The Effect of Lumbar Belts with Different Extensibilities on Kinematic, Kinetic, and Muscle Activity of Sit-to-Stand Motions in Patients with Nonspecific Low Back Pain
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Lumbar Belts
2.3. Experimental Procedure
2.4. Measurement Method
2.4.1. Measurement of Kinematic and Kinetic Parameters
2.4.2. Measurement of Muscle Activity
2.5. Data Processing
2.6. Statistical Analysis
3. Results
3.1. Analysis of The General Characteristics of Experimental and Control Groups
3.2. Analysis of the Time Taken, Kinematics, and Kinetics Variables According to Lumbar Belt Wearing Conditions of the Experimental Group and Control Group
3.3. Analysis of Muscle Activity According to Lumbar Belt Wearing Conditions of the Experimental Group and Control Group
4. Discussion
4.1. Analysis of The Interaction between the Presence or Absence of Low Back Pain and the Extensibility of the Lumbar Belt
4.2. Analysis of Main Effects between Patients with Nonspecific Low Back Pain and Healthy Adults
4.3. Analysis of The Main Effects between Lumbar Belt Wearing Conditions
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoy, D.; Bain, C.; Williams, G.; March, L.; Brooks, P.; Blyth, F.; Woolf, A.; Vos, T.; Buchbinder, R. A systematic review of the global prevalence of low back pain. Arthritis Rheum. 2012, 64, 2028–2037. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.W.; Tucker, K. Moving differently in pain: A new theory to explain the adaptation to pain. Pain 2011, 152, S90–S98. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, R.; Wheat, J.; Robins, M. Is movement variability important for sports biomechanists? Sports Biomech. 2007, 6, 224–243. [Google Scholar] [CrossRef]
- Stergiou, N.; Decker, L.M. Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Hum. Mov. Sci. 2011, 30, 869–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seay, J.F.; Van Emmerik, R.E.; Hamill, J. Low back pain status affects pelvis-trunk coordination and variability during walking and running. Clin. Biomech. 2011, 26, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Mokhtarinia, H.R.; Sanjari, M.A.; Chehrehrazi, M.; Kahrizi, S.; Parnianpour, M. Trunk coordination in healthy and chronic nonspecific low back pain subjects during repetitive flexion-extension tasks: Effects of movement asymmetry, velocity and load. Hum. Mov. Sci. 2016, 45, 182–192. [Google Scholar] [CrossRef]
- Moseley, G.L.; Hodges, P.W. Reduced variability of postural strategy prevents normalization of motor changes induced by back pain: A risk factor for chronic trouble? Behav. Neurosci. 2006, 120, 474–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamill, J.; van Emmerik, R.E.; Heiderscheit, B.C.; Li, L. A dynamical systems approach to lower extremity running injuries. Clin. Biomech. 1999, 14, 297–308. [Google Scholar] [CrossRef]
- Silfies, S.P.; Bhattacharya, A.; Biely, S.; Smith, S.S.; Giszter, S. Trunk control during standing reach: A dynamical system analysis of movement strategies in patients with mechanical low back pain. Gait Posture 2009, 29, 370–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamoth, C.J.; Meijer, O.G.; Daffertshofer, A.; Wuisman, P.I.; Beek, P.J. Effects of chronic low back pain on trunk coordination and back muscle activity during walking: Changes in motor control. Eur. Spine. J. 2006, 15, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Reeves, N.P.; Narendra, K.S.; Cholewicki, J. Spine stability: Lessons from balancing a stick. Clin. Biomech. 2011, 26, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Claeys, K.; Dankaerts, W.; Janssens, L.; Brumagne, S. Altered preparatory pelvic control during the sit-to-stance-to-sit movement in people with non-specific low back pain. J. Electromyogr. Kinesiol. 2012, 22, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Shum, G.L.; Crosbie, J.; Lee, R.Y. Effect of low back pain on the kinematics and joint coordination of the lumbar spine and hip during sit-to-stand and stand-to-sit. Spine 2005, 30, 1998–2004. [Google Scholar] [CrossRef] [PubMed]
- Sedrez, J.A.; Mesquita, P.V.; Gelain, G.M.; Candotti, C.T. Kinematic Characteristics of Sit-to-Stand Movements in Patients with Low Back Pain: A Systematic Review. J. Manip. Physiol. Ther. 2019, 42, 532–540. [Google Scholar] [CrossRef]
- Bishop, F.L.; Dima, A.L.; Ngui, J.; Little, P.; Moss-Morris, R.; Foster, N.E.; Lewith, G.T. “Lovely Pie in the Sky Plans”: A Qualitative Study of Clinicians’ Perspectives on Guidelines for Managing Low Back Pain in Primary Care in England. Spine 2015, 40, 1842–1850. [Google Scholar] [CrossRef] [Green Version]
- Hancock, M.J.; Kjaer, P.; Korsholm, L.; Kent, P. Interpretation of subgroup effects in published trials. Phys. Ther. 2013, 93, 852–859. [Google Scholar] [CrossRef] [Green Version]
- Mistry, D.; Patel, S.; Hee, S.W.; Stallard, N.; Underwood, M. Evaluating the quality of subgroup analyses in randomized controlled trials of therapist-delivered interventions for nonspecific low back pain: A systematic review. Spine 2014, 39, 618–629. [Google Scholar] [CrossRef]
- Sun, X.; Briel, M.; Walter, S.D.; Guyatt, G.H. Is a subgroup effect believable? Updating criteria to evaluate the credibility of subgroup analyses. BMJ 2010, 340, c117. [Google Scholar] [CrossRef]
- Maher, C.; Underwood, M.; Buchbinder, R. Non-specific low back pain. Lancet 2017, 389, 736–747. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, K.M.; Callaghan, J.P. Standing on a declining surface reduces transient prolonged standing induced low back pain development. Appl. Ergon. 2016, 56, 76–83. [Google Scholar] [CrossRef]
- Lahad, A.; Malter, A.D.; Berg, A.O.; Deyo, R.A. The effectiveness of four interventions for the prevention of low back pain. JAMA 1994, 272, 1286–1291. [Google Scholar] [CrossRef] [PubMed]
- Ammendolia, C.; Kerr, M.S.; Bombardier, C. Back belt use for prevention of occupational low back pain: A systematic review. J. Manip. Physiol. Ther. 2005, 28, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Larivière, C.; Caron, J.M.; Preuss, R.; Mecheri, H. The effect of different lumbar belt designs on the lumbopelvic rhythm in healthy subjects. BMC Musculoskelet. Disord. 2014, 15, 307. [Google Scholar] [CrossRef] [Green Version]
- Preuss, R.; Fung, J. Can acute low back pain result from segmental spinal buckling during sub-maximal activities? A review of the current literature. Man. Ther. 2005, 10, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Panjabi, M.M. Clinical spinal instability and low back pain. J. Electromyogr. Kinesiol. 2003, 13, 371–379. [Google Scholar] [CrossRef]
- McGill, S.M.; Kippers, V. Transfer of loads between lumbar tissues during the flexion-relaxation phenomenon. Spine 1994, 19, 2190–2196. [Google Scholar] [CrossRef]
- Katsuhira, J.; Sasaki, H.; Asahara, S.; Ikegami, T.; Ishihara, H.; Kikuchi, T.; Hirai, Y.; Yamasaki, Y.; Wada, T.; Maruyama, H. Comparison of low back joint moment using a dynamic 3D biomechanical model in different transferring tasks wearing low back belt. Gait Posture 2008, 28, 258–264. [Google Scholar] [CrossRef]
- Foster, N.E.; Anema, J.R.; Cherkin, D.; Chou, R.; Cohen, S.P.; Gross, D.P.; Ferreira, P.H.; Fritz, J.M.; Koes, B.W.; Peul, W.; et al. Prevention and treatment of low back pain: Evidence, challenges, and promising directions. Lancet 2018, 391, 2368–2383. [Google Scholar] [CrossRef]
- Van Duijvenbode, I.C.; Jellema, P.; van Poppel, M.N.; van Tulder, M.W. Lumbar supports for prevention and treatment of low back pain. Cochrane Database Syst. Rev. 2008, 2008, CD001823. [Google Scholar] [CrossRef]
- Shahvarpour, A.; Preuss, R.; Sullivan, M.J.L.; Negrini, A.; Larivière, C. The effect of wearing a lumbar belt on biomechanical and psychological outcomes related to maximal flexion-extension motion and manual material handling. Appl. Ergon. 2018, 69, 17–24. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Boucher, J.A.; Roy, N.; Preuss, R.; Larivière, C. The effect of two lumbar belt designs on trunk repositioning sense in people with and without low back pain. Ann. Phys. Rehabil. Med. 2017, 60, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Ippersiel, P.; Robbins, S.; Preuss, R. Movement variability in adults with low back pain during sit-to-stand-to-sit. Clin. Biomech. 2018, 58, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Ludvig, D.; Preuss, R.; Larivière, C. The effect of extensible and non-extensible lumbar belts on trunk muscle activity and lumbar stiffness in subjects with and without low-back pain. Clin. Biomech. 2019, 67, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Orakifar, N.; Shaterzadeh-Yazdi, M.J.; Salehi, R.; Mehravar, M.; Namnik, N. Muscle Activity Pattern Dysfunction During Sit to Stand and Stand to Sit in the Movement System Impairment Subgroups of Low Back Pain. Arch. Phys. Med. Rehabil. 2019, 100, 851–858. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, J.; Atkins, S.; Richards, J.; Vincent, H. Modelling of Muscle Force Distributions During Barefoot and Shod Running. J. Hum. Kinet. 2015, 47, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costigan, P.A.; Wyss, U.P.; Deluzio, K.J.; Li, J. Semiautomatic three-dimensional knee motion assessment system. Med. Biol. Eng. Comput. 1992, 30, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Cappozzo, A.; Catani, F.; Croce, U.D.; Leardini, A. Position and orientation in space of bones during movement: Anatomical frame definition and determination. Clin. Biomech. 1995, 10, 171–178. [Google Scholar] [CrossRef]
- Koopman, A.S.; Kingma, I.; Faber, G.S.; de Looze, M.P.; van Dieën, J.H. Effects of a passive exoskeleton on the mechanical loading of the low back in static holding tasks. J. Biomech. 2019, 83, 97–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- Farahpour, N.; Jafarnezhadgero, A.; Allard, P.; Majlesi, M. Muscle activity and kinetics of lower limbs during walking in pronated feet individuals with and without low back pain. J. Electromyogr. Kinesiol. 2018, 39, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Etnyre, B.; Thomas, D.Q. Event standardization of sit-to-stand movements. Phys. Ther. 2007, 87, 1651–1666. [Google Scholar] [CrossRef] [PubMed]
- Schenkman, M.; Riley, P.O.; Pieper, C. Sit to stand from progressively lower seat heights—alterations in angular velocity. Clin. Biomech. 1996, 11, 153–158. [Google Scholar] [CrossRef]
- Stevermer, C.A.; Gillette, J.C. Kinematic and Kinetic Indicators of Sit-to-Stand. J. Appl. Biomech. 2016, 32, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Pai, Y.C.; Rogers, M.W. Control of body mass transfer as a function of speed of ascent in sit-to-stand. Med. Sci. Sports Exerc. 1990, 22, 378–384. [Google Scholar] [CrossRef]
- Nuzik, S.; Lamb, R.; VanSant, A.; Hirt, S. Sit-to-stand movement pattern. A kinematic study. Phys. Ther. 1986, 66, 1708–1713. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritz, C.O.; Morris, P.E.; Richler, J.J. Effect size estimates: Current use, calculations, and interpretation. J. Exp. Psychol. Gen. 2012, 141, 2–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calmels, P.; Fayolle-Minon, I. An update on orthotic devices for the lumbar spine based on a review of the literature. Rev. Rhum. Engl. Ed 1996, 63, 285–291. [Google Scholar] [PubMed]
- Boucher, J.A.; Abboud, J.; Nougarou, F.; Normand, M.C.; Descarreaux, M. The Effects of Vibration and Muscle Fatigue on Trunk Sensorimotor Control in Low Back Pain Patients. PLoS ONE 2015, 10, e0135838. [Google Scholar] [CrossRef] [PubMed]
- Willigenburg, N.W.; Kingma, I.; Hoozemans, M.J.; van Dieën, J.H. Precision control of trunk movement in low back pain patients. Hum. Mov. Sci. 2013, 32, 228–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koch, C.; Hänsel, F. Chronic Non-specific Low Back Pain and Motor Control During Gait. Front. Psychol. 2018, 9, 2236. [Google Scholar] [CrossRef] [PubMed]
- Roebroeck, M.E.; Doorenbosch, C.A.; Harlaar, J.; Jacobs, R.; Lankhorst, G.J. Biomechanics and muscular activity during sit-to-stand transfer. Clin. Biomech. 1994, 9, 235–244. [Google Scholar] [CrossRef]
- Jeon, W.; Jensen, J.L.; Griffin, L. Muscle activity and balance control during sit-to-stand across symmetric and asymmetric initial foot positions in healthy adults. Gait Posture 2019, 71, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Svendsen, J.H.; Svarrer, H.; Laessoe, U.; Vollenbroek-Hutten, M.; Madeleine, P. Standardized activities of daily living in presence of sub-acute low-back pain: A pilot study. J. Electromyogr. Kinesiol. 2013, 23, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Tully, E.A.; Fotoohabadi, M.R.; Galea, M.P. Sagittal spine and lower limb movement during sit-to-stand in healthy young subjects. Gait Posture 2005, 22, 338–345. [Google Scholar] [CrossRef]
- Saragiotto, B.T.; Maher, G.C.; Yamato, T.P.; Costa, L.O.; Menezes Costa, L.C.; Ostelo, R.W.; Macedo, L.G. Motor control exercise for chronic non-specific low-back pain. Cochrane Database Syst. Rev. 2016, 2016, CD012004. [Google Scholar] [CrossRef] [PubMed]
- Götze, M.; Ernst, M.; Koch, M.; Blickhan, R. Influence of chronic back pain on kinematic reactions to unpredictable arm pulls. Clin. Biomech. 2015, 30, 290–295. [Google Scholar] [CrossRef]
- Van Dieën, J.H.; Selen, L.P.; Cholewicki, J. Trunk muscle activation in low-back pain patients, an analysis of the literature. J. Electromyogr. Kinesiol. 2003, 13, 333–351. [Google Scholar] [CrossRef]
- Sung, P.S.; Danial, P. Analysis of relative kinematic index with normalized standing time between subjects with and without recurrent low back pain. Eur. Spine J. 2017, 26, 518–527. [Google Scholar] [CrossRef]
- Van Poppel, M.N.; de Looze, M.P.; Koes, B.W.; Smid, T.; Bouter, L.M. Mechanisms of action of lumbar supports: A systematic review. Spine 2000, 25, 2103–2113. [Google Scholar] [CrossRef]
- Khemlani, M.M.; Carr, J.H.; Crosbie, W.J. Muscle synergies and joint linkages in sit-to-stand under two initial foot positions. Clin. Biomech. 1999, 14, 236–246. [Google Scholar] [CrossRef]
- Haddas, R.; Satin, A.; Lieberman, I. What is actually happening inside the “cone of economy”: Compensatory mechanisms during a dynamic balance test. Eur. Spine J. 2020, 29, 2319–2328. [Google Scholar] [CrossRef] [PubMed]
Variable | CG (n = 15) | EG (n = 15) | p |
---|---|---|---|
Sex (Male, %) | 9 (60.0) | 8 (53.3) | 0.500 † |
Age (year) | 34.53 (4.40) | 35.60 (5.19) | 0.549 ‡ |
Height (cm) | 171.40 (9.83) | 170.20 (8.08) | 0.718 ‡ |
Weight (kg) | 70.60 (12.50) | 67.40 (14.60) | 0.525 ‡ |
BMI (kg/m2) | 23.85 (2.26) | 23.02 (3.38) | 0.437 ‡ |
Visual analog scale (score) | 3.80 (0.86) | ||
Oswestry Disability Index (%) | 19.60 (4.42) | ||
Onset (month) | 43.06 (33.35) |
Variable | Condition 1 (No LB) | Condition 2 (Extensible LB) | Condition 3 (Nonextensible LB) | p (f) | Post Hoc | |||||
---|---|---|---|---|---|---|---|---|---|---|
CG | EG | CG | EG | CG | EG | “Group” (G) | “Condition” (C) | G × C | ||
Time taken (s) | 1.76 (0.19) | 1.90 (0.28) | 1.76 (0.22) | 1.78 (0.20) | 1.75 (0.22) | 1.77 (0.20) | 0.401 | 0.018 * (0.39) | 0.033 * (0.36) | EG: C1 > C2, C1 > C3 |
Trunk flexion angle (°) | 45.70 (10.42) | 40.79 (6.41) | 45.96 (10.07) | 45.17 (6.12) | 46.89 (10.28) | 44.09 (5.65) | 0.336 | 0.030 * (0.38) | 0.102 | C1 < C2, C1 < C3 |
Pelvic anterior tilt angle (°) | 34.14 (5.94) | 42.05 (6.16) | 45.08 (8.30) | 45.46 (8.89) | 45.55 (8.57) | 44.74 (6.31) | 0.290 | <0.001 * (0.87) | 0.002 * (0.50) | CG: C1 < C2, C1 < C3 C1: CG < EG |
Hip flexion angle (°) | 100.16 (8.82) | 104.30 (11.45) | 108.07 (13.42) | 110.73 (10.79) | 111.97 (11.86) | 110.24 (9.72) | 0.640 | <0.001 * (0.75) | 0.196 | C1 < C2, C1 < C3 |
Knee flexion angle (°) | 73.13 (9.09) | 77.05 (9.34) | 72.13 (7.82) | 74.77 (9.29) | 71.77 (8.94) | 75.08 (9.13) | 0.308 | 0.028 * (0.37) | 0.655 | C1 > C2, C1 > C3 |
Ankle flexion angle (°) | −6.74 (4.28) | −5.73 (3.71) | −6.14 (4.91) | −6.61 (3.85) | −6.41 (4.44) | −6.57 (5.92) | 0.933 | 0.908 | 0.422 | |
Hip flexion–extension moment (nm/kg) | −1082.71 (272.10) | −875.20 (171.62) | −1163.58 (213.83) | −968.21 (112.71) | −1193.42 (222.59) | −948.38 (151.12) | 0.002 * (0.65) | 0.005 * (0.45) | 0.699 | CG > EG C1 < C2, C1 < C3 |
Hip adduction–abduction moment (nm/kg) | 202.97 (164.75) | 178.82 (139.13) | 215.26 (117.89) | 181.27 (103.57) | 203.81 (94.11) | 186.31 (88.26) | 0.532 | 0.848 | 0.821 | |
Hip Int. Rot–Ext. Rot moment (nm/kg) | 176.89 (117.37) | 170.56 (103.88) | 177.02 (163.95) | 159.37 (112.66) | 185.39 (186.78) | 188.46 (109.36) | 0.883 | 0.365 | 0.675 | |
Knee flexion-extension moment (nm/kg) | −593.82 (145.11) | −702.46 (168.38) | −563.46 (153.38) | −655.45 (161.79) | −549.03 (134.16) | −661.88 (155.61) | 0.055 | 0.033 * (0.36) | 0.820 | C1 > C2, C1 > C3 |
Knee varus–valgus moment (nm/kg) | −70.03 (32.95) | −70.54 (57.46) | −70.41 (38.22) | −73.85 (56.54) | −60.15 (43.77) | −61.66 (57.35) | 0.912 | 0.158 | 0.971 | |
Knee Int. Rot–Ext. Rot moment (nm/kg) | −108.82 (62.90) | −108.31 (67.98) | −110.77 (64.01) | −107.18 (76.34) | −102.12 (55.16) | −111.63 (68.13) | 0.934 | 0.972 | 0.763 | |
Ankle flexion–extension moment (nm/kg) | 107.93 (43.72) | 104.49 (34.09) | 113.31 (34.75) | 96.59 (37.56) | 108.47 (52.49) | 93.34 (30.89) | 0.322 | 0.756 | 0.621 | |
Ankle inversion–eversion moment (nm/kg) | 29.02 (25.26) | 30.87 (21.77) | 32.93 (26.19) | 34.26 (25.48) | 30.96 (24.01) | 36.06 (22.46) | 0.750 | 0.091 | 0.551 | |
Ankle adduction–abduction moment (nm/kg) | −1.54 (6.61) | −4.37 (7.25) | −2.36 (9.06) | −3.12 (4.34) | −3.76 (7.41) | −2.69 (6.91) | 0.708 | 0.912 | 0.243 |
Variable | Condition 1 (No LB) | Condition 2 (Extensible LB) | Condition 3 (Nonextensible LB) | p (f) | Post Hoc | |||||
---|---|---|---|---|---|---|---|---|---|---|
CG | EG | CG | EG | CG | EG | “Group” (G) | “Condition” (C) | G × C | ||
Vastus lateralis flexion phase | 18.16 (6.48) | 31.71 (10.52) | 21.00 (7.14) | 28.28 (9.04) | 20.39 (7.97) | 28.35 (9.86) | 0.003 * (0.61) | 0.762 | 0.003 * (0.52) | C1: CG < EG |
Vastus lateralis extension phase | 28.50 (12.09) | 40.89 (13.92) | 27.41 (12.94) | 40.39 (14.48) | 29.59 (11.53) | 41.04 (13.94) | 0.014 * (0.49) | 0.342 | 0.728 | CG < EG |
Biceps femoris flexion phase | 3.59 (1.44) | 5.05 (2.87) | 3.96 (1.41) | 4.47 (2.38) | 3.85 (1.37) | 4.23 (2.87) | 0.312 | 0.277 | 0.004 * (0.46) | EG: C1 > C2, C1 > C3 |
Biceps femoris extension phase | 9.37 (4.39) | 8.09 (4.63) | 9.94 (4.40) | 10.11 (4.92) | 10.28 (5.25) | 10.68 (6.69) | 0.893 | 0.007 * (0.47) | 0.219 | C1 < C2, C1 < C3 |
Tibialis anterior flexion phase | 19.91 (13.06) | 24.47 (14.29) | 17.97 (8.95) | 21.58 (11.68) | 15.49 (8.77) | 22.19 (13.59) | 0.246 | 0.007 * (0.44) | 0.321 | C1 > C2, C1 > C3 |
Tibialis anterior extension phase | 5.31 (3.17) | 9.19 (4.92) | 5.06 (3.37) | 8.14 (6.86) | 5.91 (3.44) | 7.78 (6.22) | 0.092 | 0.423 | 0.136 | |
Gastrocnemius flexion phase | 3.08 (1.42) | 4.26 (1.75) | 2.75 (1.39) | 3.83 (1.48) | 2.24 (1.03) | 4.06 (1.56) | 0.010 * (0.52) | 0.011 * (0.42) | 0.076 | CG < EG C1 > C2, C1 > C3 |
Gastrocnemius extension phase | 5.25 (2.32) | 6.65 (2.67) | 4.76 (1.84) | 5.68 (1.76) | 3.91 (1.80) | 5.59 (2.55) | 0.063 | 0.005 * (0.45) | 0.565 | C1 > C2, C1 > C3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Im, S.-C.; Seo, S.-W.; Kang, N.-Y.; Jo, H.; Kim, K. The Effect of Lumbar Belts with Different Extensibilities on Kinematic, Kinetic, and Muscle Activity of Sit-to-Stand Motions in Patients with Nonspecific Low Back Pain. J. Pers. Med. 2022, 12, 1678. https://doi.org/10.3390/jpm12101678
Im S-C, Seo S-W, Kang N-Y, Jo H, Kim K. The Effect of Lumbar Belts with Different Extensibilities on Kinematic, Kinetic, and Muscle Activity of Sit-to-Stand Motions in Patients with Nonspecific Low Back Pain. Journal of Personalized Medicine. 2022; 12(10):1678. https://doi.org/10.3390/jpm12101678
Chicago/Turabian StyleIm, Sang-Cheol, Seong-Wook Seo, Na-Yeon Kang, Hoon Jo, and Kyoung Kim. 2022. "The Effect of Lumbar Belts with Different Extensibilities on Kinematic, Kinetic, and Muscle Activity of Sit-to-Stand Motions in Patients with Nonspecific Low Back Pain" Journal of Personalized Medicine 12, no. 10: 1678. https://doi.org/10.3390/jpm12101678
APA StyleIm, S.-C., Seo, S.-W., Kang, N.-Y., Jo, H., & Kim, K. (2022). The Effect of Lumbar Belts with Different Extensibilities on Kinematic, Kinetic, and Muscle Activity of Sit-to-Stand Motions in Patients with Nonspecific Low Back Pain. Journal of Personalized Medicine, 12(10), 1678. https://doi.org/10.3390/jpm12101678