Air Pollution and Maximum Temperature Are Associated with Neurodevelopmental Regressive Events in Autism Spectrum Disorder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Exposure Variables
2.3. Data Analysis
3. Results
3.1. Participant Characteristics
3.2. Case-Control Comparisons
3.2.1. Multivariate Logistic Regression Models
3.2.2. Analysis of Variance Models
Model Term | β | Std. Error | t-Value | p | Odds Ratio (95% CI) |
---|---|---|---|---|---|
Intercept | 0.782 | 0.2494 | 3.134 | 0.002 | 2.185 (1.340, 3.563) |
Season (Fall Reference) | |||||
Winter | −0.134 | 0.0287 | −4.677 | <0.001 | 0.874 (0.826, 0.925) |
Spring | 0.210 | 0.0253 | 8.292 | <0.001 | 1.233 (1.174, 1.296) |
Summer | 0.201 | 0.0255 | 7.852 | <0.001 | 1.222 (1.162, 1.285) |
NDR Event (Compare to Reference Time Period) | |||||
Weeks 1 to 2 | 0.046 | 0.2486 | 0.184 | 0.854 | 1.047 (0.643, 1.704) |
Weeks 3 to 4 | 0.056 | 0.2508 | 0.224 | 0.823 | 1.058 (0.647, 1.729) |
Weeks 5 to 6 | 0.177 | 0.2793 | 0.633 | 0.527 | 1.193 (0.690, 2.063) |
Air Pollution (PM2.5) | |||||
Overall Exposure | 0.025 | 0.0016 | 15.815 | 0.000 | 1.025 (1.022, 1.029) |
NDR Weeks 1 to 2 | 0.019 | 0.0137 | 1.413 | 0.158 | 1.019 (0.993, 1.047) |
NDR Weeks 3 to 4 | 0.024 | 0.0125 | 1.955 | 0.051 | 1.025 (1.000, 1.050) |
NDR Weeks 5 to 6 | 0.042 | 0.0130 | 3.223 | 0.001 | 1.043 (1.017, 1.070) |
Ozone | |||||
Overall Exposure | −0.017 | 0.0007 | −22.937 | 0.000 | 0.984 (0.982, 0.985) |
Precipitation | |||||
Overall Exposure | −0.120 | 0.0216 | −5.553 | <0.001 | 0.887 (0.850, 0.925) |
Maximum Temperature | |||||
Overall Exposure | 0.001 | 0.0007 | 1.164 | 0.244 | 1.001 (0.999, 1.002) |
NDR Weeks 1 to 2 | −0.003 | 0.0031 | −1.048 | 0.295 | 0.997 (0.991, 1.003) |
NDR Weeks 3 to 4 | −0.005 | 0.0033 | −1.423 | 0.155 | 0.995 (0.989, 1.002) |
NDR Weeks 5 to 6 | −0.009 | 0.0036 | −2.509 | 0.012 | 0.991 (0.984, 0.998) |
3.3. Difference in Environmental Variables Related to Potential Trigger
3.3.1. Multivariate Logistic Regression Models
3.3.2. Analysis of Variance Models
4. Discussion
4.1. Air Pollution Effects on Children with Autism Spectrum Disorder
4.2. The Potential Contribution of Temperature
4.3. Potential Biological Mechanisms of Neurodevelopmental Regression
4.4. Unique Changes in Mitochondrial Dysfunction Are Linked to Neurodevelopmental Regression in Autism Spectrum Disorder
4.5. ‘Triggers’ Associated with Neurodevelopmental Regression
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maenner, M.J.; Shaw, K.A.; Baio, J.; Washington, A.; Patrick, M.; DiRienzo, M.; Christensen, D.L.; Wiggins, L.D.; Pettygrove, S. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2016. MMWR Surveill. Summ. 2020, 69, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, Y.; Liu, B.; Chen, Q.; Xing, X.; Xu, G.; Yang, W. Prevalence of Autism Spectrum Disorder Among Children and Adolescents in the United States from 2019 to 2020. JAMA Pediatr. 2022, 176, 943–945. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, G.B.; Mendelsohn, N.J. Professional_Practice_Guidelines_Committee. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 guideline revisions. Genet. Med. 2013, 15, 399–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hallmayer, J.; Cleveland, S.; Torres, A.; Phillips, J.; Cohen, B.; Torigoe, T.; Miller, J.; Fedele, A.; Collins, J.; Smith, K.; et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry 2011, 68, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Sandin, S.; Lichtenstein, P.; Kuja-Halkola, R.; Larsson, H.; Hultman, C.M.; Reichenberg, A. The familial risk of autism. JAMA J. Am. Med. Assoc. 2014, 311, 1770–1777. [Google Scholar] [CrossRef]
- Dutheil, F.; Comptour, A.; Morlon, R.; Mermillod, M.; Pereira, B.; Baker, J.S.; Charkhabi, M.; Clinchamps, M.; Bourdel, N. Autism spectrum disorder and air pollution: A systematic review and meta-analysis. Environ. Pollut. 2021, 278, 116856. [Google Scholar] [CrossRef]
- Chaste, P.; Leboyer, M. Autism risk factors: Genes, environment, and gene-environment interactions. Dialogues Clin. Neurosci. 2012, 14, 281–292. [Google Scholar] [CrossRef]
- Canitano, R.; Zappella, M. Autistic epileptiform regression. Funct. Neurol. 2006, 21, 97–101. [Google Scholar]
- Shoffner, J.; Hyams, L.; Langley, G.N.; Cossette, S.; Mylacraine, L.; Dale, J.; Ollis, L.; Kuoch, S.; Bennett, K.; Aliberti, A.; et al. Fever plus mitochondrial disease could be risk factors for autistic regression. J. Child Neurol. 2010, 25, 429–434. [Google Scholar] [CrossRef]
- Edmonds, J.L.; Kirse, D.J.; Kearns, D.; Deutsch, R.; Spruijt, L.; Naviaux, R.K. The otolaryngological manifestations of mitochondrial disease and the risk of neurodegeneration with infection. Arch. Otolaryngol. -Head Neck Surg. 2002, 128, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Rossignol, D.A.; Frye, R.E. Mitochondrial dysfunction in autism spectrum disorders: A systematic review and meta-analysis. Mol. Psychiatry 2012, 17, 290–314. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E.; Casanova, M.F.; Fatemi, S.H.; Folsom, T.D.; Reutiman, T.J.; Brown, G.L.; Edelson, S.M.; Slattery, J.C.; Adams, J.B. Neuropathological Mechanisms of Seizures in Autism Spectrum Disorder. Front. Neurosci. 2016, 10, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frye, R.E. Mitochondrial disease in 22q13 duplication syndrome. J. Child Neurol. 2012, 27, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Condie, J.; Goldstein, J.; Wainwright, M.S. Acquired microcephaly, regression of milestones, mitochondrial dysfunction, and episodic rigidity in a 46,XY male with a de novo MECP2 gene mutation. J. Child Neurol. 2010, 25, 633–636. [Google Scholar] [CrossRef]
- Napoli, E.; Ross-Inta, C.; Wong, S.; Hung, C.; Fujisawa, Y.; Sakaguchi, D.; Angelastro, J.; Omanska-Klusek, A.; Schoenfeld, R.; Giulivi, C. Mitochondrial dysfunction in Pten haplo-insufficient mice with social deficits and repetitive behavior: Interplay between Pten and p53. PLoS ONE 2012, 7, e42504. [Google Scholar] [CrossRef] [Green Version]
- Naviaux, R.K.; Zolkipli, Z.; Wang, L.; Nakayama, T.; Naviaux, J.C.; Le, T.P.; Schuchbauer, M.A.; Rogac, M.; Tang, Q.; Dugan, L.L.; et al. Antipurinergic therapy corrects the autism-like features in the poly(IC) mouse model. PLoS ONE 2013, 8, e57380. [Google Scholar] [CrossRef] [Green Version]
- Frye, R.E.; Cakir, J.; Rose, S.; Delhey, L.; Bennuri, S.C.; Tippett, M.; Melnyk, S.; James, S.J.; Palmer, R.F.; Austin, C.; et al. Prenatal air pollution influences neurodevelopment and behavior in autism spectrum disorder by modulating mitochondrial physiology. Mol. Psychiatry 2021, 26, 1561–1577. [Google Scholar] [CrossRef]
- Frye, R.E.; Cakir, J.; Rose, S.; Delhey, L.; Bennuri, S.C.; Tippett, M.; Palmer, R.F.; Austin, C.; Curtin, P.; Arora, M. Early life metal exposure dysregulates cellular bioenergetics in children with regressive autism spectrum disorder. Transl. Psychiatry 2020, 10, 223. [Google Scholar] [CrossRef]
- Frye, R.E.; Rose, S.; Chacko, J.; Wynne, R.; Bennuri, S.C.; Slattery, J.C.; Tippett, M.; Delhey, L.; Melnyk, S.; Kahler, S.G.; et al. Modulation of mitochondrial function by the microbiome metabolite propionic acid in autism and control cell lines. Transl. Psychiatry 2016, 6, e927. [Google Scholar] [CrossRef] [Green Version]
- Frye, R.E.; Rose, S.; Wynne, R.; Bennuri, S.C.; Blossom, S.; Gilbert, K.M.; Heilbrun, L.; Palmer, R.F. Oxidative Stress Challenge Uncovers Trichloroacetaldehyde Hydrate-Induced Mitoplasticity in Autistic and Control Lymphoblastoid Cell Lines. Sci. Rep. 2017, 7, 4478. [Google Scholar] [CrossRef] [Green Version]
- Rose, S.; Bennuri, S.C.; Wynne, R.; Melnyk, S.; James, S.J.; Frye, R.E. Mitochondrial and redox abnormalities in autism lymphoblastoid cells: A sibling control study. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2017, 31, 904–909. [Google Scholar] [CrossRef]
- Rose, S.; Frye, R.E.; Slattery, J.; Wynne, R.; Tippett, M.; Melnyk, S.; James, S.J. Oxidative stress induces mitochondrial dysfunction in a subset of autistic lymphoblastoid cell lines. Transl. Psychiatry 2014, 4, e377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, S.; Frye, R.E.; Slattery, J.; Wynne, R.; Tippett, M.; Pavliv, O.; Melnyk, S.; James, S.J. Oxidative stress induces mitochondrial dysfunction in a subset of autism lymphoblastoid cell lines in a well-matched case control cohort. PLoS ONE 2014, 9, e85436. [Google Scholar] [CrossRef] [PubMed]
- Bennuri, S.C.; Rose, S.; Frye, R.E. Mitochondrial Dysfunction Is Inducible in Lymphoblastoid Cell Lines From Children With Autism and May Involve the TORC1 Pathway. Front. Psychiatry 2019, 10, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, N.M.; Hoffmann, A.R.; Behlen, J.C.; Lau, C.; Pendleton, D.; Harvey, N.; Shore, R.; Li, Y.; Chen, J.; Tian, Y.; et al. Air pollution and children’s health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ. Health Prev. Med. 2021, 26, 72. [Google Scholar] [CrossRef]
- Castagna, A.; Mascheroni, E.; Fustinoni, S.; Montirosso, R. Air pollution and neurodevelopmental skills in preschool- and school-aged children: A systematic review. Neurosci. Biobehav. Rev. 2022, 136, 104623. [Google Scholar] [CrossRef]
- Bettiol, A.; Gelain, E.; Milanesio, E.; Asta, F.; Rusconi, F. The first 1000 days of life: Traffic-related air pollution and development of wheezing and asthma in childhood. A systematic review of birth cohort studies. Environ. Health 2021, 20, 46. [Google Scholar] [CrossRef]
- Duvekot, J.; van der Ende, J.; Verhulst, F.C.; Greaves-Lord, K. The Screening Accuracy of the Parent and Teacher-Reported Social Responsiveness Scale (SRS): Comparison with the 3Di and ADOS. J. Autism Dev. Disord. 2015, 45, 1658–1672. [Google Scholar] [CrossRef]
- Murray, M.J.; Mayes, S.D.; Smith, L.A. Brief report: Excellent agreement between two brief autism scales (Checklist for Autism Spectrum Disorder and Social Responsiveness Scale) completed independently by parents and the Autism Diagnostic Interview-Revised. J. Autism Dev. Disord. 2011, 41, 1586–1590. [Google Scholar] [CrossRef]
- Bolte, S.; Westerwald, E.; Holtmann, M.; Freitag, C.; Poustka, F. Autistic traits and autism spectrum disorders: The clinical validity of two measures presuming a continuum of social communication skills. J. Autism Dev. Disord. 2011, 41, 66–72. [Google Scholar] [CrossRef]
- Corsello, C.; Hus, V.; Pickles, A.; Risi, S.; Cook, E.H., Jr.; Leventhal, B.L.; Lord, C. Between a ROC and a hard place: Decision making and making decisions about using the SCQ. J. Child Psychol. Psychiatry Allied Discip. 2007, 48, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.V.; Norbury, C.F. Exploring the borderlands of autistic disorder and specific language impairment: A study using standardised diagnostic instruments. J. Child Psychol. Psychiatry Allied Discip. 2002, 43, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Frye, R.E.; Tippett, M.; Delhey, L.; Slattery, J. Test-Retest Reliability and Validity of the Autism Symptoms Questionnaire. N. Am. J. Med. Sci. 2015, 8, 149–153. [Google Scholar]
- Frye, R.E.; Slattery, J.; Delhey, L.; Furgerson, B.; Strickland, T.; Tippett, M.; Sailey, A.; Wynne, R.; Rose, S.; Melnyk, S.; et al. Folinic acid improves verbal communication in children with autism and language impairment: A randomized double-blind placebo-controlled trial. Mol. Psychiatry 2018, 23, 247–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volk, H.E.; Lurmann, F.; Penfold, B.; Hertz-Picciotto, I.; McConnell, R. Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry 2013, 70, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Environmental Protection Agency. Revisions to Ambient Air Monitoring Regulations, Subpart B—Monitoring Network; 40 CFR 58.10; Environmental Protection Agency (EPA): Washington, DC, USA, 2006. [Google Scholar]
- Agency, E.P. Remote Sensing Information Gateway. Available online: https://www.epa.gov/hesc/remote-sensing-information-gateway (accessed on 1 August 2020).
- Agency, E.P. Air Data: Air Quality Data Collected at Outdoor Monitors Across the US. Available online: https://19january2021snapshot.epa.gov/outdoor-air-quality-data_.html (accessed on 1 August 2020).
- Administration, N.O.A.A. National Centers for Environmental Information, Climate Data Online; National Centers for Environmental Information: Asheville, NC, USA, 2021. [Google Scholar]
- Chun, H.; Leung, C.; Wen, S.W.; McDonald, J.; Shin, H.H. Maternal exposure to air pollution and risk of autism in children: A systematic review and meta-analysis. Environ. Pollut. 2020, 256, 113307. [Google Scholar] [CrossRef]
- Kim, D.; Volk, H.; Girirajan, S.; Pendergrass, S.; Hall, M.A.; Verma, S.S.; Schmidt, R.J.; Hansen, R.L.; Ghosh, D.; Ludena-Rodriguez, Y.; et al. The joint effect of air pollution exposure and copy number variation on risk for autism. Autism Res. Off. J. Int. Soc. Autism Res. 2017, 10, 1470–1480. [Google Scholar] [CrossRef]
- Goodrich, A.J.; Volk, H.E.; Tancredi, D.J.; McConnell, R.; Lurmann, F.W.; Hansen, R.L.; Schmidt, R.J. Joint effects of prenatal air pollutant exposure and maternal folic acid supplementation on risk of autism spectrum disorder. Autism Res. Off. J. Int. Soc. Autism Res. 2018, 11, 69–80. [Google Scholar] [CrossRef]
- Volk, H.E.; Kerin, T.; Lurmann, F.; Hertz-Picciotto, I.; McConnell, R.; Campbell, D.B. Autism spectrum disorder: Interaction of air pollution with the MET receptor tyrosine kinase gene. Epidemiology 2014, 25, 44–47. [Google Scholar] [CrossRef] [Green Version]
- Imbriani, G.; Panico, A.; Grassi, T.; Idolo, A.; Serio, F.; Bagordo, F.; De Filippis, G.; De Giorgi, D.; Antonucci, G.; Piscitelli, P.; et al. Early-Life Exposure to Environmental Air Pollution and Autism Spectrum Disorder: A Review of Available Evidence. Int. J. Environ. Res. Public Health 2021, 18, 1204. [Google Scholar] [CrossRef]
- Ritz, B.; Liew, Z.; Yan, Q.; Cui, X.; Virk, J.; Ketzel, M.; Raaschou-Nielsen, O. Air pollution and Autism in Denmark. Environ. Epidemiol. 2018, 2, e028. [Google Scholar] [CrossRef] [PubMed]
- McGuinn, L.A.; Windham, G.C.; Kalkbrenner, A.E.; Bradley, C.; Di, Q.; Croen, L.A.; Fallin, M.D.; Hoffman, K.; Ladd-Acosta, C.; Schwartz, J.; et al. Early Life Exposure to Air Pollution and Autism Spectrum Disorder: Findings from a Multisite Case-Control Study. Epidemiology 2020, 31, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Magen-Molho, H.; Weisskopf, M.G.; Nevo, D.; Shtein, A.; Chen, S.; Broday, D.; Kloog, I.; Levine, H.; Pinto, O.; Raz, R. Air Pollution and Autism Spectrum Disorder in Israel: A Negative Control Analysis. Epidemiology 2021, 32, 773–780. [Google Scholar] [CrossRef]
- van der Wiel, K.; Bintanja, R. Contribution of climatic changes in mean and variability to monthly temperature and precipitation extremes. Commun. Earth Environ. 2021, 2, 1. [Google Scholar] [CrossRef]
- Singh, K.; Singh, I.N.; Diggins, E.; Connors, S.L.; Karim, M.A.; Lee, D.; Zimmerman, A.W.; Frye, R.E. Developmental regression and mitochondrial function in children with autism. Ann. Clin. Transl. Neurol. 2020, 7, 683–694. [Google Scholar] [CrossRef]
- Rose, S.; Bennuri, S.C.; Davis, J.E.; Wynne, R.; Slattery, J.C.; Tippett, M.; Delhey, L.; Melnyk, S.; Kahler, S.G.; MacFabe, D.F.; et al. Butyrate enhances mitochondrial function during oxidative stress in cell lines from boys with autism. Transl. Psychiatry 2018, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Rose, S.; Bennuri, S.C.; Murray, K.F.; Buie, T.; Winter, H.; Frye, R.E. Mitochondrial dysfunction in the gastrointestinal mucosa of children with autism: A blinded case-control study. PLoS ONE 2017, 12, e0186377. [Google Scholar] [CrossRef]
- Rose, S.; Wynne, R.; Frye, R.E.; Melnyk, S.; James, S.J. Increased susceptibility to ethylmercury-induced mitochondrial dysfunction in a subset of autism lymphoblastoid cell lines. J. Toxicol. 2015, 2015, 573701. [Google Scholar] [CrossRef]
- Thurm, A.; Manwaring, S.S.; Luckenbaugh, D.A.; Lord, C.; Swedo, S.E. Patterns of skill attainment and loss in young children with autism. Dev. Psychopathol. 2014, 26, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Boterberg, S.; Charman, T.; Marschik, P.B.; Bölte, S.; Roeyers, H. Regression in autism spectrum disorder: A critical overview of retrospective findings and recommendations for future research. Neurosci. Biobehav. Rev. 2019, 102, 24–55. [Google Scholar] [CrossRef] [Green Version]
- Armangue, T.; Petit-Pedrol, M.; Dalmau, J. Autoimmune encephalitis in children. J. Child Neurol. 2012, 27, 1460–1469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossignol, D.A.; Genuis, S.J.; Frye, R.E. Environmental toxicants and autism spectrum disorders: A systematic review. Transl. Psychiatry 2014, 4, e360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curran, L.K.; Newschaffer, C.J.; Lee, L.C.; Crawford, S.O.; Johnston, M.V.; Zimmerman, A.W. Behaviors associated with fever in children with autism spectrum disorders. Pediatrics 2007, 120, e1386–e1392. [Google Scholar] [CrossRef]
- Byrne, K.; Zheng, S.; Bishop, S.; Boucher, J.; Ghods, S.; Kim, S.H.; Lord, C. Behavioral responses to fevers and other medical events in children with and without ASD. Autism Res. 2022. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Demine, S.; Renard, P.; Arnould, T. Mitochondrial Uncoupling: A Key Controller of Biological Processes in Physiology and Diseases. Cells 2019, 8, 795. [Google Scholar] [CrossRef] [Green Version]
- Frye, R.E.; Lionnard, L.; Singh, I.; Karim, M.A.; Chajra, H.; Frechet, M.; Kissa, K.; Racine, V.; Ammanamanchi, A.; McCarty, P.J.; et al. Mitochondrial morphology is associated with respiratory chain uncoupling in autism spectrum disorder. Transl. Psychiatry 2021, 11, 527. [Google Scholar] [CrossRef]
Variable | No Regression | Regression with Trigger | ASD without Trigger |
---|---|---|---|
Number of Cases | 25 | 25 | 33 |
White, N (%) | 22 (88%) | 22 (88%) | 31 (94%) |
Males, N (%) | 16 (64%) | 21 (84%) | 29 (88%) |
Rural-urban commuting area codes | 1.6 (2.1) | 1.7 (1.8) | 2.0 (1.8) |
% Rural (≥6) | 8% | 8% | 6% |
Age at Regression | 1y 4m (0y 9m) | 1y 9m (1y 1m) |
Model Term | β | Std. Error | t-Value | p | Odds Ratio (95% CI) |
---|---|---|---|---|---|
Intercept | −0.281 | 0.6539 | −0.430 | 0.667 | 0.755 (0.210, 2.719) |
Season (Fall Reference) | |||||
Winter | −0.317 | 0.0336 | −9.435 | <0.0001 | 0.728 (0.682, 0.778) |
Spring | 0.090 | 0.0293 | 3.085 | 0.002 | 1.094 (1.033, 1.159) |
Summer | 0.220 | 0.0290 | 7.582 | <0.001 | 1.246 (1.177, 1.319) |
NDR Event (Compare to Reference Time Period) | |||||
Weeks 1 to 2 | 0.248 | 0.2913 | 0.851 | 0.395 | 1.281 (0.724, 2.268) |
Weeks 3 to 4 | 0.369 | 0.2865 | 1.288 | 0.198 | 1.446 (0.825, 2.535) |
Weeks 5 to 6 | 0.693 | 0.3400 | 2.037 | 0.042 | 1.999 (1.027, 3.892) |
Air Pollution (PM2.5) | |||||
Overall Exposure | 0.040 | 0.0018 | 21.847 | <0.0001 | 1.041 (1.037, 1.044) |
NDR Weeks 1 to 2 | 0.045 | 0.0163 | 2.750 | 0.006 | 1.046 (1.013, 1.080) |
NDR Weeks 3 to 4 | 0.033 | 0.0149 | 2.237 | 0.025 | 1.034 (1.004, 1.064) |
NDR Weeks 5 to 6 | 0.059 | 0.0165 | 3.591 | <0.001 | 1.061 (1.027, 1.096) |
Ozone | |||||
Overall Exposure | 0.010 | 0.0061 | 1.715 | 0.086 | 0.987 (0.985, 0.989) |
NDR Weeks 1 to 2 | 0.009 | 0.0062 | 1.522 | 0.128 | 1.011 (0.999, 1.023) |
NDR Weeks 3 to 4 | 0.023 | 0.0070 | 3.234 | 0.001 | 1.009 (0.997, 1.022) |
NDR Weeks 5 to 6 | 0.010 | 0.0061 | 1.715 | 0.086 | 1.023 (1.009, 1.037) |
Maximum Temperature | |||||
Overall Exposure | −0.008 | 0.0008 | −10.346 | <0.0001 | 0.992 (0.990, 0.993) |
NDR Weeks 1 to 2 | −0.017 | 0.0044 | −3.725 | <0.001 | 0.984 (0.975, 0.992) |
NDR Weeks 3 to 4 | −0.016 | 0.0048 | −3.437 | <0.001 | 0.984 (0.975, 0.993) |
NDR Weeks 5 to 6 | −0.032 | 0.0055 | −5.785 | <0.001 | 0.969 (0.958, 0.979) |
Model Term | Β | Std. Error | t-Value | p | Odds Ratio (95% CI) |
---|---|---|---|---|---|
Intercept | −2.304 | 0.7648 | −3.012 | 0.003 | 0.100 (0.022, 0.447) |
Season (Fall Reference) | |||||
Winter | −0.124 | 0.0383 | −3.248 | 0.001 | 0.883 (0.819, 0.952) |
Spring | 0.235 | 0.0337 | 6.958 | <0.001 | 1.265 (1.184,1.351) |
Summer | 0.176 | 0.0339 | 5.193 | <0.001 | 1.192 (1.116, 1.274) |
Maximum Temperature | |||||
Overall Exposure | 0.012 | 0.0009 | 13.518 | 0.000 | 1.012 (1.010, 1.014) |
Ozone | |||||
Overall Exposure | −0.029 | 0.0009 | −34.610 | 0.000 | 0.971 (0.969, 0.973) |
Precipitation | |||||
Overall Exposure | −0.315 | 0.0308 | −10.253 | 0.000 | 0.729 (0.687, 0.775) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frye, R.E.; Cakir, J.; McCarty, P.J.; Rose, S.; Delhey, L.M.; Palmer, R.F.; Austin, C.; Curtin, P.; Yitshak-sade, M.; Arora, M. Air Pollution and Maximum Temperature Are Associated with Neurodevelopmental Regressive Events in Autism Spectrum Disorder. J. Pers. Med. 2022, 12, 1809. https://doi.org/10.3390/jpm12111809
Frye RE, Cakir J, McCarty PJ, Rose S, Delhey LM, Palmer RF, Austin C, Curtin P, Yitshak-sade M, Arora M. Air Pollution and Maximum Temperature Are Associated with Neurodevelopmental Regressive Events in Autism Spectrum Disorder. Journal of Personalized Medicine. 2022; 12(11):1809. https://doi.org/10.3390/jpm12111809
Chicago/Turabian StyleFrye, Richard E., Janet Cakir, Patrick J. McCarty, Shannon Rose, Leanna M. Delhey, Raymond F. Palmer, Christine Austin, Paul Curtin, Maayan Yitshak-sade, and Manish Arora. 2022. "Air Pollution and Maximum Temperature Are Associated with Neurodevelopmental Regressive Events in Autism Spectrum Disorder" Journal of Personalized Medicine 12, no. 11: 1809. https://doi.org/10.3390/jpm12111809