The Effect of Reduced Oxygen Saturation on Retinal Microvascularization in COVID-19 Patients with Bilateral Pneumonia Based on Optical Coherence Tomography Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Characteristics of the Studied Group
2.3. Treatment of COVID-19 Patients during Hospitalization
2.4. Ocular Characteristic of COVID-19 Patients
2.5. Optical Coherence Angiography Measurements
2.6. Statistical Analysis
3. Results
Structural OCT Outcomes Depending on Oxygen Saturation
4. Discussion
4.1. Retinal and Choroidal Changes in the Macular Region
4.2. FAZ Enlargement in COVID-19 Patients
4.3. Choroidal Vessel Density Changes
4.4. Tocilizumab Treatment Potential Impact on Retinal Microcirculation
4.5. Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomasiewicz, K.; Piekarska, A.; Stempkowska-Rejek, J.; Serafińska, S.; Gawkowska, A.; Parczewski, M.; Niścigorska-Olsen, J.; Łapiński, T.W.; Zarębska-Michaluk, D.; Kowalska, J.D.; et al. Tocilizumab for Patients with Severe COVID-19: A Retrospective, Multi-Center Study. Expert Rev. Anti Infect. Ther. 2021, 19, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Day, M. COVID-19: Four Fifths of Cases Are Asymptomatic, China Figures Indicate. BMJ 2020, 369, m1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Flisiak, R.; Rzymski, P.; Zarębska-Michaluk, D.; Rogalska, M.; Rorat, M.; Czupryna, P.; Lorenc, B.; Ciechanowski, P.; Kozielewicz, D.; Piekarska, A.; et al. Demographic and Clinical Overview of Hospitalized COVID-19 Patients during the First 17 Months of the Pandemic in Poland. J. Clin. Med. 2022, 11, 117. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.X.; Tyagi, T.; Jain, K.; Gu, V.W.; Lee, S.H.; Hwa, J.M.; Kwan, J.M.; Krause, D.S.; Lee, A.I.; Halene, S.; et al. Thrombocytopathy and Endotheliopathy: Crucial Contributors to COVID-19 Thromboinflammation. Nat. Rev. Cardiol. 2021, 18, 194–209. [Google Scholar] [CrossRef]
- Robba, C.; Battaglini, D.; Pelosi, P.; Rocco, P.R.M. Multiple Organ Dysfunction in SARS-CoV-2: MODS-CoV-2. Expert Rev. Respir. Med. 2020, 14, 865–868. [Google Scholar] [CrossRef]
- Li, J.; Huang, D.Q.; Zou, B.; Yang, H.; Hui, W.Z.; Rui, F.; Yee, N.T.S.; Liu, C.; Nerurkar, S.N.; Kai, J.C.Y.; et al. Epidemiology of COVID-19: A Systematic Review and Meta-Analysis of Clinical Characteristics, Risk Factors, and Outcomes. J. Med. Virol. 2021, 93, 1449–1458. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Lu, M.-C.; Yang, S.-F.; Bien, M.-Y.; Chen, Y.-F.; Li, Y.-T. Respiratory Care for the Critical Patients with 2019 Novel Coronavirus. Respir. Med. 2021, 186, 106516. [Google Scholar] [CrossRef]
- Miró, Ò.; Llorens, P.; Aguirre, A.; Lozano, L.; Beaune, S.; Roussel, M.; Borgne, P.L.; Chouihed, T.; Freund, Y. Association between COVID-19 and Pulmonary Embolism (AC-19-PE Study). Thromb. Res. 2020, 196, 322–324. [Google Scholar] [CrossRef]
- Giannis, D.; Ziogas, I.A.; Gianni, P. Coagulation Disorders in Coronavirus Infected Patients: COVID-19, SARS-CoV-1, MERS-CoV and Lessons from the Past. J. Clin. Virol. 2020, 127, 104362. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural Basis for the Recognition of SARS-CoV-2 by Full-Length Human ACE2. Science 2020, 367, 1444–1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Płatkowska, B.; Kal, M.; Biskup, M. Optical Coherence Tomography Angiography—Use in Ophthalmological Practice. Med. Stud. Med. 2020, 36, 195–205. [Google Scholar] [CrossRef]
- Bates, N.M.; Tian, J.; Smiddy, W.E.; Lee, W.-H.; Somfai, G.M.; Feuer, W.J.; Shiffman, J.C.; Kuriyan, A.E.; Gregori, N.Z.; Kostic, M.; et al. Relationship between the Morphology of the Foveal Avascular Zone, Retinal Structure, and Macular Circulation in Patients with Diabetes Mellitus. Sci. Rep. 2018, 8, 5355. [Google Scholar] [CrossRef] [PubMed]
- Aitchison, R.T.; Kennedy, G.J.; Shu, X.; Mansfield, D.C.; Kir, R.; Hui, J.; Shahani, U. Measuring the Foveal Avascular Zone in Diabetes: A Study Using Optical Coherence Tomography Angiography. J. Diabetes Investig. 2022, 13, 668–676. [Google Scholar] [CrossRef] [PubMed]
- Rzymski, P.; Pazgan-Simon, M.; Simon, K.; Łapiński, T.; Zarębska-Michaluk, D.; Szczepańska, B.; Chojnicki, M.; Mozer-Lisewska, I.; Flisiak, R. Clinical Characteristics of Hospitalized COVID-19 Patients Who Received at Least One Dose of COVID-19 Vaccine. Vaccines 2021, 9, 781. [Google Scholar] [CrossRef] [PubMed]
- Hryhorowicz, S.; Ustaszewski, A.; Kaczmarek-Ryś, M.; Lis, E.; Witt, M.; Pławski, A.; Ziętkiewicz, E. European Context of the Diversity and Phylogenetic Position of SARS-CoV-2 Sequences from Polish COVID-19 Patients. J. Appl. Genet. 2021, 62, 327–337. [Google Scholar] [CrossRef]
- Kessler, L.J.; Bagautdinov, D.; Łabuz, G.; Auffarth, G.U.; Khoramnia, R. Semi-Automated Quantification of Retinal and Choroidal Biomarkers in Retinal Vascular Diseases: Agreement of Spectral-Domain Optical Coherence Tomography with and without Enhanced Depth Imaging Mode. Diagnostics 2022, 12, 333. [Google Scholar] [CrossRef]
- Schlegl, T.; Waldstein, S.M.; Bogunovic, H.; Endstraßer, F.; Sadeghipour, A.; Philip, A.-M.; Podkowinski, D.; Gerendas, B.S.; Langs, G.; Schmidt-Erfurth, U. Fully Automated Detection and Quantification of Macular Fluid in OCT Using Deep Learning. Ophthalmology 2018, 125, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Treder, M.; Lauermann, J.L.; Eter, N. Automated Detection of Exudative Age-Related Macular Degeneration in Spectral Domain Optical Coherence Tomography Using Deep Learning. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 259–265. [Google Scholar] [CrossRef]
- Yasser, I.; Khalifa, F.; Abdeltawab, H.; Ghazal, M.; Sandhu, H.S.; El-Baz, A. Automated Diagnosis of Optical Coherence Tomography Angiography (OCTA) Based on Machine Learning Techniques. Sensors 2022, 22, 2342. [Google Scholar] [CrossRef]
- Iglicki, M.; Khoury, M.; Melamud, J.I.; Donato, L.; Barak, A.; Quispe, D.J.; Zur, D.; Loewenstein, A. Naïve Subretinal Haemorrhage Due to Neovascular Age-Related Macular Degeneration. Pneumatic Displacement, Subretinal Air, and Tissue Plasminogen Activator: Subretinal vs Intravitreal Aflibercept-the Native Study. Eye Lond. Engl. 2022. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Mejía, F.; Medina, C.; Cornejo, E.; Morello, E.; Vásquez, S.; Alave, J.; Schwalb, A.; Málaga, G. Oxygen Saturation as a Predictor of Mortality in Hospitalized Adult Patients with COVID-19 in a Public Hospital in Lima, Peru. PLoS ONE 2020, 15, e0244171. [Google Scholar] [CrossRef] [PubMed]
- Eltzschig, H.K.; Carmeliet, P. Hypoxia and Inflammation. N. Engl. J. Med. 2011, 364, 656–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascual-Prieto, J.; Burgos-Blasco, B.; Ávila Sánchez-Torija, M.; Fernández-Vigo, J.I.; Arriola-Villalobos, P.; Barbero Pedraz, M.A.; García-Feijoo, J.; Martínez-de-la-Casa, J.M. Utility of Optical Coherence Tomography Angiography in Detecting Vascular Retinal Damage Caused by Arterial Hypertension. Eur. J. Ophthalmol. 2020, 30, 579–585. [Google Scholar] [CrossRef]
- Lee, C.-W.; Cheng, H.-C.; Chang, F.-C.; Wang, A.-G. Optical Coherence Tomography Angiography Evaluation of Retinal Microvasculature Before and After Carotid Angioplasty and Stenting. Sci. Rep. 2019, 9, 14755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-Y.; Kim, J.P.; Jang, H.; Kim, J.; Kang, S.H.; Kim, J.S.; Lee, J.; Jung, Y.H.; Na, D.L.; Seo, S.W.; et al. Optical Coherence Tomography Angiography as a Potential Screening Tool for Cerebral Small Vessel Diseases. Alzheimers Res. Ther. 2020, 12, 73. [Google Scholar] [CrossRef]
- Mesentier-Louro, L.A.; Rangel, B.; Stell, L.; Shariati, M.A.; Dalal, R.; Nathan, A.; Yuan, K.; de Perez, V.J.; Liao, Y.J. Hypoxia-Induced Inflammation: Profiling the First 24-Hour Posthypoxic Plasma and Central Nervous System Changes. PLoS ONE 2021, 16, e0246681. [Google Scholar] [CrossRef]
- Schatz, A.; Willmann, G.; Fischer, M.D.; Schommer, K.; Messias, A.; Zrenner, E.; Bartz-Schmidt, K.-U.; Gekeler, F. Electroretinographic Assessment of Retinal Function at High Altitude. J. Appl. Physiol. 2013, 115, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Janáky, M.; Grósz, A.; Tóth, E.; Benedek, K.; Benedek, G. Hypobaric Hypoxia Reduces the Amplitude of Oscillatory Potentials in the Human ERG. Doc. Ophthalmol. 2007, 114, 45–51. [Google Scholar] [CrossRef]
- Kergoat, H.; Hérard, M.-È.; Lemay, M. RGC Sensitivity to Mild Systemic Hypoxia. Investig. Ophthalmol. Vis. Sci. 2006, 47, 5423–5427. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, B.; Jia, Y.; Wang, C.; Li, Q. Retinal Changes Following Rapid Ascent to a High-Altitude Environment. Eye 2018, 32, 370–374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, A.K.; Cozzi, M.; Imray, C.H.E.; Wright, A.; Pagliarini, S.; for the Birmingham Medical Research Expeditionary Society. Analysis of Retinal Segmentation Changes at High Altitude With and Without Acetazolamide. Investig. Ophthalmol. Vis. Sci. 2019, 60, 36–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nickel, N.P.; Shamskhou, E.A.; Razeen, M.A.; Condon, D.F.; Messentier Louro, L.A.; Dubra, A.; Liao, Y.J.; Zamanian, R.T.; Yuan, K.; Perez, V.A.D.J. Anatomic, Genetic and Functional Properties of the Retinal Circulation in Pulmonary Hypertension. Pulm. Circ. 2020, 10, 2045894020905508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zadeh, J.K.; Ruemmler, R.; Hartmann, E.K.; Ziebart, A.; Ludwig, M.; Patzak, A.; Xia, N.; Li, H.; Pfeiffer, N.; Gericke, A. Responses of Retinal Arterioles and Ciliary Arteries in Pigs with Acute Respiratory Distress Syndrome (ARDS). Exp. Eye Res. 2019, 184, 152–161. [Google Scholar] [CrossRef]
- Conrath, J.; Giorgi, R.; Ridings, B.; Raccah, D. Metabolic Factors and the Foveal Avascular Zone of the Retina in Diabetes Mellitus. Diabetes Metab. 2005, 31, 465–470. [Google Scholar] [CrossRef]
- Samara, W.A.; Say, E.A.T.; Khoo, C.T.L.; Higgins, T.P.; Magrath, G.; Ferenczy, S.; Shields, C.L. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retin. Phila. Pa 2015, 35, 2188–2195. [Google Scholar] [CrossRef]
- Kal, M.; Winiarczyk, M.; Głuszek, S.; Mackiewicz, J. Choroidal Thickness in Lamellar Macular Holes. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 259, 653–659. [Google Scholar] [CrossRef]
- Linsenmeier, R.A.; Zhang, H.F. Retinal Oxygen: From Animals to Humans. Prog. Retin. Eye Res. 2017, 58, 115–151. [Google Scholar] [CrossRef] [Green Version]
- Viggiano, P.; Toto, L.; Ferro, G.; Evangelista, F.; Porreca, A.; Mastropasqua, R. Choroidal Structural Changes in Different Intermediate AMD Patterns. Eur. J. Ophthalmol. 2022, 32, 460–467. [Google Scholar] [CrossRef]
- Rosen, R.B.; Andrade Romo, J.S.; Krawitz, B.D.; Mo, S.; Fawzi, A.A.; Linderman, R.E.; Carroll, J.; Pinhas, A.; Chui, T.Y.P. Earliest Evidence of Preclinical Diabetic Retinopathy Revealed Using Optical Coherence Tomography Angiography Perfused Capillary Density. Am. J. Ophthalmol. 2019, 203, 103–115. [Google Scholar] [CrossRef]
- Antonetti, D.A.; Klein, R.; Gardner, T.W. Diabetic Retinopathy. N. Engl. J. Med. 2012, 366, 1227–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joussen, A.M.; Poulaki, V.; Le, M.L.; Koizumi, K.; Esser, C.; Janicki, H.; Schraermeyer, U.; Kociok, N.; Fauser, S.; Kirchhof, B.; et al. A Central Role for Inflammation in the Pathogenesis of Diabetic Retinopathy. FASEB J. 2004, 18, 1450–1452. [Google Scholar] [CrossRef] [PubMed]
- Lorenzi, M.; Feke, G.T.; Pitler, L.; Berisha, F.; Kolodjaschna, J.; McMeel, J.W. Defective Myogenic Response to Posture Change in Retinal Vessels of Well-Controlled Type 1 Diabetic Patients with No Retinopathy. Investig. Ophthalmol. Vis. Sci. 2010, 51, 6770–6775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosula, L. Capillary Radius and Wall Thickness in Normal and Diabetic Rat Retinae. Microvasc. Res. 1974, 7, 274–276. [Google Scholar] [CrossRef]
- Flisiak, R.; Jaroszewicz, J.; Rogalska, M.; Łapiński, T.; Berkan-Kawińska, A.; Bolewska, B.; Tudrujek-Zdunek, M.; Kozielewicz, D.; Rorat, M.; Leszczyński, P.; et al. Tocilizumab Improves the Prognosis of COVID-19 in Patients with High IL-6. J. Clin. Med. 2021, 10, 1583. [Google Scholar] [CrossRef]
- Jose, R.J.; Manuel, A. COVID-19 Cytokine Storm: The Interplay between Inflammation and Coagulation. Lancet Respir. Med. 2020, 8, e46–e47. [Google Scholar] [CrossRef]
Variables | (SEM) | Me (IQR) |
---|---|---|
LogMar BCVA | 0.0 (0.0) | 0.0 (0.00) |
LogMar Reading Vision | 0.3 (0.03) | 0.3 (0.03) |
Spherical equivalent (D) | 0.13 (0.13) | 0.0 (2.25) |
Axial length | 23.55 (0.08) | 23.45 (1.05) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kal, M.; Winiarczyk, M.; Mackiewicz, J.; Odrobina, D.; Cieśla, E.; Płatkowska-Adamska, B.; Biskup, M.; Pabjan, P.; Zarębska-Michaluk, D. The Effect of Reduced Oxygen Saturation on Retinal Microvascularization in COVID-19 Patients with Bilateral Pneumonia Based on Optical Coherence Tomography Study. J. Pers. Med. 2022, 12, 1824. https://doi.org/10.3390/jpm12111824
Kal M, Winiarczyk M, Mackiewicz J, Odrobina D, Cieśla E, Płatkowska-Adamska B, Biskup M, Pabjan P, Zarębska-Michaluk D. The Effect of Reduced Oxygen Saturation on Retinal Microvascularization in COVID-19 Patients with Bilateral Pneumonia Based on Optical Coherence Tomography Study. Journal of Personalized Medicine. 2022; 12(11):1824. https://doi.org/10.3390/jpm12111824
Chicago/Turabian StyleKal, Magdalena, Mateusz Winiarczyk, Jerzy Mackiewicz, Dominik Odrobina, Elżbieta Cieśla, Bernadetta Płatkowska-Adamska, Michał Biskup, Paweł Pabjan, and Dorota Zarębska-Michaluk. 2022. "The Effect of Reduced Oxygen Saturation on Retinal Microvascularization in COVID-19 Patients with Bilateral Pneumonia Based on Optical Coherence Tomography Study" Journal of Personalized Medicine 12, no. 11: 1824. https://doi.org/10.3390/jpm12111824