, P.; Laurent, S.; Olsen, M.H. Elevated estimated arterial age is associated with metabolic syndrome and low-grade inflammation. J. Hypertens. 2016, 34, 2410–2417. [Google Scholar] [CrossRef]
- Vishram-Nielsen, J.K.; Laurent, S.; Nilsson, P.M.; Linneberg, A.; Sehested, T.S.; Greve, S.V.; Pareek, M.; Palmieri, L.; Giampaoli, S.; Donfrancesco, C.; et al. Does Estimated Pulse Wave Velocity Add Prognostic Information? Hypertension 2020, 75, 1420–1428. [Google Scholar] [CrossRef]
- He, X.-W.; Park, J.; Huang, W.-S.; Leng, L.-H.; Yu, Y.; Pei, Y.-B.; Zhu, G.; Wu, S. Usefulness of estimated pulse wave velocity for identifying prevalent coronary heart disease: Findings from a general Chinese population. BMC Cardiovasc. Disord. 2022, 22, 9. [Google Scholar] [CrossRef]
- Jae, S.Y.; Heffernan, K.S.; Kurl, S.; Kunutsor, S.K.; Laukkanen, J.A. Association between estimated pulse wave velocity and the risk of stroke in middle-aged men. Int. J. Stroke 2020, 16, 551–555. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Estimated Pulse Wave Velocity (m/s) | p-Value | |||
---|---|---|---|---|---|
First Quartile (4.52–7.38) (n = 2442) | Second Quartile (7.39–8.44) (n = 2417) | Third Quartile (8.45–9.89) (n = 2423) | Fourth Quartile (9.90–15.17) (n = 2416) | ||
Age, mean (SD), year | 43.6 (3.2) | 47.5 (5.0) * | 54.8 (6.6) *† | 62.5 (5.34) *†‡ | <0.001 |
Men, n (%) | 1001 (41.0) | 1300 (53.8) | 1220 (50.4) | 1059 (43.8) | <0.001 |
Body mass index, mean (SD), kg/m2 | 23.9 (2.9) | 24.8 (3.0) * | 24.7 (3.2) * | 24.7 (3.4) * | <0.001 |
Waist circumference, mean (SD), cm | 79.1 (8.3) | 82.7 (8.2) * | 84.2 (8.5) *† | 85.8 (8.9) *†‡ | <0.001 |
Income level, n (%) | <0.001 | ||||
≥Median | 1773 (73.3) | 1440 (60.9) | 969 (40.7) | 504 (21.4) | |
Educational status, n (%) | <0.001 | ||||
Lower than middle school | 234 (9.6) | 482 (20.1) | 973 (40.6) | 1523 (63.9) | |
Middle school | 574 (23.6) | 632 (26.3) | 586 (24.5) | 417 (17.5) | |
High school | 1133 (46.5) | 891 (37.1) | 594 (24.8) | 312 (13.1) | |
University and college | 494 (20.3) | 396 (16.5) | 243 (10.1) | 133 (5.6) | |
Smoking status, n (%) | <0.001 | ||||
Current smoker | 670 (27.8) | 683 (28.6) | 613 (25.6) | 501 (21.1) | |
Ex-smoker | 252 (10.5) | 412 (17.3) | 404 (16.8) | 391 (16.5) | |
Never-smoker | 1489 (61.8) | 1289 (54.1) | 1381 (57.6) | 1481 (62.4) | |
Alcohol drinking status, n (%) | <0.001 | ||||
Current drinker | 1229 (50.6) | 1282 (53.5) | 1106 (46.1) | 943 (39.5) | |
Ex-drinker | 115 (4.7) | 143 (6.0) | 183 (7.6) | 170 (7.1) | |
Never-drinker | 1085 (44.7) | 970 (40.5) | 1111 (46.3) | 1273 (53.4) | |
Physical activity, mean (SD), METs-hour/week | 149 (89) | 164 (100) * | 181 (108) *† | 194 (114) *†‡ | <0.001 |
Systolic blood pressure, mean (SD), mmHg | 106.6 (8.7) | 119.5 (9.7) * | 127.8 (13.4) *† | 144.3 (17.6) *†‡ | <0.001 |
Diastolic blood pressure, mean (SD), mmHg | 70.6 (7.0) | 80.6 (7.8) * | 84.4 (10.5) *† | 91.0 (10.9) *†‡ | <0.001 |
Medical history, n (%) | |||||
Hypertension | 52 (2.1) | 146 (6.0) | 428 (17.7) | 792 (32.8) | <0.001 |
Diabetes mellitus | 81 (3.3) | 95 (3.9) | 198 (8.2) | 253 (10.5) | <0.001 |
Dyslipidaemia | 52 (2.1) | 68 (2.8) | 65 (2.7) | 43 (1.8) | 0.061 |
Chronic kidney disease | 63 (2.6) | 54 (2.2) | 58 (2.4) | 87 (3.6) | 0.015 |
Laboratory data, mean (SD) | |||||
eGFR, mL/min/1.73 m2 | 93.1 (20.2) | 90.9 (20.6) * | 88.6 (19.7) *† | 86.9 (20.4) *†‡ | <0.001 |
Fasting blood glucose level, mg/dL | 89.7 (20.5) | 91.8 (19.7) * | 93.9 (26.4) *† | 94.2 (23.9) *† | <0.001 |
Hemoglobin A1c level, % | 5.6 (0.8) | 5.7 (0.8) * | 5.9 (1.1) *† | 6.0 (1.0) *†‡ | <0.001 |
Total cholesterol level, mg/dL | 191.7 (34.5) | 198.6 (35.6) * | 201.9 (37.5) *† | 201.4 (38.5) *† | <0.001 |
Triglyceride level, mg/dL | 130.8 (99.3) | 152.0 (110.2) * | 164.9 (116.0) *† | 164.7 (109.3) *† | <0.001 |
HDL cholesterol level, mg/dL | 49.9 (11.5) | 49.6 (11.8) | 49.2 (11.8) | 49.7 (12.4) | 0.300 |
LDL cholesterol level, mg/dL | 118.0 (30.4) | 122.5 (31.3) | 124.5 (32.7) | 120.2 (175.7) | 0.080 |
Cardiovascular Mortality | Unadjusted HR (95% CI) | Model 1 a HR (95% CI) | Model 2 b HR (95% CI) | Model 3 c HR (95% CI) |
---|---|---|---|---|
First quartile (4.52–7.38 m/s) | REF | REF | REF | REF |
Second quartile (7.39–8.44 m/s) | 4.68 (1.34–16.27) | 3.37 (0.95–11.90) | 2.65 (0.74–9.58) | 2.11 (0.57–7.84) |
Third quartile (8.45–9.89 m/s) | 15.80 (4.92–50.75) * | 6.01 (1.71–21.19) | 4.53 (1.26–16.25) | 3.50 (0.95–12.87) |
Fourth quartile (9.90–15.17 m/s) | 56.60 (18.05–177.43) *† | 13.33 (3.45–51.46) *† | 10.12 (2.55–40.19) *† | 7.57 (1.83–31.25) *† |
Cardiovascular Disease Outcomes d | Unadjusted HR (95% CI) | Model 1 a HR (95% CI) | Model 2 b HR (95% CI) | Model 3 c HR (95% CI) |
First quartile (4.52–7.38 m/s) | REF | REF | REF | REF |
Second quartile (7.39–8.44 m/s) | 1.76 (1.39–2.22) | 1.36 (1.06–1.74) | 1.29 (1.00–1.66) | 1.24 (0.96–1.61) |
Third quartile (8.45–9.89 m/s) | 3.64 (2.95–4.50) * | 1.86 (1.41–2.46) * | 1.72 (1.29–2.29) * | 1.61 (1.19–2.16) |
Fourth quartile (9.90–15.17 m/s) | 5.85 (4.77–7.18) *† | 1.91 (1.33–2.75) * | 1.75 (1.20–2.56) | 1.56 (1.05–2.31) |
Cardiovascular Mortality | HR (95% CI) | BIC | ΔBIC a | Harrell’s C-Index | p-Value b |
---|---|---|---|---|---|
Cox models | |||||
10-year ASCVD risk score | 1.09 (1.08–1.10) | 3688.2 | 88.9 | 0.809 (0.784–0.835) | 0.008 |
ePWV (per 1 m/s) | 1.87 (1.73–2.02) | 3614.9 | 15.6 | 0.810 (0.784–0.835) | <0.001 |
Combined model | 1.03 (1.03–1.04) for 10-year ASCVD risk score and 1.29 (1.24–1.35) for ePWV (per 1 m/s) | 3599.3 | 0.824 (0.801–0.849) | ||
Cardiovascular Disease Outcomes c | HR (95% CI) | BIC | ΔBIC a | Harrell’s C-Index | p-Value b |
Cox models | |||||
10-year ASCVD risk score | 1.07 (1.06–1.07) | 21,301.8 | 139.9 | 0.687 (0.673–0.701) | 0.008 |
ePWV (per 1 m/s) | 1.43 (1.39–1.48) | 21,207.2 | 45.3 | 0.684 (0.669–0.698) | <0.001 |
Combined model | 1.03 (1.03–1.04) for 10-year ASCVD risk score and 1.29 (1.24–1.35) for ePWV (per 1 m/s) | 21,161.9 | 0.697 (0.683–0.711) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.S.; Lee, Y.; Park, J.-K.; Lim, Y.-H.; Shin, J.-H. Association of the Estimated Pulse Wave Velocity with Cardio-Vascular Disease Outcomes among Men and Women Aged 40–69 Years in the Korean Population: An 18-Year Follow-Up Report on the Ansung–Ansan Cohort in the Korean Genome Environment Study. J. Pers. Med. 2022, 12, 1611. https://doi.org/10.3390/jpm12101611
Kim BS, Lee Y, Park J-K, Lim Y-H, Shin J-H. Association of the Estimated Pulse Wave Velocity with Cardio-Vascular Disease Outcomes among Men and Women Aged 40–69 Years in the Korean Population: An 18-Year Follow-Up Report on the Ansung–Ansan Cohort in the Korean Genome Environment Study. Journal of Personalized Medicine. 2022; 12(10):1611. https://doi.org/10.3390/jpm12101611
Chicago/Turabian StyleKim, Byung Sik, Yonggu Lee, Jin-Kyu Park, Young-Hyo Lim, and Jeong-Hun Shin. 2022. "Association of the Estimated Pulse Wave Velocity with Cardio-Vascular Disease Outcomes among Men and Women Aged 40–69 Years in the Korean Population: An 18-Year Follow-Up Report on the Ansung–Ansan Cohort in the Korean Genome Environment Study" Journal of Personalized Medicine 12, no. 10: 1611. https://doi.org/10.3390/jpm12101611
APA StyleKim, B. S., Lee, Y., Park, J. -K., Lim, Y. -H., & Shin, J. -H. (2022). Association of the Estimated Pulse Wave Velocity with Cardio-Vascular Disease Outcomes among Men and Women Aged 40–69 Years in the Korean Population: An 18-Year Follow-Up Report on the Ansung–Ansan Cohort in the Korean Genome Environment Study. Journal of Personalized Medicine, 12(10), 1611. https://doi.org/10.3390/jpm12101611