Persistent Sleep Quality Deterioration among Post-COVID-19 Patients: Results from a 6-Month Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participant Selection
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The results suggest that persistent and significant sleep disturbances last up to 6 months after hospital discharge, although remarkable amelioration was observed over time.
- High scores on the PSQI, FSS, and Athens insomnia scales were noted in a significant percentage of patients. After adjustment for possible confounders, these scores were found to decrease over time.
- No significant differences were found between the groups with good and poor sleep quality (based on the global PSQI) with respect to gender, age, BMI, smoking status, hypertension, the severity of disease, the Charlson Comorbidity Index, or the length of hospital stay.
- Participants with excessive daytime sleepiness (EDS) and participants with severe fatigue were significantly younger.
- A statistically significant difference was noticed between males and females on the Athens Insomnia Scale, with females showing a higher rate of insomnia symptoms.
6. Limitations
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PSQI | Pittsburgh Sleep Quality Index |
ESS | Epworth Sleepiness Scale |
AIS | Athens Insomnia Scale |
FSS | Fatigue Severity Scale |
S-B | Stop-BANG questionnaire |
OT | oxygen therapy |
NIV | noninvasive ventilation |
HFNC | high-flow nasal canula |
IV | invasive ventilation |
ECMO | extracorporeal membrane oxygenation |
LMM | linear mixed-model regression |
EDS | excessive daytime sleepiness |
BMI | body mass index |
OSA | obstructive sleep apnea |
References
- COVID Live-Coronavirus Statistics-Worldometer. Available online: https://www.worldometers.info/coronavirus/ (accessed on 15 May 2022).
- Shah, W.; Hillman, T.; Playford, E.D.; Hishmeh, L. Managing the long term effects of COVID-19: Summary of NICE, SIGN, and RCGP rapid guideline. BMJ 2021, 372, n136. Available online: https://www.bmj.com/content/372/bmj.n136 (accessed on 15 May 2022). [CrossRef] [PubMed]
- Pataka, A.; Kotoulas, S.; Sakka, E.; Katsaounou, P.; Pappa, S. Sleep Dysfunction in COVID-19 Patients: Prevalence, Risk Factors, Mechanisms, and Management. J. Pers. Med. 2021, 11, 1203. Available online: https://pubmed.ncbi.nlm.nih.gov/34834555/ (accessed on 7 August 2022). [CrossRef] [PubMed]
- Alimoradi, Z.; Broström, A.; Tsang, H.W.H.; Griffiths, M.D.; Haghayegh, S.; Ohayon, M.M.; Lin, C.-Y.; Pakpour, A.H. Sleep problems during COVID-19 pandemic and its’ association to psychological distress: A systematic review and meta-analysis. EClinicalMedicine 2021, 36, 100916. Available online: https://pubmed.ncbi.nlm.nih.gov/34131640/ (accessed on 7 August 2022). [CrossRef] [PubMed]
- Jahrami, H.; BaHammam, A.S.; Bragazzi, N.L.; Saif, Z.; Faris, M.; Vitiello, M.V. Sleep problems during the COVID-19 pandemic by population: A systematic review and meta-analysis. J. Clin. Sleep Med. 2021, 17, 299–313. Available online: https://pubmed.ncbi.nlm.nih.gov/33108269/ (accessed on 15 May 2022). [CrossRef]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. Available online: https://pubmed.ncbi.nlm.nih.gov/33428867/ (accessed on 15 May 2022). [CrossRef]
- Orrù, G.; Bertelloni, D.; Diolaiuti, F.; Mucci, F.; di Giuseppe, M.; Biella, M.; Gemignani, A.; Ciacchini, R.; Conversano, C. Long-COVID Syndrome? A Study on the Persistence of Neurological, Psychological and Physiological Symptoms. Healthcare 2021, 9, 575. Available online: https://pubmed.ncbi.nlm.nih.gov/34068009/ (accessed on 15 May 2022). [CrossRef]
- Mazza, M.G.; de Lorenzo, R.; Conte, C.; Poletti, S.; Vai, B.; Bollettini, I.; Melloni, E.M.T.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; et al. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav. Immun. 2020, 89, 594. Available online: https://www.ncbi.nlm.nih.gov///pmc/articles/PMC7390748/ (accessed on 15 May 2022). [CrossRef]
- Sadhika Sood, Psychological Effects of the Coronavirus Disease-2019 Pandemic-PhilPapers. Available online: https://philpapers.org/rec/SOOPEO (accessed on 15 May 2022).
- Carpenter, J.S.; Andrykowski, M.A. Psychometric evaluation of the Pittsburgh Sleep Quality Index. J Psychosom. Res. 1998, 45, 5–13. Available online: https://pubmed.ncbi.nlm.nih.gov/9720850/ (accessed on 7 August 2022). [CrossRef]
- Lapin, B.R.; Bena, J.F.; Walia, H.K.; Moul, D.E. The Epworth Sleepiness Scale: Validation of One-Dimensional Factor Structure in a Large Clinical Sample. J. Clin. Sleep Med. 2018, 14, 1293–1301. Available online: https://pubmed.ncbi.nlm.nih.gov/30092893/ (accessed on 7 August 2022). [CrossRef] [Green Version]
- Soldatos, C.R.; Dikeos, D.G.; Paparrigopoulos, T.J. The diagnostic validity of the Athens Insomnia Scale. J. Psychosom. Res. 2003, 55, 263–267. Available online: https://pubmed.ncbi.nlm.nih.gov/12932801/ (accessed on 7 August 2022). [CrossRef]
- Valko, P.O.; Bassetti, C.L.; Bloch, K.E.; Held, U.; Baumann, C.R. Validation of the fatigue severity scale in a Swiss cohort. Sleep 2008, 31, 1601–1607. Available online: https://pubmed.ncbi.nlm.nih.gov/19014080/ (accessed on 7 August 2022). [CrossRef] [PubMed]
- Chung, F.; Abdullah, H.R.; Liao, P. STOP-Bang Questionnaire: A Practical Approach to Screen for Obstructive Sleep Apnea. Chest 2016, 149, 631–638. Available online: https://pubmed.ncbi.nlm.nih.gov/26378880/ (accessed on 7 August 2022). [CrossRef] [Green Version]
- Lin, Y.N.; Liu, Z.R.; Li, S.Q.; Li, C.X.; Zhang, L.; Li, N.; Sun, X.W.; Li, H.P.; Zhou, J.P.; Li, Q.Y. Burden of Sleep Disturbance During COVID-19 Pandemic: A Systematic Review. Nat. Sci. Sleep 2021, 13, 933. [Google Scholar] [CrossRef] [PubMed]
- El Sayed, S.; Gomaa, S.; Shokry, D.; Kabil, A.; Eissa, A. Sleep in post-COVID-19 recovery period and its impact on different domains of quality of life. Egypt. J. Neurol. Psychiatry Neurosurg. 2021, 57, 172. [Google Scholar] [CrossRef]
- Choudhry, A.A.; Shahzeen, F.; Choudhry, S.A.; Batool, N.; Murtaza, F.; Dilip, A.; Rani, M.; Chandnani, A. Impact of COVID-19 Infection on Quality of Sleep. Cureus 2021, 13, e18182. [Google Scholar] [CrossRef]
- Islam, M.K.; Molla, M.M.A.; Hasan, P.; Sharif, M.M.; Hossain, F.S.; Amin, M.R.; Rahman, R. Persistence of sleep disturbance among post-COVID patients: Findings from a 2-month follow-up study in a Bangladeshi cohort. J. Med. Virol. 2021, 94, 971–978. [Google Scholar] [CrossRef]
- Xie, Y.; Bowe, B.; Al-Aly, Z. Burdens of post-acute sequelae of COVID-19 by severity of acute infection, demographics, and health status. Nat. Commun. 2021, 12, 6571. Available online: https://www.nature.com/articles/s41467-021-26513-3 (accessed on 15 May 2022). [CrossRef] [PubMed]
- Ornell, F.; Schuch, J.B.; Sordi, A.O.; Kessler, F.H.P. “Pandemic fear” and COVID-19: Mental health burden and strategies. Braz. J. Psychiatry 2020, 42, 232. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7236170/ (accessed on 15 May 2022). [CrossRef] [Green Version]
- Stepnowsky, C.J.; Ancoli-Israel, S. Sleep and Its Disorders in Seniors. Sleep Med. Clin. 2008, 3, 281. Available online: https://www.ncbi.nlm.nih.gov//pmc/articles/PMC2516307/ (accessed on 6 November 2022). [CrossRef] [Green Version]
- Zitting, K.M.; Münch, M.Y.; Cain, S.W.; Wang, W.; Wong, A.; Ronda, J.M.; Aeschbach, D.; Czeisler, C.A.; Duffy, J.F. Young adults are more vulnerable to chronic sleep deficiency and recurrent circadian disruption than older adults. Sci. Rep. 2018, 8, 11052. Available online: https://pubmed.ncbi.nlm.nih.gov/30038272/ (accessed on 6 November 2022). [CrossRef]
- Krishnan, V.; Collop, N.A. Gender differences in sleep disorders. Curr. Opin Pulm. Med. 2006, 12, 383–389. Available online: https://pubmed.ncbi.nlm.nih.gov/17053485/ (accessed on 6 November 2022). [CrossRef] [PubMed]
- Gualano, M.R.; Lo Moro, G.; Voglino, G.; Bert, F.; Siliquini, R. Effects of COVID-19 Lockdown on Mental Health and Sleep Disturbances in Italy. Int. J. Environ. Res. Public Health 2020, 17, 4779. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zheng, Y.; Shi, J.; Wang, J.; Li, G.; Li, C.; Fromson, J.A.; Xu, Y.; Liu, X.; Xu, H.; et al. Immediate psychological distress in quarantined patients with COVID-19 and its association with peripheral inflammation: A mixed-method study. Brain Behav. Immun. 2020, 88, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Cellini, N.; Canale, N.; Mioni, G.; Costa, S. Changes in sleep pattern, sense of time and digital media use during COVID-19 lockdown in Italy. J. Sleep Res. 2020, 29, e13074. [Google Scholar] [CrossRef]
- Borbély, A.A.; Daan, S.; Wirz-Justice, A.; Deboer, T. The two-process model of sleep regulation: A reappraisal. J. Sleep Res. 2016, 25, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Wright, K.P.; McHill, A.W.; Birks, B.R.; Griffin, B.R.; Rusterholz, T.; Chinoy, E.D. Entrainment of the human circadian clock to the natural light-dark cycle. Curr. Biol. 2013, 23, 1554–1558. [Google Scholar] [CrossRef] [Green Version]
- Taquet, M.; Geddes, J.R.; Husain, M.; Luciano, S.; Harrison, P.J. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: A retrospective cohort study using electronic health records. Lancet Psychiatry 2021, 8, 416–427. Available online: http://www.thelancet.com/article/S2215036621000845/fulltext (accessed on 6 November 2022). [CrossRef]
- Liguori, C.; Pierantozzi, M.; Spanetta, M.; Sarmati, L.; Cesta, N.; Iannetta, M.; Ora, J.; Mina, G.G.; Puxeddu, E.; Balbi, O.; et al. Subjective neurological symptoms frequently occur in patients with SARS-CoV2 infection. Brain Behav. Immun. 2020, 88, 11–16. [Google Scholar] [CrossRef]
- Shimohata, T. Neuro-COVID-19. Clin. Exp. Neuroimmunol. 2022, 13, 17–23. [Google Scholar] [CrossRef]
- Rogers, J.P.; Chesney, E.; Oliver, D.; Pollak, T.A.; McGuire, P.; Fusar-Poli, P.; Zandi, M.S.; Lewis, G.; David, A.S. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: A systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry 2020, 7, 611–627. [Google Scholar] [CrossRef]
- Poenaru, S.; Abdallah, S.J.; Corrales-Medina, V.; Cowan, J. COVID-19 and post-infectious myalgic encephalomyelitis/chronic fatigue syndrome: A narrative review. Ther. Adv. Infect. Dis. 2021, 8. [Google Scholar] [CrossRef] [PubMed]
- Okun, M.L.; Coussons-Read, M.; Hall, M. Disturbed sleep is associated with increased C-reactive protein in young women. Brain Behav. Immun. 2009, 23, 351–354. [Google Scholar] [CrossRef] [Green Version]
- Mausbach, B.T.; Ancoli-Israel, S.; Von Känel, R.; Patterson, T.L.; Aschbacher, K.; Mills, P.J.; Ziegler, M.G.; Dimsdale, J.E.; Calleran, S.; Grant, I. Sleep disturbance, norepinephrine, and D-dimer are all related in elderly caregivers of people with Alzheimer disease. Sleep 2006, 29, 1347–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liukkonen, T.; Räsänen, P.; Ruokonen, A.; Laitinen, J.; Jokelainen, J.; Leinonen, M.; Meyer-Rochow, V.B.; Timonen, M. C-reactive protein levels and sleep disturbances: Observations based on the Northern Finland 1966 Birth Cohort study. Psychosom. Med. 2007, 69, 756–761. [Google Scholar] [CrossRef] [PubMed]
- Daubian-Nosé, P.; Frank, M.K.; Esteues, A.M. Sleep disorders: A review of the interface between restless legs syndrome and iron metabolism. Sleep Sci. 2014, 7, 234. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.L.; Mory, A.K.; Alessi, C.A. Nighttime oxygen desaturation and symptoms of sleep-disordered breathing in long-stay nursing home residents. J. Gerontol. A Biol. Sci. Med. Sci. 2005, 60, 104–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mônico-Neto, M.; Santos RVTDos Antunes, H.K.M. The world war against the COVID-19 outbreak: Don’t forget to sleep! J. Clin. Sleep Med. 2020, 16, 1215. [Google Scholar] [CrossRef] [PubMed]
- da Silva, F.R.; Guerreiro, R.d.C.; Andrade, H.d.A.; Stieler, E.; Silva, A.; de Mello, M.T. Does the compromised sleep and circadian disruption of night and shiftworkers make them highly vulnerable to 2019 coronavirus disease (COVID-19)? Chronobiol. Int. 2020, 37, 607–617. [Google Scholar] [CrossRef]
N | |
---|---|
Gender | |
Male, n (%) | 79(59.4%) |
Female, n (%) | 54 (40.6%) |
Age, mean (SD) | 56.0 (11.48) |
BMI, median (IQR) | 29 (26–32.7) |
Smoking status | |
Never smoked, n (%) | 72 (55%) |
Former smoker, n (%) | 45 (34.4%) |
Current smoker, n (%) | 14 (10.7%) |
No comorbidities | |
Yes, n (%) | 49 (37.4%) |
No, n (%) | 82 (62.6%) |
Arterial Hypertension, n (%) | 39 (29.8%) |
Cardiovascular disease, n (%) | 22 (16.8%) |
Chronic obstructive pulmonary disease, n (%) | 15 (11.5%) |
Diabetes, n (%) | 14 (10.7%) |
Autoimmune disease, n (%) | 13 (9.9%) |
Nervous system diseases, n (%) | 5 (3.8%) |
Active neoplasms, n (%) | 5 (3.8%) |
Chronic kidney disease, n (%) | 4 (3.1%) |
Severity | |
Group 1, n (%) | 10 (8.2%) |
Group 2, n (%) | 74 (60.6%) |
Group 3, n (%) | 24 (19.7%) |
Group 4, n (%) | 14 (11.5%) |
Hospitalization duration (in days), mean (SD) | 12.58 (8.90) |
Charlson Comorbidity Index, median (IQR) | 2 (1–3) |
1st Timepoint | 2nd Timepoint | 3rd Timepoint | F-Value | p | Hp2 | |
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | ||||
PSQI—Global score | 8.11 (3.87) | 7.22 (3.63) | 7.53 (3.72) | 2.840 | 0.062 a | 0.037 |
PSQI C1—Subjective sleep quality | 0.99 (0.77) | 0.85 (0.73) | 0.95 (0.83) | 1.219 | 0.299 | 0.016 |
PSQI C2—Sleep latency | 1.14 (0.91) | 0.88 (0.81) | 1.01 (0.85) | 3.026 | 0.060 b | 0.040 |
PSQI C3—Sleep duration | 1.27 (1.01) | 1.20 (0.95) | 1.43 (0.98) | 2.485 | 0.087 c | 0.033 |
PSQI C4—Habitual sleep efficiency | 2.26 (1.28) | 2.14 (1.36) | 2.2 (1.32) | 0.230 | 0.795 | 0.003 |
PSQI C5—Sleep disturbance | 1.39 (0.59) | 1.26 (0.60) | 1.22 (0.58) | 2.581 | 0.079 d | 0.034 |
PSQI C6—Use of sleep medication | 0.42 (0.96) | 0.37 (0.81) | 0.37 (0.86) | 0.217 | 0.805 | 0.003 |
PSQI C7—Daytime dysfunctions | 0.66 (0.73) | 0.49 (0.69) | 0.41 (0.57) | 3.571 | 0.031 | 0.047 |
1st Timepoint | 2nd Timepoint | 3rd Timepoint | F-Value | p | ηp2 | |
---|---|---|---|---|---|---|
Mean (SD) | Mean (SD) | Mean (SD) | ||||
Epworth Sleepiness Scale | 5.86 (4.08) | 5.65 (3.59) | 5.47 (3.70) | 0.550 | 0.578 | 0.008 |
FSS Scale | 3.4 1(1.73) | 2.93 (1.62) | 2.71 (1.48) | 8.026 | 0.001 e | 0.102 |
STOP-Bang | 2.61 (1.37) | 2.65 (1.30) | 2.69 (1.44) | 0.232 | 0.793 | 0.003 |
Athens Insomnia Scale | 6.24 (4.75) | 5.63 (4.40) | 5.14 (5.00) | 2.997 | 0.065 f | 0.041 |
1st Timepoint | 2nd Timepoint | 3rd Timepoint | ||||
N (%) | N (%) | N (%) | ||||
Global PSQI | ||||||
<5 | 18 (15.7%) | 25 (24.3%) | 21 (22.6%) | |||
≥5 | 97 (84.3%) | 78 (75.7%) | 72 (77.4%) | |||
Epworth sleepiness scale | ||||||
No EDS (≤10) | 103 (85.1%) | 79 (80.6%) | 73 (92.4%) | |||
EDS (>10) | 18 (14.9%) | 19 (19.4%) | 6 (7.6%) | |||
Epworth Sleepiness Scale | ||||||
Normal Sleepiness (0–10) | 103 (85.1%) | 79 (80.6%) | 73 (92.4%) | |||
Mild sleepiness (11–14) | 13 (10.7%) | 14 (14.3%) | 5 (6.3%) | |||
Moderate Sleepiness (15–17) | 3 (2.5%) | 5 (5.1%) | 0 (0.0%) | |||
Severe Sleepiness (18–24) | 2 (1.7%) | 0 (0.0%) | 1 (1.3%) | |||
FSS Scale | ||||||
<4 | 59 (48.8%) | 65 (66.3%) | 56 (70.9%) | |||
≥4 | 62 (51.2%) | 33 (33.7%) | 23 (29.1%) | |||
STOP-Bang | ||||||
Low risk (≤2) | 54 (44.6%) | 46 (46.9%) | 40 (50.6%) | |||
Intermediate risk (3–4) | 51 (42.1%) | 37 (37.8%) | 32 (40.5%) | |||
High risk (≥5) | 16(13.3%) | 15 (15.3%) | 7 (8.9%) | |||
Athens Insomnia Scale | ||||||
<6 | 54 (43.5%) | 46 (46.5%) | 48 (60.8%) | |||
≥6 | 70 (56.5%) | 53 (53.5%) | 31 (39.2%) | |||
Athens Insomnia Scale | ||||||
Absence of insomnia (0–5) | 54 (43.5%) | 46 (46.5%%) | 48 (60.8%) | |||
Mild (6–9) | 30 (24.2%) | 27 (27.3%) | 11 (13.9%) | |||
Moderate (10–15) | 30 (24.2%) | 19 (19.2%) | 14 (17.7%) | |||
Severe (16–24) | 10 (8.1%) | 7 (7.1%) | 6 (7.6%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalamara, E.; Pataka, A.; Boutou, A.; Panagiotidou, E.; Georgopoulou, A.; Ballas, E.; Chloros, D.; Metallidis, S.; Kioumis, I.; Pitsiou, G. Persistent Sleep Quality Deterioration among Post-COVID-19 Patients: Results from a 6-Month Follow-Up Study. J. Pers. Med. 2022, 12, 1909. https://doi.org/10.3390/jpm12111909
Kalamara E, Pataka A, Boutou A, Panagiotidou E, Georgopoulou A, Ballas E, Chloros D, Metallidis S, Kioumis I, Pitsiou G. Persistent Sleep Quality Deterioration among Post-COVID-19 Patients: Results from a 6-Month Follow-Up Study. Journal of Personalized Medicine. 2022; 12(11):1909. https://doi.org/10.3390/jpm12111909
Chicago/Turabian StyleKalamara, Evgenia, Athanasia Pataka, Afroditi Boutou, Evangelia Panagiotidou, Athina Georgopoulou, Evangelos Ballas, Diamantis Chloros, Symeon Metallidis, Ioannis Kioumis, and Georgia Pitsiou. 2022. "Persistent Sleep Quality Deterioration among Post-COVID-19 Patients: Results from a 6-Month Follow-Up Study" Journal of Personalized Medicine 12, no. 11: 1909. https://doi.org/10.3390/jpm12111909
APA StyleKalamara, E., Pataka, A., Boutou, A., Panagiotidou, E., Georgopoulou, A., Ballas, E., Chloros, D., Metallidis, S., Kioumis, I., & Pitsiou, G. (2022). Persistent Sleep Quality Deterioration among Post-COVID-19 Patients: Results from a 6-Month Follow-Up Study. Journal of Personalized Medicine, 12(11), 1909. https://doi.org/10.3390/jpm12111909