Perception about Health Applications (Apps) in Smartphones towards Telemedicine during COVID-19: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Sample Size Estimation
2.3. Sampling Method
2.4. Ethical Concerns
2.5. Inclusion and Exclusion Criteria
2.6. Data Collection
3. Results
Multiple Regressions
4. Discussion
4.1. Related Work
4.2. Limitations
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Institute of Medicine (US) Forum on Microbial Threats. Microbial Evolution and Co-Adaptation: A Tribute to the Life and Scientific Legacies of Joshua Lederberg: Workshop Summary; National Academies Press (US): Washington, DC, USA, 2009. Available online: https://www.ncbi.nlm.nih.gov/books/NBK45714/ (accessed on 9 August 2021).
- Rahman, H.S.; Aziz, M.S.; Hussein, R.H.; Othman, H.H.; Omer, S.H.S.; Khalid, E.S.; Abdulrahman, N.A.; Amin, K.; Abdullah, R. The transmission modes and sources of COVID-19: A systematic review. Int. J. Surg. Open 2020, 26, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D. COVID-19 rarely spreads through surfaces. So why are we still deep cleaning? Nature 2021, 29, 26–28. [Google Scholar] [CrossRef] [PubMed]
- CDC. Interim Infection Prevention and Control Recommendations for Healthcare Personnel During the Coronavirus Disease 2019 (COVID-19) Pandemic. 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/hcp/long-term-care.html (accessed on 9 August 2021).
- Nogrady, B. What the data say about asymptomatic COVID infections. Nature 2020, 587, 534–535. [Google Scholar] [CrossRef] [PubMed]
- COVID Live Update: 203,508,917 Cases and 4,308,544 Deaths from the Coronavirus—Worldometer. Available online: https://www.worldometers.info/coronavirus/ (accessed on 9 August 2021).
- New Amnesty ANALYSIS 7000 Health Workers Have Died from COVID-19. Available online: https://www.amnesty.org/en/latest/news/2020/09/amnesty-analysis-7000-health-workers-have-died-from-covid19/ (accessed on 9 August 2021).
- Monaghesh, E.; Hajizadeh, A. The role of telehealth during COVID-19 outbreak: A systematic review based on current evidence. BMC Public Health 2020, 20, 1193. [Google Scholar] [CrossRef] [PubMed]
- Di Stasio, D.; Romano, A.; Paparella, R.S.; Gentile, C.; Serpico, R.; Minervini, G.; Candotto, V.; Laino, L. How social media meet patients questions: YouTube review for mouth sores in children. J. Biol. Regul. Homeost. Agents 2018, 32 (Suppl. S1), 117–121. [Google Scholar] [PubMed]
- Minervini, G.; Russo, D.; Herford, A.S.; Gorassini, F.; Meto, A.; D’Amico, C.; Cervino, G.; Cicciù, M.; Fiorillo, L. Teledentistry in the Management of Patients with Dental and Temporomandibular Disorders. Biomed. Res. Int. 2022, 2022, 7091153. [Google Scholar] [CrossRef] [PubMed]
- Thirunavukkarasu, A.; Alotaibi, N.H.; Al-Hazmi, A.H.; Alenzi, M.J.; Alshaalan, Z.M.; Alruwaili, M.G.; Alruwaili, T.A.M.; Alanazi, H.; Alosaimi, T.H. Patients’ Perceptions and Satisfaction with the Outpatient Telemedicine Clinics during COVID-19 Era in Saudi Arabia: A Cross-Sectional Study. Healthcare 2021, 9, 1739. [Google Scholar] [CrossRef]
- Fiorillo, L.; Leanza, T. Worldwide 3D Printers against the New Coronavirus. Prosthesis 2020, 2, 87–90. [Google Scholar] [CrossRef]
- Cavallo, L.; Marcianò, A.; Cicciù, M.; Oteri, G. 3D Printing beyond Dentistry during COVID 19 Epidemic: A Technical Note for Producing Connectors to Breathing Devices. Prosthesis 2020, 2, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Strehle, E.M.; Shabde, N. One hundred years of Telemedicine: Does this new technology have a place in paediatrics? Arch. Dis. Child. 2006, 91, 956–959. [Google Scholar] [CrossRef]
- Combi, C.; Pozzani, G.; Pozzi, G. Telemedicine for Developing Countries. A Survey and Some Design Issues. Appl. Clin. Inform. 2016, 7, 1025–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosa, A.S.M.; Yoo, I.; Sheets, L. A Systematic Review of Healthcare Applications for Smartphones. BMC Med. Inform. Decis. Mak. 2012, 12, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Digital in India: All the Statistics You Need in 2021. DataReportal—Global Digital Insights. Available online: https://datareportal.com/reports/digital-2021-india (accessed on 10 August 2021).
- Press Release No. 27 of 2021.pdf. Available online: https://trai.gov.in/sites/default/files/PR_No.27of2021.pdf (accessed on 10 August 2021).
- Athilingam, P.; Clochesy, J.M.; Labrador, M.A. Intervention Mapping Approach in the Design of an Interactive Mobile Health Application to Improve Self-care in Heart Failure. Comput. Inform. Nurs. 2018, 36, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Telemedicine Tools Transforming Healthcare. Information Week. Available online: https://www.informationweek.com/healthcare/mobile-wireless/11-telemedicine-tools-transforming-healt/232602982 (accessed on 10 August 2021).
- Contributor, N.T. Telemedicine in Healthcare 1: Exploring Its Uses, Benefits, and Disadvantages. Nursing Times. 2009. Available online: https://www.nursingtimes.net/roles/nurse-managers/telemedicine-in-healthcare-1-exploring-its-uses-benefits-and-disadvantages-26-10-2009/ (accessed on 10 August 2021).
- Pain, H.; Soopramanien, D.A.; Dallolio, L.; Prior, R.; Menarini, M.; Ventura, M.; Fantini, M.P.; Stainthorpe, A. Outcomes from a randomized controlled telerehabilitation trial for people with spinal cord injuries. J. Telemed. Telecare 2007, 13 (Suppl. S1), 46–48. [Google Scholar] [CrossRef]
- Nuq, P.A.; Aubert, B. Towards a better understanding of the intention to use eHealth services by medical professionals: The case of developing countries. Int. J. Healthc. Manag. 2013, 1, 217–236. [Google Scholar] [CrossRef]
- Telemedicine|National Health Portal of India. Available online: https://www.nhp.gov.in/telemedicine_pg (accessed on 10 August 2021).
- Kamsu-Foguem, B.; Foguem, C. Telemedicine, and mobile health with integrative medicine in developing countries. Health Policy Technol. 2014, 3, 264–271. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, S.P.; Meng, S.; Wu, Y.-J.; Mao, Y.-P.; Ye, R.-X.; Wang, Q.-Z.; Sun, C.; Sylvia, S.; Rozelle, S.; Raat, H.; et al. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: A scoping review. Infect. Dis. Poverty 2020, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- National Center for Immunization and Respiratory Diseases (U.S.); Division of Viral Diseases. Prevention. Interim Guidance for Healthcare Facilities: Preparing for Community Transmission of COVID-19 in the United States. 2020. Available online: https://stacks.cdc.gov/view/cdc/85502 (accessed on 10 August 2021).
- Li, W.; Yang, Y.; Liu, Z.-H.; Zhao, Y.-J.; Zhang, Q.; Zhang, L.; Cheung, T.; Xiang, Y.-T. Progression of Mental Health Services during the COVID-19 Outbreak in China. Int. J. Biol. Sci. 2020, 16, 1732–1738. [Google Scholar] [CrossRef] [Green Version]
- Di Stasio, D.; Lauritano, D.; Gritti, P.; Migliozzi, R.; Maio, C.; Minervini, G.; Petruzzi, M.; Serpico, R.; Candotto, V.; Lucchese, A. Psychiatric disorders in oral lichen planus: A preliminary case control study. J. Biol. Regul. Homeost. Agents 2018, 32 (Suppl. S1), 97–100. [Google Scholar]
- Reeves, J.J.; Hollandsworth, H.M.; Torriani, F.J.; Taplitz, R.; Abeles, S.; Tai-Seale, M.; Millen, M.; Clay, B.J.; Longhurst, C.A. Rapid response to COVID-19: Health informatics support for outbreak Management in an Academic Health System. J. Am. Med. Inform. Assoc. 2020, 27, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Abouzeid, H.L.; Chaturvedi, S.; Abdelaziz, K.M.; Alzahrani, F.A.; AlQarni, A.A.S.; Alqahtani, N.M. Role of Robotics and Artificial Intelligence in Oral Health and Preventive Dentistry - Knowledge, Perception and Attitude of Dentists. Oral Health Prev. Dent. 2021, 19, 353–363. [Google Scholar] [PubMed]
- Alhajri, N.; Simsekler, M.C.E.; Alfalasi, B.; Alhashmi, M.; Memon, H.; Housser, E.; Abdi, A.M.; Balalaa, N.; Al Ali, M.; Almaashari, R.; et al. Exploring Quality Differences in Telemedicine Between Hospital Outpatient Departments and Community Clinics: Cross-sectional Study. JMIR Med. Inform. 2022, 10, e32373. [Google Scholar] [CrossRef] [PubMed]
- Taha, A.R.; Shehadeh, M.; Alshehhi, A.; Altamimi, T.; Housser, E.; Simsekler, M.C.E.; Alfalasi, B.; Al Memari, S.; Al Hosani, F.; Al Zaabi, Y.; et al. The integration of mHealth technologies in telemedicine during the COVID-19 era: A cross-sectional study. PLoS ONE 2022, 17, e0264436. [Google Scholar] [CrossRef]
- Mobile And Internet in India 2014: 349 Million Unique Mobile Phone Users. Dazeinfo. 2014. Available online: https://dazeinfo.com/2014/07/11/mobile-internet-india-2014-349-million-unique-mobile-phone-users-70-traffic-mobile-india-shining-infographic/ (accessed on 10 August 2021).
- AlSuwaidi, S.; Moonesar, I.A. UAE Resident Users’ Perceptions of Healthcare Applications from 55 Dubai Health Authority: Preliminary Insights. Dubai Med. J. 2021, 4, 10–17. [Google Scholar] [CrossRef]
- Alhajri, N.; Simsekler, M.C.E.; Alfalasi, B.; Alhashmi, M.; AlGhatrif, M.; Balalaa, N.; Al Ali, M.; Almaashari, R.; Al Memari, S.; Al Hosani, F.; et al. Physicians’ Attitudes Toward Telemedicine Consultations During the COVID-19 Pandemic: Cross-sectional Study. JMIR Med. Inform. 2021, 9, e29251. [Google Scholar] [CrossRef] [PubMed]
- Mubaraki, A.A.; Alrabie, A.D.; Sibyani, A.K.; Aljuaid, R.S.; Bajaber, A.S.; Mubaraki, M.A. Advantages and disadvantages of telemedicine during the COVID-19 pandemic era among physicians in Taif, Saudi Arabia. Saudi Med. J. 2021, 42, 110–115. [Google Scholar] [CrossRef]
- Tiwari, S.; Chanak, P.; Singh, S.K. A Review of the Machine Learning Algorithms for COVID-19 Case Analysis. In IEEE Transactions on Artificial Intelligence; IEEE: New York, NY, USA, 2022. [Google Scholar] [CrossRef]
- Khemasuwan, D.; Colt, H.G. Applications and challenges of AI-based algorithms in the COVID-19 pandemic. BMJ Innov. 2021, 7, 387–398. [Google Scholar] [CrossRef]
- Sorkhabi, L.B.; Gharehchopogh, F.S.; Shahamfar, J. A systematic approach for pre-processing electronic health records for mining: Case study of heart disease. Int. J. Data Min. Bioinform. 2020, 24, 97–120. [Google Scholar] [CrossRef]
- Piri, J.; Mohapatra, P.; Acharya, B.; Gharehchopogh, F.S.; Gerogiannis, V.C.; Kanavos, A.; Manika, S. Feature Selection Using Artificial Gorilla Troop Optimization for Biomedical Data: A Case Analysis with COVID-19 Data. Mathematics 2022, 10, 2742. [Google Scholar] [CrossRef]
- McKay, F.H.; Cheng, C.; Wright, A.; Shill, J.; Stephens, H.; Uccellini, M. Evaluating mobile phone applications for health behaviour change: A systematic review. J. Telemed. Telecare 2018, 24, 22–30. [Google Scholar] [CrossRef]
- Mb, M. Mobile Health Application Framework for an Ideal User Experience: A User-Centered Design Approach for Clinicians. Trends Telemed E-Health. 2018. Available online: https://crimsonpublishers.com/tteh/fulltext/TTEH.000511.php (accessed on 10 August 2021).
- Kansal, A.K.; Gautam, J.; Chintalapudi, N.; Jain, S.; Battineni, G. Google Trend Analysis and Paradigm Shift of Online Education Platforms during the COVID-19 Pandemic. Infect Dis. Rep. 2021, 13, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Battineni, G.; Di Canio, M.; Chintalapudi, N.; Amenta, F.; Nittari, G. Development of physical training smartphone application to maintain fitness levels in seafarers. Int. Marit. Health 2019, 70, 180–186. [Google Scholar] [CrossRef] [PubMed]
Mean | S.D # | R&V | E&C | D&I | TM | ||
---|---|---|---|---|---|---|---|
R&V | 3.24 | 0.742 | Pearson Correlation | 1 | 0.422 | −0.344 | 0.820 |
Sig. [2-tailed] | 0.001 * | 0.001 * | 0.000 * | ||||
N | 135 | 135 | 135 | 135 | |||
E&C | 3.18 | 0.718 | Pearson Correlation | 0.422 | 1 | 0.415 | −0.249 |
Sig. [2-tailed] | 0.001 | 0.002 * | 0.004 * | ||||
N | 135 | 135 | 135 | 135 | |||
D&I | 3.62 | 0.836 | Pearson Correlation | −0.344 | 0.415 | 1 | 0.706 |
Sig. [2-tailed] | 0.001 * | 0.002 * | 0.000 * | ||||
N | 135 | 135 | 135 | 135 | |||
TM | 3.49 | 0.828 | Pearson Correlation | 0.820 | −0.249 | 0.706 | 1 |
Sig. [2-tailed] | 0.000 * | 0.0048 | 0.000 * | ||||
N | 135 | 135 | 135 | 135 |
Independent Variables | Beta | t | Sig. | R | R Square | Adjusted R Square |
---|---|---|---|---|---|---|
Constant] | 2.542 | 0.005 | 0.553 a | 0.289 | 0.279 | |
Reliability and Vicinity of health services | 0.524 | 6.687 | 0.000 | |||
Efficacy and Comprehensive information about health | −0.136 | −2.118 | 0.039 | |||
Development and Improvement of health apps | 0.789 | 2.867 | 0.025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reddy, L.K.V.; Madithati, P.; Narapureddy, B.R.; Ravula, S.R.; Vaddamanu, S.K.; Alhamoudi, F.H.; Minervini, G.; Chaturvedi, S. Perception about Health Applications (Apps) in Smartphones towards Telemedicine during COVID-19: A Cross-Sectional Study. J. Pers. Med. 2022, 12, 1920. https://doi.org/10.3390/jpm12111920
Reddy LKV, Madithati P, Narapureddy BR, Ravula SR, Vaddamanu SK, Alhamoudi FH, Minervini G, Chaturvedi S. Perception about Health Applications (Apps) in Smartphones towards Telemedicine during COVID-19: A Cross-Sectional Study. Journal of Personalized Medicine. 2022; 12(11):1920. https://doi.org/10.3390/jpm12111920
Chicago/Turabian StyleReddy, Lingala Kalyan Viswanath, Pallavi Madithati, Bayapa Reddy Narapureddy, Sahithya Ravali Ravula, Sunil Kumar Vaddamanu, Fahad Hussain Alhamoudi, Giuseppe Minervini, and Saurabh Chaturvedi. 2022. "Perception about Health Applications (Apps) in Smartphones towards Telemedicine during COVID-19: A Cross-Sectional Study" Journal of Personalized Medicine 12, no. 11: 1920. https://doi.org/10.3390/jpm12111920